Tr. J. of Mathematics
23 (1999) , 243 - 249.
© TÜBİTAK

LEFT ADJOINT OF PULLBACK Cat¹-GROUPS

 $Murat \ Alp$

Abstract

In [1] we define the pullback Cat^1 -groups and showed that the category of pullback Cat^1 -groups is equivalent to the category of pullback crossed modules. In this paper we proved that the pullback Cat^1 -group has a left adjoint which is the induced Cat^1 -group. We also give the left adjoint construction.

1991 A. M. S. C.: 13D99, 16A99, 17B99, 17D99, 18D35.

Key words: Crossed modules, cat¹-groups, pullback, Cocomplete category, Adjoint.

1. Introduction

Crossed modules are usefully regarded as 2-dimensional forms of groups. They were introduced by J. H. C. Whitehead in [13], and have powerful topological applications [5, 6, 7, 12]. Loday in [8] showed that the category of crossed modules is equivalent to that of cat¹-groups. We implemented crossed modules and cat¹-groups structures to the computed using the group theory language GAP [10] as a package in [11]. We also enumerated cat¹-groups of low order and group order 41-47 in [2] and [1] using this program package XMOD.

Our aim is to define pullback cat^1 -groups and to show that the equivalence between cat^1 -groups and crossed modules due to Loday [5] takes pullback cat^1 -groups to the pullback crossed modules defined by Brown and Higgins in [3].

2. Pre-cat¹-groups and Pullback cat¹-groups

A crossed module $\chi = (\partial : S \to R)$ consists of a group homomorphism ∂ , called the boundary of χ , together with an action $\alpha : R \to Aut(S)$ satisfying, for all $s, s' \in S$ and $r \in R$,

$$\begin{aligned} \mathbf{XM1}: \quad \partial(s^r) &= r^{-1}(\partial s)r \\ \mathbf{XM2}: \quad s^{\partial s'} &= s'^{-1}ss'. \end{aligned}$$

The standard examples of crossed modules are:

- Any homomorphism ∂ : S → R of abelian groups with R acting trivially on S may be regarded as a crossed module.
- 2. A conjugation crossed module is an inclusion of a normal subgroup $S \leq R$, where R acts on S by conjugation.
- 3. A central extension crossed module has as boundary a surjection $\partial : S \to R$ with central kernel, where $r \in R$ acts on S by convugation with $\partial^{-1}r$.
- An automorphism crossed module has as its range a subgroup R of the automorphism group Aut (S) of S which contains the inner automorphism group of S. The boundary maps s ∈ S to the inner automorphism of S by s.
- 5. An R-module crossed module has an R-module as source and ∂ as the zero map.
- The direct product χ₁×χ₂ of two crossed modules has source S₁×S₂, range R₁×R₂ and boundary ∂₁ × ∂₂, with R₁, R₂ acting trivially on S₂, S₁ respectively.
- 7. An important motivating topological example of crossed module due to Whitehead [12] is the boundary $\partial : \pi_2(X, A, x) \to \pi_1(A, x)$ from the second relative homotopy group of a based pair (X, A, x) of topological spaces, with the usual action of the fundamental group $\pi_1(A, x)$.

A morphism between two crossed modules $\chi = (\partial : S \to R)$ and $\chi' = (\partial' : S' \to R')$ is a pair (σ, ρ) , where $\sigma : S \to S'$ and $\rho : R \to R'$ are homomorphisms satisfying

$$\partial' \sigma = \rho \partial, \ \sigma(s^r) = (\sigma s)^{\rho \tau}.$$

In [8], Loday reformulated the notion of a crossed modules as a cat¹-group, namely a group G with a pair of homomorphisms $t, h : G \to G$ having a common image R and satisfying certain axioms. We find it convenient to define a pre-cat¹-group $C = (e; t, h : G \to R)$ as a group G with two surjections $t, h : G \to R$ and an embedding $e : R \to G$ satisfying:

CAT1:
$$te = he = id_R$$
.

The pre-cat¹-group $\mathcal{C} = (e, t, h : G \to R)$ is a cat¹-group if it also satisfies

CAT2:
$$[kert, kerh] = \{1_G\}.$$

The maps t, h are often called the source and target, but we choose to call them tail and head of C, because source is the GAP term for the domain of a function.

A morphism $\mathcal{C} \to \mathcal{C}'$ of cat^1 -groups is a pair (γ, ρ) where $\gamma : G \to G'$ and $\rho : R \to R'$ are homomorphisms satisfying

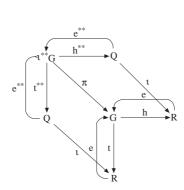
$$h'\gamma = \rho h, t'\gamma = \rho t, e'\rho = \gamma e.$$

To any pre-cat¹-group \mathcal{P} there is a canonically associated a cat¹-group \mathcal{C} , obtained by quotienting the soruce group by the Peiffer subgroup [ker t, ker h].

The corresponding functor is denoted

$$ass: (pre-cat^1 - groups) \rightarrow (cat^1 - groups), \tag{0.1}$$

and is clearly the identity when restricted to cat¹-group [6] A pullback cat¹-group is defined in [1] as follows.



ALP

Let $\mathcal{C} = (e; t, h : G \to R)$ be a cat¹-group and let $i : Q \to R$ be a group homomorphism. Define $e^{**}; t^{**}, h^{**}: i^{**}G \to Q$ to be the pullback of G where

$$i^{**}G = \{(q_1, g, q_2) \in Q \times G \times | iq_1 = tg, iq_2 = hg\}$$

 $t^{**}(q_1, g, q_2) = q_1, h^{**}(q_1, g, q_2) = q_2$ and $e^{**}(q) = (q, eiq, q)$. Multiplication in $i^{**}G$ is componentwise. The pair (π, i) is a morphism of cat^1 -groups where $\pi : i^{**}G \to G, (q_1, g, q_2) \mapsto g$.

Proposition 2.1 [1] If $i^*\chi$ is the pullback of the crossed module χ over $i: Q \to R$ and if \mathcal{C}, \mathcal{D} are the cat¹-groups obtained from $\chi, i^*\chi$ respectively, then $\mathcal{D} \cong i^{**}\mathcal{C}$.

3. Construction of the left adjoint

Proposition 3.1. The category of cat^1 -groups is co-complete.

Proof. Let $F: C \to (\operatorname{cat}^1\operatorname{-groups})$. We wish to construct colim F. For each object c of C, we write

$$F(c) = (e_c; t_c, h_c : F_1(c) \to F_0(c)).$$

Then we form

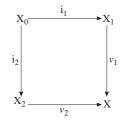
$$F' = (i'; t', h': \operatorname{colim}_c F_1(c) \to \operatorname{colim}_c F_0(c))$$
$$= (e'; t', h': F'_1 \to F'_0),$$

246

where F'_1, F'_0 are the colimits in the category of groups, so that t'e' = h'e' = 1. So F' is a pre-cat¹-groups. The required colimit is the the associated cat¹-group **ass** F' (see (1) on page 4),

ass
$$F' = (e''; t'', h'': F'_1/[\ker t', \ker h'] → F'_0).$$
 □

We recall the definition of pushouts in a general category. Suppose we are given a commutative diagram of morphisms in a category C:



Recall [9] that (v_1, v_2) is pushout of (i_1, i_2) , and also that the above square is a pushout square, if the following property holds: if $f_1 : X_1 \to H$, $f_2 : X_2 \to H$ are morphisms such that $f_1i_1 = f_2i_2$ then there is a unique map $f : X \to H$ such that $fv_1 = f_1$, $fv_2 = f_2$.

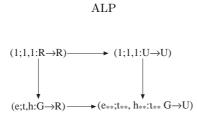
As usual, this property characterizes the pair (v_1, v_2) up to an automorphism of X. For this reason, it is common to make an abuse of language and refer to X as the pushout of (i_1, i_2) . In this case, we write

$$X = X_2 *_{X_0} X_1$$

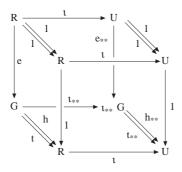
where $*_{X_0}$ is used to suggest a free product.

Proposition 3.2. The functor i^{**} : Cat^1 $Grp/U \rightarrow Cat^1$ Grp/R has a left adjoint i_{**} : Cat^1 $grp/R \rightarrow Cat^1$ Grp/U.

Proof. We can give the left adjoint construction as follows. Let $\mathcal{C} = (e; t, h : G \to R)$ be at cat¹-group over R and $i : R \to U$ is a morphism of groups. Then the induced cat¹-group is $i_{**}\mathcal{C} = (e_{**}; t_{**}.h_{**}: i_{**}G \to U)$ is given by the pushout



we draw the above diagram as a three dimensional diagram as follows



in the category of cat¹-groups. For computational purposes note that by the previous proposition 3.1, $i_{**}G = (G *_R U)/[ker t_{**}, ker h_{**}]$, where $*_R$ denotes coproduct of groups, that is, a free product with amalgamation over R.

References

- Alp, M., Pullback of crossed modules and cat¹-groups, *Turkish Journal of Mathematics* (to appear) 1998, 3 Vol 22.
- [2] Alp, M. Special case of Cat¹-groups, Algebras, Groups and Geometries, Vol.15 (1998) (to appear).
- [3] Alp, M., Enumeration of Cat¹-groups of group order 41-47, Anadolu Üniversitesi Fen Fakültesi Dergisi, 1997, Sayı 3 79-90. 4
- [4] Alp, M. and Wensley, C. D., Enumeration of Cat¹-groups of low order, U. W. B. preprint, 96.05, 15pp International Journal of algebra and Computation republished). 5

- [5] Brown, R. and Higgins, P. J., On the connection between the second relative homotopy groups of some related space, Proc. London Math. Soc., (3) 36 (1978) 193-212.
- [6] Brown, R. and Loday, J. L., Homotopical excision, and Hurewicz theorems, for n-cubes of spaces, Proc. London Math. Soc., (3) 54 (1987) 176-192.
- [7] Brown, R. and Wensley, C. D. On finite induced crossed modules. and the homotopy 2-type of mapping cones, *Theory and applications of Categories*, 1 (3) (1995)54-71.
- [8] Loday, J. L., Spaces with finitely many non-trivial homotopy groups, J. App. Algebra, 24 (1982) 179-202.
- Maclane, S., Categories for the Working Mathematician, Graduate Texts in Maths., Springer Verlag, Berlin 5 (1971).
- [10] Schönert, M. et al, GAP: groups, Algorithms, and Programming, Lehrstuhl D f
 ür mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany, third edition, 1993.
- [11] Alp, M., and Wensley, C. D., XMOD, crossed modules and cat¹-groups in GAP, version 1.3 Manual for the XMOD share package, (1996) 1-80.
- [12] Whitehead, J. H. C., on adding relations to homotopy groups, Ann. Math., 47 (1946) 806-810.
- [13] Whitehead, J. H. C., Combinatorial homotopy II, Bull. a. M. S., 55 (1949) 453-496.

Murat ALP

Received 19.11.1997

Dumyupınar Üniversitesi Fen-Edebiyat Fakültesi Matematik Bölümü Kütahya-TURKEY email: malp@dumlupinar.edu.tr