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Abstract

For a locally compact group G , let S(G) be a symmetric Segal algebra. We

prove that S(G) is an ideal in its second dual space if and only if G is compact,

where the second dual is equipped with an Arens multiplication.

1. Introduction

Let A be an arbitrary Banach algebra. On the second dual A?? of A may be

equipped two Banach algebra multiplication, known as first and second Arens multiplica-

tion [1,2,5] each of which is an extension of the original multiplication in A as canonically

embedded in A?? . From now on, we shall denote by A?? , the algebra A?? equipped with

the first Arens multiplication and consider A as subalgebra of A?? .

Let G be a locally compact group, L1(G) the group algebra of G . K. P. Wong

in [19] has proved that if G is a compact group, then L1(G) is an ideal in its second

dual. For the converse of Wong’s result S. Watanabe gave two different proofs [17,18] (the

case G abelian had earlier been proved by P. Civin [4]). Other proofs were also provided

by M. Grosser [9], D. L. Johnson [12], A. Ülger ([16], Prop. 4.8) and J. Duncan and A.

Ülger ([6], Prop. 2.5). In [7] F. Ghahramani has extended this results to weighted group

algebras.

In this note we find a necessary and sufficient condition for a symmetric Segal

algebra to be an ideal in its second dual space. This generalizes the above-mentioned
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result for group algebras.

2. Preliminaries

Throughout, G will be a locally compact group and dg a fixed left Haar measure

on G . In the Banach algebra L1(G) we have the left translation operator Lg and right

translation operator Rg defined by

Lgf(s) = f(g−1s), Rgf(s) = ∆(g−1)f(sg−1),

where ∆(g) is the modular function of G . We recall also that, for any f ∈ L1(G), fv

and f̃ are defined by fv (g)=f(g−1 ) and f̃ (g)=∆(g−1 )f(g−1 ).

A linear subspace of L1(G) is said to be a Segal algebra, and denoted by S(G), if

it satisfies the following conditions (1)-(4), [14,15].

(1) S(G) is dense in L1(G)

(2) S(G) is a Banach space under some norm ‖ . ‖S and

‖ f ‖1≤ C ‖ f ‖S

for all f ∈ S(G) and for some constant C > 0.

(3) S(G) is left norm-invariant: f ∈ S(G) ⇒ Lgf ∈ S(G) and ‖ Lgf ‖S=‖ f ‖S for all

f∈ S(G) and all g ∈ G .

(4) The mapping g→ Lgf of G into S(G) is continuous.

“Right-hand” versions of (3) and (4) are the following conditions.

(3 ′ ) S(G) is right norm-invariant: f ∈S(G)→ Rg f ∈ S(G) and ‖ Rgf ‖S=‖ f ‖S for

all f ∈ S(G) and all g ∈ G .

(4 ′ ) The mapping g→ Rgf of G into S(G) is continuous.

A Segal algebra is said to be symmetric if it satisfies (3 ′ ) and (4 ′ ). About Segal

algebras, ample information can be found in H. Reiter’s books [14, 15]. We now give some

concrete examples of Segal algebras [14, 15].

(i) The continuous functions in L1(G) that vanish at infinity form a Segal algebra, the

norm being defined by
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‖ f ‖S=‖ f ‖1 + ‖ f ‖∞

(ii) The algebra L1(G) ∩ Lp(G)(1 < p <∞), equipped with the norm

‖ f ‖S=‖ f ‖1 + ‖ f ‖1 + ‖ f ‖p

is a Segal algebra.

The examples (i) and (ii) are symmetric Segal algebras if and only if G is unimodular

([15], p. 24).

(iii) Let G be an abelian group with character group Ĝ , For 1 < p < ∞, Ap(G)

denotes the set of all f ∈ L1(G) whose Fourier transforms f̂ are in Lp(Ĝ). Ap (G)

is a (symmetric) Segal algebra with the norm

‖ f ‖Ap=‖ f ‖1 + ‖ f̂ ‖p

Any Segal algebra S(G) is a left Banach L1(G) - convolution module, that is, if

h ∈ L1(G) and f ∈ S(G), then h? f ∈ S(G) and

‖ h ? f ‖S≤‖ h ‖1 + ‖ f ‖S f ∈ S(G), h ∈ L1(G).

In particular, S(G) is a Banach subalgebra of L1(G) under ‖ . ‖S . If S(G) is symmetric,

then S(G) is also a right Banach L1(G) - convolution module. Since L1(G) has a bounded

(two-sided) approximate identity, it follows from the Cohen-Hewitt factorization theorem

[11,32.22] that, if S(G) is a symmetric Segal algebra, then

S(G) = L1(G) ? S(G) = S(G) ? L1(G).

On the other hand, we see that if S(G) is a symmetric Segal algebra, then L1(G) is a

Banach S(G) - convolution bimodule. Using Cohen-Hewitt factorization theorem again

one can see that S(G) cannot have bounded (in the Segal norm) approximate identity (left

or right) unless S(G) = L1(G). However, a symmetric Segal algebra has approximate

(two-sided) identity that have L1 -norm one ([15], p.34). Later on, we shall consider

symmetric Segal algebras only.
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Next, we racall definitions of some functions spaces which we shall use in this note.

Let C(G) be the space of bounded continous complex-valued functions on G with

sup-norm and C0(G) the subspace of C(G) consisting of functions vanishing at infinity.

By Clu(G), Cru(G) and Cu(G) we denote in order, the subspaces of C(G) consisting

of the left, right and both left and right uniformly continuous functions on G . It is well

known ([11], 32. 45) that

Clu(G) = L1(G) ? L∞(G), Cru(G) = L∞(G) ? L1(G)v,

where L1(G)v = {fv |f ∈ L1(G)} . By WAP (G) we denote the subspace of C(G)

consisting of the weakly almost periodic functions on G . It is well known ([3], p. 42,

Theorem 3.11) that WAP (G) is a (norm) closed linear subspace of Cu(G). Burckel ( [3],

p. 68, Theorem 4.10) proved that C(G) = WAP (G) if and only if G is compact. In [8]

Granirer provided the following improvement of this result: Cu(G) = WAP (G) if and

only if G is compact.

3. The main result

The main result of this note is the following theorem.

Theorem. A symmetric Segal algebra S(G) is a right (resp. left) ideal in its second dual

algebra if and only if G is compact.

For the proof of the theorem we need some premilinary results. If X is a Banach

space, we denote by X? its dual and by X(1) its closed unit ball. For x in X and ϕ in

X? , we denote by < ϕ, x > the natural duality between X and X? . Now, let S(G) be a

Segal algebra. It follows from (1) and (2) that, L∞(G) can in natural way be embedded

in S(G)? , that is if ϕ ∈ L∞(G), then ϕ ∈ S(G)? and

‖ ϕ ‖S?≤ C ‖ ϕ ‖∞ .

Moreover, if f∈ S(G) then we have

< ϕ, f >=
∫
G

ϕ(g)f(g)dg, ϕ ∈ L∞(G).
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As we have seen before if S(G) is a symmetric Segal algebra, then S(G) is a Banach

L1(G) - convolution bimodule. It follows that S(G)? is a Banach L1(G) -bimodule

under the adjoint action defined by

< h ◦ ϕ, f > = < ϕ, f ? h >,

< ϕ ◦ h, f > = < ϕ, h ? f >,

where h ∈ L1(G), f ∈ S(G), ϕ ∈ S(G)? . It is easily verified that

(h ? f) ◦ ϕ = h ◦ (f ◦ ϕ)

ϕ ◦ (f ? h) = (ϕ ◦ f) ◦ h,

h ∈ L1(G), f ∈ S(G), ϕ ∈ S(G)? .

An easy calculation will show that, for ϕ in L∞(G) and f in L1(G), f ◦ϕ = ϕ?fv

and ϕ ◦ f = f̃ ? ϕ .

By S(G) ◦ S(G)? , S(G)? ◦ S(G) and S(G)? S(G) we denote, respectively, the

sets {f ◦ϕ|f ∈ S(G), ϕ ∈ S(G)?} , {ϕ◦f |ϕ ∈ S(G),? f ∈ S(G)} and {f ?h|f , h ∈ S(G)}.
Put S(G)v ={fv |f ∈ S(G)}.

Lemma 1.a) S(G)◦ S(G)? is in Cru (G) and moreover

S(G) ◦ S(G)?
‖ . ‖∞ = Cru(G)

l S(G)?◦ S(G) is in Clu (G) and moreover

S(G)? ◦ S(G)?
‖ . ‖∞ = Clu(G)

Here “–‖ . ‖∞” denotes the sup-norm closure.

Proof. a). Assume that f ∈ S(G) and ϕ ∈ S(G)? . First we observe that f ◦ ϕ is in

L∞(G). From the equality < f ◦ ϕ, h >=< ϕ, h ? f > , where h ∈ S(G), we have 2
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| < f ◦ ϕ, h > | ≤‖ ϕ ‖S?‖ h ? f ‖S≤‖ ϕ ‖S?‖ f ‖S‖ h ‖1 .

This inequality shows that f ◦ ϕ is bounded on S(G) for the norm of L1(G).

Hence, S(G) being dense in L1(G), f ◦ ϕ can be extended in a unique way to L∞(G).

Thus f ◦ ϕ can be considered as an element of L∞(G). On the other hand, since

S(G) = L1(G) ? S(G), f can be represented as f = h ? k , where h ∈ L1(G), k ∈ S(G).

Now we have

f ◦ ϕ = (h ? k) ◦ ϕ = h ◦ (k ◦ ϕ).

Since k ◦ ϕ ∈ L∞(G), this gives

f ◦ ϕ = (k ◦ ϕ) ? hv.

From this we deduce that f ◦ ϕ ∈ Cru(G) for all f ∈ S(G) and ϕ ∈ S(G)? . Thus we

have the following:

S(G) ◦ S(G)?
‖.‖∞
⊂ C`u(G)

.

To prove the opposite inclusion it is enough to show that

⊂ C`u(G)L∞(G) ? L1(G)v ⊂ S(G) ◦ L∞(G)
‖.‖∞

= L∞(G) ? S(G)v
‖.‖∞

Since S(G) is dense in L1(G), it remains to observe that if a sequence (fn ) in

S(G) converges (in the L1 -norm) to some f ∈ L1(G), then ϕ ? fvn → ϕ ? fv uniformly

for all ϕ ∈ L∞(G).

The proff of b) is similar. �
Now, let A be an arbitrary Banach algebra and a is an element of A . By

Ra : A → A (resp. La : A → A) we denote the right multiplication operator (left

multiplication operator) defined by Ra(b) = ba(La(b) = ab). The following lemma was

proved in [5,7].
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Lemma 2. A is a right (resp. left) ideal of A?? if and only if, for each a ∈ A, the right

multiplication operator Ra (the left multiplication operator La ) is weakly compact.

Now we can prove the main result of this note.

Proof of Theorem Assume that S(G) is a right ideal in its second dual algebra. Then

by Lemma 2 the set ` ? f ‖ ` ‖S≤ 1 is relatively weakly compact in S(G) for all f ∈
S(G). Assume first that f is of the form: f = h ? k where, h, k ∈ S(G). Without loss

of generality we can suppose that ‖ h ‖S≤ 1. Since Lgf = Lg(h ? k) = Lgh ? k and since

‖ Lgh ‖S=‖ h ‖S≤ 1 we have

{Lgf |g ∈ G} ⊂ {` ? k| ‖ ` ‖S≤ 1}

It follows that, the set {Lgf |g ∈ G} is relatively weakly compact for all f in S(G)?S(G).

Since g→ Lg is a (continuous) representation of G on S(G), by Eberlein theorem ([3],

p.36, Theorem 3.1), the function g →< ϕLgf > is in WAP (G) for all ϕ ∈ S(G)? and

f ∈ S(G) ? S(G). Moreover, since S(G) has an approximate identity, for any f ∈ S(G),

there is a sequence (fn ) in S(G) ? S(G) such that fn → f in the Segal norm. This

implies that < ϕ, Lgfn >→ ϕ, Lgf > uniformly. From this it follows that the function

g →< ϕ, Lgf > is in WAP (G) for all ϕ ∈ S(G)? and f ∈ S(G). Now, we claim that

< ϕ, Lgf >= (f◦ϕ) (g). In fact, for given any h ∈ S(G) we can write

∫
G

h(g) < ϕ, Lgf > dg =< ϕ,

∫
G

h(g)Lgfdg >

=< ϕ, h ? f >=< f ◦ ϕ, h >=
∫
G

h(g)(f ◦ ϕ)(g)dg.

Since S(G) is dense in L1(G) and since the functions g →< ϕ, Lgf > and g→ (f ◦ϕ)(g)

are hoth continuous, the last equality clearly implies that

< ϕ, Lgf >= (f ◦ ϕ)(g).

Further, by Lemma 1 we have

Cru(G) = S(G) ◦ S(G)?
‖ . ‖∞ ⊂WAP (G),
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and consequently Cu(G) = WAP (G). However, this equality is possible only if G is

compact [8].

Now assume that G is a compact group. We shall prove that the right multiplica-

tion operator Rf : h→ h ? f is compact on S(G) for all f ∈ S(G). Before begining the

proof, we recall the following fact which is an immediate consequense of the Peter-Weyl

theory: If T is a (consuniuous) representation of the compact group G on some Banach

space X , then X is a closed linear span of finite dimensional invariant subspaces of T

([13], p.91, Corollary 1).

Now, since g → Lg is a (continuous) representation of G on S(G), by virtue of

the above-mentioned fact, is a closed linear span of finite dimensional invariant subspaces

of Lg(g ∈ G). Let J be an invariant (closed) subspace of Lg and let f ∈ J . By the very

definition of vector-valued integral we have

h ? f =
∫
G

h(g)Lgfdg ∈ J, h ∈ S(G)

Hence J is a (closed) left ideal of S(G). Thus we see that, actually, S(G) is a closed

linear span of finite dimensional left ideals. This means that, for given any f ∈ S(G) and

ε >0, there exist finite dimensional left ideals J1, . . . , Jn and f1 ∈ J1, . . . , fn ∈ Jn such

that

‖ f −
n∑
i=1

fi ‖< ε

This implies that

‖ Rf −
n∑
i=1

Rfi ‖< ε

Since Ji(i = 1, . . . , n) are finite dimensional left ideals, Rfi (i = 1, . . . , n) are

finite rank operators. On the other hand, the preceding inequality show that Rf can be

approximate (in the operator norm) by finite rank operators. From this we conclude that

Rf is a compact operator.

“Right-version” of this arguments shows that S(G) is a left ideal in its second dual

if and only if G is compact. The proof is complete.
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As an immediate corollary of the Theorem we have the following results.

Corollary 3. a) The algebra L1 (G)∩C0 (G) equipped with the norm ‖ f ‖=‖ f ‖1 + ‖
f ‖∞ is a right (resp. left) ideal in its second dual space if and only if G is compact.

b) The algebra L1 (G)∩Lp (G)(1<p< ∞) equipped with the norm

‖ f ‖=‖ f ‖1 + ‖ f ‖p is a right (resp. left) ideal in its second dual space if and

only if G is compact.

Notice that, if G is compact, then L1 (G)∩Lp (G)(1<p< ∞) is iqual to Lp (G)

which is a reflexive.

Corollary 4. The algebra Ap (G) is an ideal in its second dual if and only if G is

compact.
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