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A STONE’S REPRESENTATION THEOREM AND SOME

APPLICATIONS
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Abstract

In this paper, we prove the following form of Stone’s representation theorem:

Let
∑

be a σ -algebra of subsets of a set X . Then there exists a totally discon-

nected compact Hausdorff space K for which (
∑
,∪,∩) and (C(K),∪,∩) , where

C(K) denotes the set of all clopen subsets of K , are isomorphic as Boolean alge-

bras. Furthermore, by defining appropriate joins and meets of countable families

in C(K) , we show that such an isomorphism preserves σ -completeness. Then, as

a consequence of this result, we obtain the result that if ba(X,
∑

) (respectively,

ca(X,
∑

)) denotes the Banach space (under the variation norm) of all bounded,

finitely additive (respectively, all countably additive) complex-valued set functions

on (X,
∑

), then ca(X,
∑

)=ba(X,
∑

) if and only if (1) C(K) is σ -complete; and

if and only if (2)
∑

is finite. We also give another application of these results.
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1. Introduction

In 1936, M. H. Stone [16] developed a representation theory for Boolean rings and

Boolean algebras. Among other things, M. H. Stone showed (see Theorem 2.3 below)

that such Boolean structures can be represented by “spaces of continuous functions” on

some “nice” topological spaces.

In this paper, we use Stone’s original representation theorem (Theorem 2.3) to

derive our own version of Stone’s representation theorem (see Theorem 3.2), and we give

in Section 4 some applications of this remarkable result to analysis.

For the most part the notation and symbols we use will be standard. The notation

:= will denote “equals by definition”.

2. Definitions and Preliminaries

Following [4], a Boolean ring is a ring (R , +, .) in which every element is

idempotent; that is,

r.r = r for all rεR.

It follows from this definition that if R is a Boolean ring, then r + r = 0 for all r ∈ R ,

and R is commutative.

2.1 Examples. (i) An example of a Boolean ring is (2x,∩,∆) where the inter-

section ∩ plays the role of multiplication and the symmetric difference ∆ plays the role

of addition.

(ii) Let (X,
∑

) be a measurable space, and let

R := {χA : A ∈
∑
},

where χA denotes the characteristic function of A . Define (Boolean) operations on R by

χA ⊕ χB := χA∆B , and χA.χB := χA∩B

for all A,B ∈
∑

. Evidently, R is a Boolean ring under these operations and χX is a

unit for R .
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Throughout this article, unless otherwise stated, we let R denote an arbitrary

Boolean ring. Let Z2 :={0,1} be the field of integers modulo 2, and let

K := {f | f : R→ Z2is a ring homomorphism} \ {0}.

Note that K ⊆ {0, 1}R . The Stone space of the ring R is K with its relative topology. We

assume that {0,1} is assigned the discrete topology so that {0,1}R is a compact Hausdorff

space. A Boolean space is a Hausdorff space with base consisting of all sets which are

both compact-and-open. Hence, a Boolean space is necessarily locally compact. The

characteristic ring of a Boolean space X is the ring of all continuous functions f : X → Z2

for which f−1(1) is compact. Hence, members of the characteristic ring are exactly all

characteristic functions χA of sets A in X that are compact-and-open.

A sketch of the proofs (which are straight-forward) of the following two results can

be found in [4, 5.S, p.168].

Proposition 2.2. The Stone space K of a Boolean ring R is a Boolean space and is

compact whenever R has a unit.

Theorem 2.3. (Stone Representation). Every Boolean ring R is isomorphic (under the

evaluation map) to the characteristic ring of its Stone space.

3. Results

Let (X,
∑

) be a measurable space, and let R := {χA : A ∈
∑
} be the Boolean

ring of Example 2.1(ii). Let K be the Stone space of R . That is,

K = {k | k : R → Z2is a nonzero homomorphism}.

By Proposition 2.2, K is compact Hausdorff with basis consisting of all compact-and-open

(hence clopen) subsets. Let F be the characteristic ring of K . That is, by definition,

F = {f | f : K → Z2 is continuous withf−1(1) is compact}

= {χK | Kis clopen inK}(⊆ C(K)).
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By Stone’s Representation Theorem 2.3, R is isomorphic to F (as Boolean rings,

where addition in F is pointwise addition mod 2) under the evaluation map χA
e7−→

e(χA) =: eA where

eA(k) = k(χA) for all k ∈ A ∈
∑

.

Thus, if we let

K(A) := {k ∈ K : eA(k) = k(χA) = 1},

which is clopen in K , then

eA = χK(A) for all A ∈
∑

.

This induces a map

A
K7−→ K(A) : (

∑
,∪,∩)→ (C(K),∪,∩)

where C(K) denotes the set of all clopen subsets of K . Since the lattice operations Λ, V

in R and F can be defined in terms of the (Boolean) operations . and ⊕ , the ring

homomorphism e is also a lattice homomorphism. It follows that the induced map K is

a lattice isomorphism. Thus for all n ∈ N , we have

K(∪nj=1Aj) = ∪nj=1K(Aj), and

K(∩nj=1Aj) = ∩nj=1K(Aj).

The foregoing observations lead to the following result.

Theorem 3.1. Let (X,
∑

) be a measurable space, B(X,
∑

) be the C? -algebra of all

complex-valued, bounded measurable functions on X , and C(K) be the C? -algebra of all

continuous functions on K , the Stone space of the Boolean ring R = {χA : A ∈
∑
} .

Then B(X,
∑

) is isometrically isomorphic to C(K) .

Proof. Let K , F be as above. Use Theorem 2.3 to get a Boolean ring isomorphism

e : R→ F where
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[e(χA)](k) =: eA(k) = k(χA) = χK(A)(k) for all A ∈
∑

, k ∈ K,

and K(A) := {k ∈ K : eA(k) = 1} which is clopen in K .

Let L(R) (resp.,L(F )) be the linear span of R (resp., of F ). Define G : L(R)→
L(F) as follows: For each f ∈ L(R), let a1, . . . , an be the distinct values of f and let

Aj := f−1(aj) for 1 ≤ j ≤ n . Then

f =
n∑
j=1

ajχAj

is the canonical representation of the simple function f where {Aj}nj=1 is disjoint. Set

G(f) :=
n∑
j=1

ajeAj .

Clearly, G is well-defined. It is routine to check that, since e is a ring isomorphism,

G is linear and multiplicative; i.e.,

G(αf + βg) = αG(f) + βG(g) and G(f.g) = G(f).G(g)

for all f, g ∈ L(R) and all α, β ∈C. Also, G is surjective, since e is surjective.

We now show that G is an isometry with respect to the supremum-norm. Indeed,

let f ∈ L(R) and let f =
∑n

j=1 ajχAj be its canonical representation. Then {Aj}nj=1 is

disjoint and, since G is multiplicative, {K(Aj)}nj=1 is disjoint. Thus

‖ G(f) ‖u = sup{|
n∑
j=1

ajeAj (k) |: k ∈ K}

= sup{|
n∑
j=1

ajχK(Aj)(k) |: k ∈ K}

= max1≤j≤n | aj |=‖ f ‖u,

and therefore G is an isometry, hence injective. Thus G is a linear bijection which is

multiplicative and an isometry. Since L(R) is dense in B(X,
∑

), G extends to a linear

isometry, still call it G , on B(X,
∑

). This extension is still multiplicative and so maps
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B(X,
∑

) onto a closed subalgebra of C(K), which by the Stone-Weierstrass theorem has

to be C(K)[=closure of L(F)].

As remarked before in Theorem 3.1, the evaluation map

χA
e7−→ e(χA) = χK(A) : R → F

of Stone’s Theorem 2.3, where F is the characteristic ring of the Stone space K of the

Boolean ring R = {χA : A ∈
∑
} , induces a lattice homomorphism

A
K7−→ K(A) :

∑
→ C(K).

Since e is bijective, it is easy to see that K is also bijective. Thus we have the following

form of Stone’s representation theorem. 2

Theorem 3.2. (Stone Representation).

Let (X,
∑

) be a measurable space. Then (
∑
,∪,∩) is isomorphic to (C(K),∪,∩)

via the mapping K . Moreover, for all sequences {Aj}∞j=1 ⊆
∑
, K satisfies

(a) K(∪∞j=1Aj) = [∪∞j=1K(Aj)]− , and

(b) K(∩∞j=1Aj) = [∩∞j=1K(Aj)]◦ ,

where − and ◦ denote respectively the closure and interior operations. Thus the σ -

completeness of
∑

entails that of C(K) with

∨∞j=1Cj = (∪∞j=1Cj)
− and ∧∞j=1 Cj = [∩∞j=1Cj]

◦ for all {Cj}∞j=1 ⊆ C(K),

and K is a σ -complete lattice isomorphism.

Proof. In light of the preceding remarks, we only need to prove (a) and (b). To prove

(a), let {Aj}∞j=1 ⊆
∑

. Since the mapping K is monotone and An ⊆ ∪∞j=1Aj for all n ,

we have K(An) ⊆ K(
∞⋃
j=1

Aj) for all n which implies that ∪∞j=1K(An) ⊆ K(∪∞j=1Aj). As

K(∪∞j=1Aj) is clopen, it follows that
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[∪∞j=1K(An)]− ⊆ K(∪∞j=1Aj).

To prove the reverse inclusion, assume that there exists k ∈ K(∪∞j=1Aj\[∪∞j=1K(Aj)]− .

Since the space K is zero-dimensional, there is a clopen set B such that k ∈ B and

B ∩ [∪∞j=1K(Aj)]− = φ . Hence, B ∩ [∪∞j=1K(Aj)] = φ which implies B ∩ K(Aj) = φ

for all j . Write B = K(A) for some A ∈
∑

(that is, e(A) = χB). Then we have

K(A ∩Aj) = φ for all j , which implies A ∩Aj = φ for all j , hence A ∩ (∪∞j=1Aj) = φ ,

and therefore K(A) ∩K(∪∞j=1Aj) = φ , a contradiction, since k lies in this intersection.

Similarly, the proof of (b) follows from (a) by writing ∩∞j=1Aj = X \(∪∞j=1(X \Aj))
and by using the facts that A ⊆ B implies K(B \A) = K(B) \K(A) for all A,B ∈

∑
and that (C−)′ = (C ′)◦ for all C ⊆ K . 2

Applications

Let (X,
∑

) be a measurable space. By Theorem 3.2, there exists a totally discon-

nected compact Hausdorff space K for which (
∑
,∪,∩) and (C(K),∪,∩), where C(K)

denotes the set of all clopen subsets of K , are isomorphic as Boolean algebras. Recall

that

ba(X,
∑

) = B(X,
∑

)?

(cf. [2, p.77]), and by Riesz Representation Theorem (cf. [5]) we have

C(K)? = rca(B(K))[= M(K)].

Here ba(X,
∑

) denotes the Banach space of all finitely additive, bounded set functions on∑
and rca(B(K)) denotes the Banach space of all regular, countably additive, bounded

set functions on the Borel algebra B(K). By Theorem 3.1, B(X,
∑

) is isometrically

algebra isomorphic to C(K) via the “Gelfand” map

B(X,
∑

) G→ C(K)
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(itself induced from or inducing the Boolean algebra isomorphism
∑
↔ C(K)). This

induces an isometric isomorphism G? ,

ba(X,
∑

) ' B(X,
∑

)? G?← C(K)? ' rca(B(K)),

such that

G?(φ) = φ ◦G for all φ ∈ C(K)?.

Thus, upon identifying B(X,
∑

)? with ba(X,
∑

) and C(K)? with rca(B(K)), we see

that there exists an isometric isomorphism

G?−1 : ba(X,
∑

)→ rca(B(K))

such that

G?−1(µ) = µ ◦G−1 = µ̂ for all µ ∈ ba(X,
∑

).

It follows from the definitions of the mappings G and ˆ that

Ê ∈ C(K) implies û(Ê) = µ(G−1(χÊ)) = µ(χE) = µ(E),

where E is the pre-image in
∑

of Ê under the Boolean isomorphism K =ˆ:
∑
→ C(K).

With these remarks we are now ready to give the first application of our results.

Theorem 4.1 Let (X,
∑

),K, C(K) be as above. Then the following statements are

equivalent:

(i) C(K) is a σ -algebra; that is, C(B) = B0(K) , the Baire σ -algebra on K , defined

as the σ -algebra generated by all compact Gδ sets.

(ii) ba(X,
∑

) = ca(X,
∑

) .

(iii)
∑

satisfies the finite chain condition (f.c.c) [3]: No infinite subcollection of∑
can be pairwise disjoint.

Proof. (i)→(ii). Assume (i) holds. Then for all countable {Cn}n∈N ⊆ C(K),∪n∈NCn ∈
C(K). Thus ∪n∈NCn is clopen and
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∪n∈NCn = (∪n∈NCn)−. (0.1)

Let µ ∈ ba(X,
∑

). Consider its image û under the mapping G?−1 defined above. Then

û ∈ rca(B(K)) and it satisfies

µ̂(C) = µ(A)

for all C ∈ C(K) with C = K(A), A ∈
∑

.

Let {An}n∈N ⊆
∑

be disjoint and let A := ∪n∈NAn . Then, by Theorem 3.2,

there exist Cn, C ∈ C(K) such that Cn = K(An), C = K(A) and {Cn}n∈N is a disjoint

family. Since K is σ -complete lattice isomorphism (Theorem 3.2), we have

C = K(A) = K(∨n∈NAn) = ∨n∈NK(An)

= ∨n∈NCn = (
⋃
n∈N

Cn)
−(0.1) ∪n∈N Cn,

and so

µ(∪n∈NAn) = µ(A) = µ̂(C) = µ̂(
⋃
n∈N

Cn)

=
∞∑
n=1

µ̂(Cn) =
∞∑
n=1

µ(An).

Thus µ is countably additive, and (ii) holds.

(ii)→(i): Suppose ba(X,
∑

) = ca(X,
∑

). By the remarks preceding the theorem,

for each v ∈ rca(B(K)), there exists µ ∈ ba(X,
∑

) such that

v = G?−1(µ)(= µ̂).

Then for all v ∈ rca(B(K)) and for disjoint {Cn}n∈N ⊆ C(K), letting An := K−1(Cn) ∈∑
, we have

v((∪Cn)− \ ∪Cn) = v((∪Cn)−) − v(∪Cn)
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= v(∨Cn)−
∑
n∈N

v(Cn)

= µ(∨An)−
∑
n∈N

µ(An)[here we used the fact that

∨Cn = ∨K(An) = K(∨An)by Theorem 3.2.]

= µ(∪n∈NAn)−
∑
n∈N

µ(An)

=
∑
n∈N

µ(An) −
∑
n∈N

µ(An)

= 0

[the penultimate equality being due to the fact that {An}n∈N is disjoint, since {Cn}n∈N
is disjoint and K is an isomorphism]. Thus we have shown that

v((∪n∈NCn)− \ ∪n∈NCn) = 0 ∀ disjoint {Cn}n∈N ⊆ C(K), (0.2)

for all v ∈ rca(B(K)).

Now if there exists y ∈ (∪Cn)− \ ∪Cn , we apply (2) to the point mass v := δy ∈
rca(B(K)) to get

1 = δy((∪Cn)− \ ∪Cn)
(0.2)

0,

a contradiction. Thus (∪Cn)− = ∪Cn for all disjoint {Cn} ⊆ C(K). Hence, by the

use of the disjointification trick [15, Prop. 2, p. 17], (∪Cn)− = ∪Cn for all sequences

{Cn} ⊆ C(K). Therefore, by Theorem 3.2, ∪Cn ⊆ C(K) for all sequences {Cn} ⊆ C(K)

and C(K) is a σ -algebra.

(i)→(iii): Let E be an infinite subcollection of
∑

. If the members of E were

pairwise disjoint, then there would exist a countable subcollection {An}n∈N ⊆ E with

An 6= φ∀n ∈N and Ai ∩Aj = φ∀i 6= j . Now Cn = K(An) 6= φ for all n ∈N and Cn is

pairwise disjoint, since K is an isomorphism. Thus, by (i), {Cn} is an open cover of the

compact set (
⋃
n∈N

Cn)
−(0.1) ∪n∈N Cn that cannot have a finite subcover, a contradiction.

It follows that
∑

satisfies the f.c.c.

(iii)→(ii): Suppose
∑

satisfies the f.c.c. If µ ∈ ba(X,
∑

) and {An}n∈N ⊆
∑

is

pairwise disjoint, then An = φ for all large n , say for all n > N,N ∈N. Hence, by the
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finite additivity of µ ,

µ(∪∞n=1An) = µ(∪Nn=1An) =
N∑
n=1

µ(An) =
N∑
n=1

µ(An),

and µ is countably additive. 2

A Boolean algebra B is said to satisfy the countable chain condition (c.c.c.) [12]

if every collection {bα : α ∈ ∆} of pairwise disjoint elements in B is at most countable.

Theorem 4.2. Let
∑

be a σ -algebra of subsets of a set X that satisfies the c.c.c. Then

A ⊆
∑

implies ∪A ∈
∑

.

Proof. See [1, Theorem 1.4.8].

Now as a consequence of Theorem 4.1 and Theorem 4.2 we obtain the following

theorem: 2

Theorem 4.3 Let X be a set and
∑

be a σ -algebra of subsets of X . Then ba(X,
∑

) =

ca(X,
∑

) if and only if
∑

is finite.

Proof. If
∑

is finite, then ba(X,
∑

) = ca(X,
∑

) is obvious. Conversely, suppose

ba(X,
∑

) = ca(X,
∑

). Then by Theorem 4.1,
∑

satisfies the f.c.c.; hence the c.c.c.

Thus, by Theorem 4.2,
∑

is closed under arbitrary unions and hence under arbitrary

intersections. Therefore, the atoms

Ax := ∩{B ∈
∑

: x ∈ B} ∈
∑

for every x ∈ X . Note that for all x, y ∈ X , either Ax = Ay or Ax ∩ Ay = φ . Indeed,

Ax 6= Ay implies either (i) Ax 6= Ax∩Ay or (ii) Ay 6= Ax∩Ay . Now (i) and the definition

of Ax implies that x ∈ X \ Ay , hence Ax ⊆ X \ Ay , and therefore Ax ∩ Ay = φ . By

symmetry the same conclusion follows from (ii).

Now every A ∈
∑

is covered by atoms: A = ∪x∈AAx . Hence,

X = ∪x∈XAx (disjoint union).
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Since {Ax : x ∈ X} ⊆
∑

and every Ax 6= φ , the fact that
∑

satisfies the f.c.c. ensures

that only finitely many distinct atoms Ax exist. Let them be Ax1 , . . . , Axn for some

x1, . . . , xn ∈ X . Since each A ∈
∑

is a union of atoms, it follows that there can be only

finitely many, in fact 2n, A ∈
∑

. Therefore
∑

is finite. 2

Theorem 4.4. Let
∑

be a σ -algebra on a set X . Suppose
∑

satisfies ba(X,
∑

) =

ca(X,
∑

) . Then a sequence (µn) ⊆ ba(X,
∑

) converges in the weak topology σ(ba(X,
∑

),

(ba(X,
∑

))?) to µ ∈ ba(X,
∑

) if and only if

µ(E) = limn→∞µn(E) for each E ∈
∑

. (0.3)

Proof. ( 7→): Since for each E ∈
∑

the mapping v 7→ v(E) : ba(X,
∑

) →C (where C

denotes the complex numbers) defines a linear functional in (ba(X,
∑

))? , the necessity

of (0.3) follows.

(←): Suppose (0.3) holds. Since, by Theorem 4.3,
∑

is finite, it follows that

B(
∑

) = B(X,
∑

) is finite dimensional: every f ∈ B(
∑

) has only finitely many values

because {f−1(x) : x ∈ C} is a disjoint family is
∑

, hence is finite. So f−1(x) is void

except for finitely many x ’s, say x1, . . . , xm . Set Aj := f−1(xj) ∈
∑
, j = 1, . . . , m.

Then

f =
m∑
j=1

f(xj )χAj . (0.4)

Thus B(
∑

) ⊆ span {χA : A ∈
∑
} =: L. As L ⊆ B(

∑
) is clear, B

∑
= L . Thus dim

B(
∑

)= dim L ≤|
∑
|<∞ . It follows that B(

∑
) is reflexive; i.e, B(

∑
) = (B(

∑
))?? =

(ba(X,
∑

))? , where ba(X,
∑

) ' (B(
∑

))? via isomorphism µ → x?µ which is defined by

x?µ(f) =
∫
fdµ (f ∈ B(

∑
)).

Now let f ∈ B(
∑

). Then it has the form (0.4). So

x?µ(f) =
m∑
j=1

f(xj )
∫
χAjdµ =

m∑
j=1

f(xj )µ(Aj),

hence (0.3) implies
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x?µn(f) =
m∑
j=1

f(xj)µn(Aj)→
m∑
j=1

f(xj)µ(Aj) = x?µ(f).

Since f ∈ B(
∑

) was arbitrary, this says that x?µn → x?µ in the σ((B(
∑

))?, B(
∑

)) topol-

ogy. Hence µn → µ in the σ(ba(X,
∑

), (ba(X,
∑

))?) topology. 2
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