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Abstract

In this study, some asymptotic estimates for the length of the instability intervals

of Hill’s equation, y′′(t) + (λ − q(t))y(t) = 0, are derived by means of an auxiliary

eigenvalue problem under various assumptions on the Fourier coefficients of the

potential q .

1. Introduction

In this study, we consider the Hill’s equation

y′′(t) + (λ − q(t))y(t) = 0. (1)

We assume that q(t) ∈ L1[0, a] , periodic with period a and
∫ a

0
q(t)dt = 0, that is, q(t)

has a zero mean value. The last condition is clearly not a restriction on q(t). If q(t) has

a nonzero mean value, say c , we work on the following equation

y′′(t) +
[
(λ − c

a
) − (q(t) − c

a
)
]
y(t) = 0,

in which

q(t) − c

a

has a mean value zero. We consider two different types of boundary conditions:

y(0) = y(a),

y′(0) = y′(a), (2)
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COŞKUN

and

y(a) = −y(0),

y′(a) = −y′(0) (3)

which are known as the periodic and semi-periodic boundary conditions, respectively. If

λn (n = 0, 1, . . .) denotes the periodic eigenvalues of the problem (1)-(2), and µn denotes

the semi-periodic eigenvalues of the problem (1)-(3), then the intervals (λ2m, µ2m) and

(µ2m+1, λ2m+1) are called the stability intervals of (1) whereas the intervals (−∞, λ0),

(µ2m, µ2m+1) and (λ2m+1, λ2m+2) are called the instability intervals of (1) and referred

to as the zero-th, (2m+ 1)− th and (2m+ 2)− th instability interval, respectively. The

length of the n− th instability interval of (1), whether it is absent or not, will be denoted

by ln . We note that the absence of an instability interval means that there is a value of

λ for which all solutions of (1) have either period a or semi-period a .

We note that a more general second order periodic differential equation

{p(x)z′(x)}′ + {λs(x) − q(x)}z(x) = 0 (4)

can be reduced to an equation of type (1) if p′′(x), s′′(x) exist and are integrable. Here

p(x), q(x), s(x) are real-valued piecewise continuous periodic functions with the same

period a , −∞ < x < ∞ and λ is a real parameter. To see this, we apply to (4) the

Liouville transformation

t =
∫ x

0

[s(u)/p(u)]1/2du, y(t) = [p(x)s(x)]1/4z(x).

We then have

y′′(t) + [λ−Q(t)]y(t) = 0, (5)

where

Q(t) = q(x)− p 1
4 (x)s−

3
4 (x)

d

dx
p(x)

d

dx
[p(x)s(x)]

−1
4 . (6)

We also note that λn and µn, (n = 0, 1, . . .) for (5) are the same as those of (1)[4].

The following results are known for the instability intervals of (4).

Theorem 1.1. [4] As n→∞ , ln satisfies
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1. (i) ln = o(n2) ;

2. (ii) ln = o(n) if s′(x) exists and is piecewise continuous;

3. (iii) ln = o(n−r) if s(r+2)(x), p(r+2)(x), and q(r)(x) all exist and are piecewise

continuous.

Theorem 1.2. [4] As n→∞ , ln satisfies

1. (i) ln = O(n) if s(x) is piecewise smooth;

2. (ii) ln = O(1) if s′(x) exists and is piecewise smooth and p′(x) is piecewise smooth;

3. (iii) ln = O(n−r−1) if s(r+2)(x), p(r+2)(x), and q(r)(x) all exist and are piecewise

smooth.

It is also known that if p(x) = s(x) = 1 and if q(x) is piecewise continuous then

ln =
√
a2
n + b2n +O(n−1/2).

By considering the equations (1) and (4), we see that if p′′(x) and s′′(x) exist and

are integrable, then the estimates for the periodic and semi-periodic eigenvalues of (4),

thus the instability intervals of (4), can be obtained through the simpler equation (1).

Therefore, we work on equation (1) to derive estimates for the length ln of the n − th
instability interval of (1) as n→∞ .

The procedure we follow is quite different from the existing ones in the sense that

we derive the estimates through what we call an auxiliary eçgenvalue problem, whereas

the classical procedures works directly on the problem. One of the advantages of our

method is that it allows us to obtain the existing estimates by putting less restrictive

assumptions on q(t). More precisely, we will show that we can replace the assumption

of piecewise continuity by integrability. Unlike the results reported in the literature, we

put assumptions on the Fourier coefficients of q(t), instead of q(t) and its derivatives of

various orders.

The paper is organized as follows: In §2 we introduce an auxiliary eigenvalue

problem and the modified Prufer transformation, and define a sequence of approximating
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functions for (1) under the transformation. We then state some more results relevant to

the subject of this study. In §3, we state and prove our main results. In §4, we compare

our results with the reported results in the literature and highlight our contributions.

2. An auxiliary eigenvalue problem and the modified Prufer transformation

In this section we introduce another type of eigenvalue problem for (1) over [τ, τ+a]

with the following boundary condition

y(τ ) = y(τ + a) = 0, (7)

where 0 ≤ τ < a. We refer to the problem (1) and (7) as the “auxiliary eigenvalue

problem ”, and we denote the eigenvalues of this problem by Λn(τ ) (n = 0, 1, . . .). Here,

we note that (1) and (7) are equivalent to the following problem[6]

y′′(t) + (λ − q(t + τ ))y(t) = 0, (8)

y(0) = y(a) = 0. (9)

We introduce the function Θ(x,Λ, τ ), the so-called modified Prufer transformation

of [1], which is defined for any given solution of (1) by

tanθ(t,Λ, τ ) =
Λ1/2y(t, τ )
y′(t, τ )

,

for τ ≤ t ≤ τ + a . This fixes Θ to within additive multiples of π . For definiteness we

assume that 0 ≤ θ(τ ) < π and we observe that the boundary condition (7) corresponds

to

Θ(τ ) = 0, Θ(τ + a) = (n+ 1)π,

for integral n . From now on, we will be suppressing the dependence of Θ on Λ and

simply write it as Θ(t, τ ).

Under the Prufer transformation, the differential equation corresponding to (1) can

be written as

Θ′(t, τ ) = Λ1/2 − 1
2

Λ−1/2q(t) +
1
2

Λ−1/2q(t)cos(2Θ(t, τ )) (10)
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which leads to

Θ(x, τ) = Λ1/2(x− τ )− 1
2

Λ−1/2

∫ x

τ

q(t)dt +
1
2

Λ−1/2

∫ x

τ

q(t)cos(2θ(t, τ ))dt. (11)

We define a sequence of approximating functions for (11) as follows

Θ1(t, τ ) := Λ1/2(t, τ )− 1
2

Λ−1/2

∫ t

τ

q(s)ds,

Θk+1(t, τ ) := Θ1(t, τ ) +
1
2

Λ−1/2

∫ t

τ

q(s)cos(2Θk(s, τ))ds, (12)

for k = 1, 2, . . . , and τ ≤ t ≤ τ + a . In what follows, we give some results which will be

used in this study.

Theorem 2.1. [4] The ranges of Λ2m(τ ) and Λ2m+1(τ ) , as functions of τ are [µ2m, µ2m+1]

and [λ2m+1, λ2m+2], respectively.

By Theorem 2.1 and the fact that Λn(τ ) is a continuous function of τ , we observe

that
max
τ Λ2m(τ ) = µ2m+1,

min
τ Λ2m(τ ) = µ2m

and,
max
τ Λ2m+1(τ ) = λ2m+2 ,

min
τ Λ2m+1(τ ) = λ2m+1 .

Theorem 2.2. [8] If f(x) is integrable over (a, b), then as λ→ ∞∫ b

a

f(x)cos(λx)dx = o(1),
∫ b

a

f(x)sin(λx)dx = o(1).

Lemma 2.1. [6] Let q(z) be a periodic function with period π , integrable over [0, π]

and such that

cn =
1
π

∫ π

0

q(z)e−2inzdz = O(
1
n2

).

Then q(z) is absolutely continuous almost everywhere.
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Lemma 2.2. [5] For k = 1, 2, 3, . . . , τ ≤ t ≤ τ + a

Θ(t, τ )−Θk(t, τ ) = o(λ−k/2)

as λ→∞ .

Lemma 2.3. [1] For q integrable and for any x1, x2 such that τ ≤ x1 < x2 ≤ τ + a∫ x2

x1

q(t)sin(2λ1/2t)dt = o(1)

as λ→∞ .

Lemma 2.4. [8] If f is of bounded variation, then

an = O(n−1), bn = O(n−1)

where an , bn are the real Fourier coefficients of q(t) referred to the interval [0, a]

which are defined as

an =
2
a

∫ a

0

q(t)cos(
2nπ
a
t)dt,

bn =
2
a

∫ a

0

q(t)sin(
2nπ
a
t)dt.

Lemma 2.5. [8] If q(t) is an integral, that is,

q(t) = q(0) +
∫ t

0

f(x)dx, x ≥ 0,

and has the period a then an = o(n−1), bn = o(n−1) , where an and bn are the Fourier

coefficients of q(t) on [0, a] .
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3. Statement and Proof of Results

In this section, we state and prove our main results.

Theorem 3.1. If an = O(n−1), bn = O(n−1) then as n→∞ ln = O(n−1).

Proof. We consider the differential equation (8) with the boundary condition (9). As

noted before, the corresponding Θ equation is

Θ′(x, τ) = Λ1/2 − 1
2

Λ−1/2q(x + τ ) +
1
2

Λ−1/2q(x + τ )cos(2Θ(x, τ)). (13)

Integrating (13) over [0, a] and using the boundary condition (9) with the assumption

that q(t) has a vanishing meanvalue, we get

(n + 1)π = Λ1/2a +
1
2
λ−1/2

∫ a

0

q(t+ τ )cos(2Θ(t, τ ))dt. (14)

We know from Lemma 2.2 that

Θ(t, τ )− Θ1(t, τ ) = o(λ−1/2),

so that

cos(2Θ(t, τ )) = cos(2Θ1(t, τ )) + o(Λ−1/2). (15)

Substitution of (15) into (14) yields

(n + 1)π = Λ1/2a+
1
2

Λ−1/2

∫ a

0

q(t + τ )cos(2Θ1(t, τ ))dt+ o(Λ−1). (16)

From (12) we find that

cos(2Θ1(t, τ )) = cos(2Λ1/2t) + Λ−1/2(
∫ t

0

q(x+ τ )dx)sin(2Λ1/2t)

+O(Λ−1). (17)

Substituting (17) in (16) and using Lemma 2.3 we find that
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(n+ 1)π = Λ1/2a+
1
2

Λ−1/2

∫ a

0

q(t+ τ )cos(2Λ1/2t)dt+ o(Λ−1). (18)

Then reversion on (18) leads to

Λ1/2
n (τ ) =

(n+ 1)π
a

− 1
2(n+ 1)π

∫ a

0

q(t+ τ )cos(
2(n+ 1)π

a
t)dt

+o(n−2). (19)

Upon introducing a change of variable t+ τ = u and using the fact that for any periodic

function f with the period a

∫ τ+a

τ

f(t)dt =
∫ a

0

f(t)dt (20)

we get

Λ1/2
n (τ ) =

(n+ 1)π
a

− a

4(n+ 1)π

[
cos(

2(n+ 1)π
a

τ )an+1 + sin(
2(n + 1)π

a
t)bn+1

]
+ o(n−2). (21)

The terms involving an+1 and bn+1 in (21) included in the error term by the hypothesis.

Hence

Λ1/2
n (τ ) =

(n + 1)π
a

+ O(n−2) (22)

for any τ in [0, a). From (22) and Theorem 2.1 we have

µ
1/2
2m =

(2m+ 1)π
a

+ O(m−2)

µ
1/2
2m+1 =

(2m+ 1)π
a

+O(m−2).

Hence,

l2m+1 = µ2m+1 − µ2m
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= (µ1/2
2m+1 + µ

1/2
2m )O(m−2)

= O(m−1).

Similar result holds for l2m+2 .

We note that if q(t) is of bounded variation then by Lemma 2.4, it satisfies the

hypothesis of Theorem 3.1. 2

Theorem 3.2. if an = o(n−1) and bn = o(n−1) then as n→∞ , ln = o(n−1).

Proof. Similar proof as in Theorem 3.1 goes through by replacing the O terms with o

terms.

We observe that if q(t) is an integral then the hypothesis of Theorem 3.2 are sat-

isfied by Lemma 2.5. 2

Theorem 3.3. if an = O(n−2) and bn = O(n−2) then as n→∞ , ln = O(n−2) .

Proof. Taking k = 2 in Lemma 2.2 we get

Θ(x, τ)−Θ2(x, τ) = o(Λ−1)

so that

cos(2Θ(x, τ)) = cos(2Θ2(x, τ)) + o(Λ−1). (23)

Substituting (23) into (14) we get

(n + 1)π = Λ1/2a+
1
2

Λ−1/2

∫ a

0

q(t + τ )cos(2Θ2(t, τ ))dt+ o(Λ−3/2). (24)

From (12) we find that
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cos(2Θ2(t, τ )) = cos(2Λ1/2t) + Λ−1/2sin(2Λ1/2t)
∫ t

0

q(x+ τ )dx

− Λ−1/2sin(2Λ1/2t)
∫ t

0

q(x+ τ )cos(2Λ1/2x)dx

+ O(Λ−1). (25)

Substitution of (25) into (24) yields

(n+ 1)π = Λ1/2a +
1
2

Λ−1/2

∫ a

0

q(t+ τ )cos(2Λ1/2t)dt

+
1
2

Λ−1

∫ a

0

q(t + τ )(
∫ t

0

q(x+ τ )dx)sin(2Λ1/2t)dt

− 1
2

Λ−1

∫ a

0

q(t + τ )(
∫ t

0

q(x+ τ )cos(2Λ1/2x)dx)sin(2Λ1/2t)dt

+ O(Λ−3/2). (26)

It follows from Lemma 2.1 that q′(t) is integrable. Hence, integration by parts results in

∫ a

0

q(t+ τ )(
∫ t

0

q(x+ τ )cos(2Λ1/2x)dx)sin(2Λ1/2t)dt

= −1
2

Λ−1/2cos(2Λ1/2a)q(a+ τ )(
∫ a

0

q(t+ τ )cos(2Λ1/2t)dt)

+
1
2

Λ−1/2

∫ a

0

q′(t + τ )(
∫ t

0

q(x + τ )cos(2Λ1/2x)dx)cos(2Λ1/2t)dt

+
1
2

Λ−1/2

∫ a

0

(q2(t+ τ )cos2(2Λ1/2t)dt. (27)

Substituting (27) in (26) and using Theorem 2.2, we observe that

(n+ 1)π = Λ1/2a +
1
2

Λ−1/2

∫ a

0

q(t + τ )cos(2Λ1/2t)dt

+
1
2

Λ−1

∫ a

0

q(t+ τ )(
∫ t

0

q(x+ τ )dx)sin(2Λ1/2t)dt

+ O(Λ−3/2). (28)

Now, reversion on (28) leads to

274



COŞKUN

Λ1/2
n =

(n + 1)π
a

− 1
2(n+ 1)π

∫ a

0

q(t + τ )cos(
2(n + 1)π

a
t)dt

− a

2((n + 1)π)2

∫ a

0

q(t + τ )(
∫ t

0

q(x + τ )dx)sin(
2(n+ 1)π

a
t)dt

+O(n−3). (29)

The second term on the right handside of (29) is included in the error term, O(n−3), by

the assumption on the Fourier coefficients of q(t). The third term is also included in the

same error term by Lemma 2.1 and Lemma 2.4. Hence,

Λ1/2
n (τ ) =

(n+ 1)π
a

+O(n−3) (30)

for any τ in [0, a). From this and Theorem 2.1 we have

µ
1/2
2m =

(2m+ 1)π
a

+ O(m−3),

µ
1/2
2m+1 =

(2m+ 1)π
a

+O(m−3).

Hence,

l2m+1 = µ2m+1 − µ2m

= (µ1/2
2m+1 + µ

1/2
2m )O(m−3)

= O(m−2).

Similar result holds for l2m+2 . 2

Theorem 3.4. As m→∞ , l2m+1 and l2m+2 satisfy
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l2m+1 = (a2
2m+1 + b22m+1)1/2 + o(m−1),

l2m+2 = (a2
2m+2 + b22m+2)1/2 + o(m−1).

Proof. First, we rewrite (21) as

Λ1/2
n (τ ) =

(n + 1)π
a

− a

4(n+ 1)π
F1(n, τ ) + o(n−2), (31)

where

F1(n, τ ) = an+1cos(
2(n + 1)π

a
τ ) + bn+1sin(

2(n + 1)π
a

τ ).

Then we write F1(n, τ ) in the following form

F1(n, τ ) =
√
a2
n+1 + b2n+1sin(

2(n + 1)π
a

τ + Φ), (32)

where Φ is chosen so that

sinΦ =
an+1√

a2
n+1 + b2n+1

, cosΦ =
bn+1√

a2
n+1 + b2n+1

. (33)

From (32), we can find a τ with 0 ≤ τ < a at which F1(n, τ ) assumes its minimum,

which is given by

τ1,min(n) =
a

2(n+ 1)π
(
3π
2
−Φ). (34)

Similarly, we can find a τ with 0 ≤ τ < a at which F1(n, τ ) assumes its maximum which

is given by

τ1,max(n) =
a

2(n+ 1)π
(
π

2
−Φ). (35)

Replacing τ in (31) by τ1,max(n) and using (33) we observe that
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min
τ Λ1/2

n (τ ) =
(n+ 1)π

a
− a

4(n+ 1)π
[an+1cos(

π

2
−Φ) + bn+1sin(

π

2
−Φ)] + o(n−2)

=
(n+ 1)π

a
− a

4(n+ 1)π
(a2
n+1 + b2n+1)1/2 + o(n−2). (36)

Similar calculations yield

max
τ Λ1/2

n (τ ) =
(n+ 1)π

a
+

a

4(n+ 1)π
(a2
n+1 + b2n+1)1/2 + o(n−2). (37)

From (36), (37) and Theorem 2.1

l2m+1 =
max
τ Λ2m(τ )− min

τ Λ2m(τ )

= (
max
τ Λ1/2

2m (τ )+
min
τ Λ1/2

2m (τ ))(
max
τ Λ1/2

2m (τ )− min
τ Λ1/2

2m (τ ))

= (a2
2m+1 + b22m+1)1/2 + o(m−1). (38)

Similar result holds for l2m+2 . 2

Conclusions

We summarize the contributions reported in this study as follows:

• The piecewise continuity assumptions on q(t) is weakend and replaced by integra-

bility in Theorem 1.1 and Theorem 1.2.

• The estimate ln =
√

(a2
n + b2n) + O(n−1/2) when q(t) is piecewise continuous is

improved to the estimate ln =
√

(a2
n + b2n) + o(n−2) when q(t) is integrable.

• The estimate ln = o(n−1) when p(x) = s(x) = 1, q′(x) exists and piecewise

continuous in Theorem 1.1(iii) is preserved under the weaker assumptions an =

o(n−1), bn = o(n−1). In particular, the latter assumption holds for an integral or

an absolutely continuous function q(t).
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• The estimate ln = o(n−1) when p(x) = s(x) = 1, q′(x) exists and piecewise smooth

in Theorem 1.2(iii) is preserved under the weaker assumptions an = O(n−2), bn =

O(n−2).

• The estimate ln = O(n−1) when p(x) = s(x) = 1, q(x) piecewise smooth in Theo-

rem 1.2(iii) is preserved under weaker assumptions an = O(n−1), bn = O(n−1). In

particular, the latter assumptions hold when q(t) is of bounded variation on [0, a] .

Acknowledgement

I am grateful to Professor Bernard J. Harris for introducing me to the field.

References

[1] Atkinson, F.V.: Asymptotics of an eigenvalue problem involving an interior singularity,

ANL Proceedings, ANL-87-26 2(1988), 1-18.

[2] Atkinson, F.V and Fulton, C.T.: Asymptotics of the eigenvalue problems on a finite interval

with one limit circle singularity, Proc. Royal Soc. Edinburgh, Sect. A 99(1984), 51-70.

[3] Coskun, H.: Topics in the theory of periodic differential equations, Ph.D. Dissertation,

1994, Northern Illinois University, Dekalb,Il., USA.

[4] Eastham, M.S.P.:The spectral theory of periodic differential equations, Scottish Academic

Press, Edingburgh, 1973.

[5] Harris, B.J.: Asymptotics of eigenvalues for regular Sturm-Liouville problems, Royal Soc.

Edinburgh Sect. A 110 (1988), 63-71.

[6] Hochstadt, H.: On the determination of a Hill’s Equation from its Spectrum, Arc. Rat.

Mech. Anal.,19(1965), 353-362.

[7] Ntinos, A. A.: Lengths of instability intervals of second order periodic differential equations,

Quart. J. Math. Oxford (2)27(1976), 387-394.

[8] Titchmarsh, E.C.:The Theory of Functions, Oxford University Press, Amen House, Lon-

don, 1932.

278



COŞKUN

[9] Weikard, R.: On Hill’s equation with a singular complex-valued potential, Proc., LMS,76(1998),

603-633.

Haskız COŞKUN
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