
Turk J Math

23 (1999) , 485 – 518.

c© TÜBİTAK
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In his famous paper [4] of 1974, V.G. Drinfeld introduced what he then called “elliptic

modules”. These are in several respects similar to elliptic curves or abelian varieties.

Elliptic modules = Drinfeld modules may be described

• analytically through lattices in a complete algebraically closed field C of character-

istic p by some sort of “Weierstrass uniformization”;

• algebraically as a module structure on the additive group Ga over C.

The interplay between these viewpoints results in a rich theory of moduli schemes and

modular forms. In the case of Drinfeld modules of rank two (for which the analogy with

elliptic curves is most compelling), the moduli scheme is a curve, and modular forms are

holomorphic functions on Drinfeld’s upper half-plane Ω with a prescribed transformation

behavior under arithmetic groups acting on Ω.

In the present paper, largely expository and without proofs, we restrict to the typical

case where the base ring A that substitutes the integers Z is a polynomial ring Fq[T ] and

where the arithmetic group acting equals Γ = GL(2,Fq[T ]). We survey the Weierstrass

uniformization of Drinfeld modules and the related analytic functions (section 2) and

report on the structure of the ring of modular forms in the classical (section 1) and

the Drinfeld case (section 3), and on the role played by the respective Eisenstein series,

discriminant, and j-invariant functions. In the fourth section, we give a brief account of

the congruence properties, proved in [8], of normalized Eisenstein series gk. In order to
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investigate zero distribution and growth properties of several classes of modular forms,

we introduce and discuss the Bruhat-Tits tree T and the building map λ from Ω to T .

This is used in section 7 to present recent results of G. Cornelissen and the author about

Drinfeld-Eisenstein series. In the final section 8, the only one that contains original results

and detailed proofs, we determine the distribution of zeroes of the lattice functions αk(z)

in the fundamental domain F of Γ on Ω (Theorem 8.11, Corollary 8.12). Rigid analytic

contour integration then enables us to give a neat description of the behavior of |αk(z)|
on F (Formulas 8.14 and 8.19, Theorem 8.20).

Even in our restricted framework, we had to omit several important topics indispensable

for a deeper study: the theories of Hecke operators, of Goss polynomials, of conditionally

convergent Eisenstein series, Fourier analysis on T ... are not even mentioned. The reader

will find some hints in [8] and [9].

Our leading principle has been to present and discuss definitions, constructions, and ideas

but to leave out full proofs as long as they refer to established results and are available

in the literature. This applies to sections 1 to 6 of the present paper. In contrast, the

results of sections seven (proofs of which will appear in [11]) and eight (for which full

proofs are given) are new.

It is a pleasure to thank the organizers of the International Conference on Number

Theory, in particular Professor Mehpare Bilhan, both for the invitation and for the great

hospitality I met in Ankara.

1. The classical setting (e.g. [20], [22], [23]).

Let Λ = Zω1 + Zω2 be the Z-module generated by two R-linearly independent complex

numbers ω1, ω2, i.e., a lattice in C. With Λ we associate its Weierstrass function

(1.1) ℘Λ(z) =
1
z2

+
∑
ω∈Λ

′ 1
(z − ω)2

− 1
ω2
,

where the
∑′ indicates summation over the non-zero elements ω of Λ. Then ℘Λ is

meromorphic and Λ-invariant on C, and satisfies the differential equation

(1.2) ℘′Λ
2 = 4℘3

Λ − g2℘Λ − g3
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with certain constants gi = gi(Λ) (i = 2, 3), where

(1.3) ∆ := g3
2 − 27g2

3 6= 0.

This means, (℘(z), ℘′(z)) ∈ C2 is a point on the affine curve Eaff
Λ (smooth since ∆ 6= 0)

with equation

(1.4) Y 2 = 4X3 − g2X − g3.

(1.5) Such curves (or rather their projective modelsEΛ given in P2(C) by the homogeneous

equation

Y 2Z = 4X3 − g2XZ
2 − g3Z

3)

are known as elliptic curves. The above yields a biholomorphic isomorphism of the

complex torus C/Λ with EΛ(C), well-defined through its restriction to (C − Λ)/Λ by

z 7−→ (℘(z) : ℘′(z) : 1). Note that EΛ(C) inherits a group structure from C/Λ, which

may however be defined in purely algebraic terms on the algebraic curve EΛ, and which

turns EΛ into an abelian variety. In fact, each elliptic curve E/C has the form E = EΛ

for some lattice Λ as above, and two such, EΛ and EΛ′ , are isomorphic as abelian varieties

(i.e., as algebraic curves through some isomorphism preserving origins) if and only if Λ′

and Λ are homothetic (Λ′ = cΛ, some c ∈ C∗).

(1.6) Each lattice is homothetic to some lattice Λω = Zω+Z, where ω ∈ C−R is uniquely

determined up to the action of GL(2,Z) through fractional linear transformations:

(
a b
c d

)
ω =

aω + b

cω + d
.

We may even choose ω in the upper half-plane H := {ω ∈ C | im(ω) > 0}, which then is

determined up to the action of Γ := SL(2,Z) = the modular group.

(1.7) In order to determine the constants gi in (1.2), we consider the Eisenstein series

Ek(Λ) :=
∑
λ∈Λ

′ 1
λk

(k ≥ 4 even).

(The series converges for k > 2 but yields zero for k odd.) For Λ = Λω we also put

Ek(ω) = Ek(Λω) =
∑
a,b∈Z

′ 1
(aω + b)k

,
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which is holomorphic on H . Then the Laurent expansion of ℘Λ(z) around z = 0 is

(1.8) ℘Λ(z) =
1
z2

+
∑
k≥2

(k + 1)Ek+2(Λ)zk.

Comparing the first coefficients yields

(1.9) g2(Λ) = 60E4(Λ), g3(Λ) = 140E6(Λ).

It is obvious from Ek(cΛ) = c−kEk(Λ) that

(1.10) Ek(
aω + b

cω + d
) = (cω + d)kEk(ω),

(
a b
c d

)
∈ Γ.

Holomorphic functions on H satisfying this rule (plus a holomorphy condition at∞: see

below) are called modular forms of weight k for Γ; they form a C-vector space Mk. Hence

e.g. Ek ∈Mk and ∆ ∈ M12, where ∆(z) = g3
2(z)− 27g2

3(z), gi(z) = gi(Λz).

(1.11) Suppose the holomorphic function f on H satisfies the functional equation (1.10)

under Γ. Then in particular, f is Z-periodic and has a Fourier expansion

f(z) = f̃(q) =
∑
n∈Z

anq
n

with a Laurent series f̃ in q(z) = exp(2πiz). The required holomorphy condition for f

at ∞ is that an = 0 for n < 0. If even an = 0 for n ≤ 0, f is called a cusp form. The

Fourier expansion of Ek is given by

(1.12) Ek(z) = 2ζ(k) + 2
(2πi)k

(k − 1)!

∑
n>0

σk−1(n)qn,

where σk−1(n) =
∑
d|n

dk−1 and ζ(k) = (2π)k

2k! |Bk| with the k-th Bernoulli number Bk,

B0 = 1, B1 = −1
2 , B2 = 1

6 , B3 = 0, ... Comparing coefficients yields that ∆(z) is a cusp

form of weight 12.

(1.13) It is well-known that j := g3
2/∆ is a complete invariant for elliptic curves, that is,

two curves in Weierstrass form (1.4) are isomorphic if and only if their j-invariants agree.
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(As customary, we briefly write the affine equation (1.4) but think of and work with the

attached homogeneous equation). Together with (1.6) we get:

(1.14) The j-invariant mapping z 7−→ j(z) = g3
2(z)/∆(z) gives rise to an isomorphism of

Riemann surfaces between Γ \H , the quotient space of H (mod Γ), and the affine line

C = A1(C).

(1.15) Next, define F := {z ∈ C | − 1
2 ≤ re(z) ≤ 1

2 , |z| ≥ 1}. It is a fundamental domain

for the action of Γ on H , i.e., F represents Γ \H and up to the obvious identifications on

the boundary of F , its elements are inequivalent modulo Γ. There are two special points

on Γ\H (the elliptic points), represented by the 4-th and 3-rd roots of unity i and ρ, and

characterized by the fact that their stabilizers Γi and Γρ are cyclic groups of orders 4 and

6, respectively. (The stabilizers of points inequivalent to i or ρ are simply the subgroups

{±1} of Γ.) We have the following basic relation for 0 6= f ∈ Mk:

(1.16)
∑

z∈Γ\H

∗
νz(f) +

1
2
νi(f) +

1
3
νρ(f) + ν∞(f) =

k

12
.

Here νz(f) is the vanishing order of f at z (for z = ∞, it is the vanishing order of

the power series f̃ in q, see (1.11)), and the sum
∑∗ is over the non-elliptic points of

Γ \H . As an easy consequence, M4 = CE4, M6 = CE6, and more generally, the algebra

M :=
⊕
k≥0

Mk of modular forms is the polynomial ring

(1.17) M = C[E4, E6] = C[g2, g3]

in the algebraically independent functions g2 and g3.

We will see analogues of the above (and of many more properties of classical modular

forms) in the function field setting.

2. The Drinfeld setting ([4], [3], [16], [7], [8], [13]).

Following the general philosophy about similarities between number fields and function

fields, we now transfer the contents of section 1 to characteristic p.

(2.1) We let Fq be the finite field with q elements, of characteristic p, and A = Fq[T ] the
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polynomial ring in one indeterminate T over Fq . Its quotient field K = Fq(T ) is provided

with the degree valuation v : K −→ Z∪{∞} defined by v(a/b) = deg b−deg a (a, b ∈ A)

and the corresponding absolute value |x| = q−v(x). The completion of K with respect to

v is the field K∞ = Fq((π)) of formal Laurent series in the uniformizer π = T−1; its ring

of integers, maximal ideal, residue class field are denoted by O∞ = Fq [[π]], m∞ = πO∞,

and k(∞) ∼= Fq , respectively.

The main difference with the classical case stems from the fact that the algebraic closure

K∞ of K∞ has infinite degree overK∞ and therefore fails to be complete w.r.t the unique

extension (also denoted by “| . |”) to K∞. We put C for the completion of the valued

field K∞ and note that, due to Krasner’s lemma, C is both complete and algebraically

closed, having the algebraic closure Fq of Fq as its residue field. For such fields there is a

function theory like classical complex function theory with results of similar strength [5].

The reader is now invited to flick forward and have a brief look at the dictionary of

section 5. We first introduce A-lattices Λ in C, Λ-periodic functions, Drinfeld A-modules,

..., which substitute Z-lattices Λ in C, the Weierstrass function ℘Λ, elliptic curves, ...,

respectively.

(2.2) An A-lattice in C is a finitely generated (hence free) discrete A-submodule Λ of

C. Discreteness means that the intersection of Λ with each ball of finite radius is finite.

Equivalently, Λ = Aω1 + · · ·+Aωr with K∞-linearly independent elements ω1, . . . , ωr of

C. (We will mainly deal with the case where the rank r equals two.) With such a Λ, we

associate the function

(2.3) eΛ(z) = z
∏
λ∈Λ

′
(1− z

λ
),

which converges locally uniformly for z ∈ C. The function eΛ is entire, Λ-periodic,

surjective, Fq-linear, has its zeroes, all simple, at Λ, and is given by an everywhere

convergent power series

(2.4) eΛ(z) =
∑
k≥0

αk(Λ)zq
k

.
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Fix some a ∈ A and consider the commutative diagram

(2.5)

0 −→ Λ −→ C
eΛ−→ C −→ 0

↓ a ↓ a ↓ ΦΛ
a

0 −→ Λ −→ C
eΛ−→ C −→ 0 ,

where the two left vertical arrows are multiplication by a, while the map φΛ
a is defined

through the diagram. A closer look shows that

(2.6) φΛ
a (z) = az + l1(a,Λ)zq + · · · lN (a,Λ)zq

N

,

where N = rank(Λ) · deg a and lN (a,Λ) 6= 0.

Furthermore, a 7−→ φΛ
a is additive, multiplicative (i.e., φab(z) = φa(φb(z))) and Fq-linear.

In other words, defining the multiplication in the set

EndC,Fq (Ga) = {
∑

liX
qi | li ∈ C}

of Fq-linear polynomials over C through insertion, φΛ : a 7−→ φΛ
a defines a homomorphism

of Fq-algebras from A to EndC,Fq(Ga). By means of φΛ, C = Ga(C) is equipped with a

new structure of A-module: a ∗ z = φΛ
a (z). Such an A-module structure subject to (2.6)

is known as a Drinfeld A-module of rank r over C. Note that the rank of the Drinfeld

module φΛ equals the rank of the lattice Λ.

We regard Drinfeld modules (and notably those of rank two) as analogues of elliptic

curves, where the functional equation

eΛ(az) = φΛ
a (eΛ(z))

for eΛ derived from (2.5) corresponds to (1.2) or rather to the multiplication equation

derived from (1.2). The point is that (1.2) defines a Z-module structure on the elliptic

curve C/Λ
∼=−→ EΛ(C), while (2.5) and (2.6) define the above A-module structure on the

additive group scheme Ga.
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(2.7) Each homomorphism φ : a 7−→ φa subject to (2.6) of Fq-algebras from A to

EndC,Fq(Ga) is uniquely determined through

φT (X) = TX + l1X
q + · · ·+ lrX

qr ,

where l1, . . . , lr ∈ C, lr ∈ C∗ may be freely chosen. Similar to (1.5), each rank-r Drinfeld

A-module φ comes from a rank-r lattice Λ as above, and for two Drinfeld modules φ = φΛ,

φ′ = φΛ′ we have equivalence between

(i) φ and φ′ are isomorphic as Drinfeld modules;

(ii) ∃ c ∈ C∗ such that Λ′ = cΛ;

(iii) ∃ c ∈ C∗ such that l′i = c1−q
i

li, where the li, l′i are the coefficients of φT , φ′T ,

respectively.

The functional equation

eΛ(Tz) = φT (eΛ(z)) = TeΛ(z) + l1eΛ(z)q + · · ·+ lreΛ(z)q
r

yields the recursion formula

(2.8) [k]αk = l1α
q
k−1 + · · ·+ lrα

qr

k−r

for the coefficients αk = αk(Λ) of eΛ(z), with αk = 0 for k < 0 and α0 = 1. Here we have

abbreviated [k] = T q
k − T ∈ A. Hence each αk is a polynomial in l1, · · · , lr.

(2.9) As in (1.9), the li = li(T,Λ) may be expressed through lattice sums. For k ∈ N,

k ≡ 0 (mod q − 1), define the k-th Eisenstein series Ek(Λ) through

Ek(Λ) =
∑
λ∈Λ

′ 1
λk
.

Due to our non-archimedean situation and the discreteness of Λ, the series converges (in

arbitrary order) for any k > 0, but evaluates to zero if k 6≡ 0 ( mod q−1). An elementary

but somewhat complicated calculation (e.g. [7] II 2.11) yields

(2.10) lk =
∑

1≤j≤k−1

Eqk−j−1, l
qk−j

j + [k]Eqk−1.
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(2.11) Let us first inspect the rank-one situation. By (2.7), each rank-one Drinfeld module

is isomorphic with the Carlitz module ρ defined by ρT (X) = TX +Xq . It corresponds to

a rank-one lattice L = πA with some π ∈ C well-defined up to a (q − 1)-th root of unity,

i.e., up to an element of F∗q . Choose and fix such a π. From (2.10) we see that

1 = [1]Eq−1(L) = [1]π1−qEq−1(A), i.e.,

(2.12) πq−1 = [1]Eq−1(A) = (T q − T )
∑
a∈A

′ 1
aq−1

.

In particular, |πq−1| = |[1]|= qq . Furthermore, putting

(2.13) Dk = [k][k− 1]q · · · [1]q
k−1

,

the coefficients of eL are given by

(2.14) αk(L) =
1
Dk

,

as follows from (2.8).

3. Drinfeld modular forms ([16], [8]).

(3.1) Next, we consider the case where r = rank(Λ) = 2. Then Λ = Aω1 + Aω2, and the

Drinfeld module φ = φΛ is given by φT , which we write

φT (X) = TX + gXq + ∆Xq2
.

Due to (2.10), g = g(Λ) = [1]Eq−1(Λ) and ∆ = ∆(Λ) = [1]qEq+1
q−1(Λ) + [2]Eq2−1(Λ) 6= 0.

As in (1.6), we may scale Λ such that Λ = Λω = Aω + A, where ω ∈ Ω := C − K∞ is

uniquely determined up to the action of Γ := GL(2, A). The set Ω is called the Drinfeld

upper half-plane; it is provided with a natural structure of rigid analytic space in the

sense of Tate (cf. [14], [5], [12], [13]). With respect to that structure, the functions

Ek(ω) := Ek(Λω) are holomorphic on Ω, and the obvious rule Ek(cΛ) = c−kEk(Λ) for

c ∈ C∗ translates to

Ek(
aω + b

cω + d
) = (cω + d)kEk(ω) (

(
a b
c d

)
) ∈ Γ).
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(3.2) In order to find the right substitute for (1.11), we must describe the structure of Ω

“at infinity”. For z ∈ C, define |z|i := inf
x∈K∞

|z − x| = min
x∈K∞

|z − x|, which plays the role

of the complex imaginary part. It is an exercise to show that∣∣∣∣az + b

cz + d

∣∣∣∣
i

=
| det γ|
|cz + d|2 |z|i for

(
a b
c d

)
= γ ∈ GL(2, K∞).

For c in the value set qQ of C, the subsets Ωc := {z ∈ Ω | |z|i ≥ c} are admissible and

stable under Γ∞ := {
(
a b
0 d

)
| a, d ∈ F∗q , b ∈ A}, and satisfy

Ωc ∩ γ(Ωc) 6= ∅ ⇒ γ ∈ Γ∞,

provided that c > 1. Hence for such c, the canonical map from Γ∞ \ Ωc to Γ \ Ω is

injective and even an open immersion of rigid spaces. To determine the quotient Γ∞ \Ωc,

we first divide out the group Γu∞ := {
(

1 b
0 1

)
| b ∈ A}, whose associated quotient map is the

restriction of eA to Ωc, and then factor modulo the action of Γ∞/Γu∞ ∼= {
(
a 0
0 d

)
| a, d ∈ F∗q}.

For certain reasons, we take

(3.3) t(z) := eL(πz)−1 = π−1eA(z)−1

as the coordinate on Γu∞ \ Ωc = A \ Ωc. (The change eA −→ e−1
A doesn’t matter since

eA has neither zeroes nor poles on Ωc, and the factor π serves for normalizing purposes,

as does 2πi classically.) Since t(a
d
z) = d

a
t(z) for a, d ∈ F∗q , the group Γ∞/Γu∞ acts on

t(Ωc) ⊂ C like the group of (q − 1)-th roots of unity. Hence tq−1 : Γ∞ \ Ωc ↪→ C defines

an injection (in fact: as open immersion of analytic spaces). The following is crucial.

3.4 Proposition ([8] 5.5 + 5.6). Let c ∈ qQ, c > 1. For z ∈ Ωc, logq |t(z)| depends only

on |z|i. There exists a real constant c0 > 1 such that |z|i ≤ − logq |t(z)| ≤ c0|z|i. The map

z 7−→ tq−1(z) identifies Γ∞ \ Ωc with the pointed ball Br − {0} = {z ∈ C | 0 < |z| ≤ r},
where r = r(c) tends to zero with c −→∞.

(We don’t need the precise formula for r(c), given loc. cit.) We are now ready to make

the following basic definition.

3.5 Definition. Let k be a non-negative integer and m a residue class

(mod q − 1). A modular form of weight k and type m for Γ is a function f : Ω −→ C
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that satisfies

(i) f(γz) = (cz+d)k

(det γ)m
f(z) (

(
a b
c d

)
= γ ∈ Γ, γz = az+b

cz+d
);

(ii) f is holomorphic on Ω;

(iii) f is holomorphic at infinity.

Here the last condition signifies that the Laurent series expansion of f restricted to Ωc
with respect to t (which exists, since f by (i) is invariant under Γu∞) has no polar terms.

We further define

Mk,m = C-vector space of modular forms of weight k and type m

M =
⊕
k,m

Mk,m, M0 =
⊕
k

Mk,0, and for 0 6= f ∈ Mk,m

νz(f) = vanishing order of f at z ∈ Ω

ν∞(f) = vanishing order of f at ∞ = order of the power

series f̃ such that f(z) = f̃(t(z)) for |z|i large.

Remark. Note that we are dealing here with Γ = GL(2, A), which in contrast to SL(2, A)

admits the non-trivial characters γ 7−→ (det γ)m. This explains the slightly more general

transformation rule (i) compared to e.g. (1.10). The weight and type are not quite inde-

pendent: If 0 6= f ∈Mk,m then k ≡ 2m ( mod q−1) (apply (i) to the scalar matrix
(
a 0
0 a

)
).

Further, if f has a t-expansion
∑
ant

n(z) then an 6= 0 implies that n ≡m (mod q− 1).

We next give a list of natural examples of modular forms. In each case it is easy to verify

conditions (i) and (ii) of (3.5); the holomorphy at infinity comes out by calculating the

t-expansion (see [8]). Recall that Λz is the lattice Az +A.

3.7 Examples. (i) For k ∈ N, k ≡ 0 (mod q − 1), the function

Ek : z 7−→ Ek(Λz) =
∑
a,b∈A

′ 1
(az + b)k

is non-zero and lies in Mk,0.

(ii) Fix 0 6= a ∈ A, and consider the polynomial

φΛz
a (X) =

∑
0≤i≤2deg a

li(a,Λz)Xqi

of (2.6). Letting z vary on Ω, li(a, z) := li(a,Λz) becomes a function in z, actually
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li(a, ·) ∈ Mk,0 with k = qi − 1. For a = T and i = 1, 2, we get functions g ∈ Mq−1,0 and

∆ ∈Mq2−1,0 (compare (3.1)). Note that ∆ nowhere vanishes on Ω.

(iii) Similarly, write

eΛz(w) =
∑
i≥0

αi(z)wq
i

.

Then αi is a modular form of weight qi − 1 and type 0.

(iv) Let H ⊂ Γ be the subgroup of matrices {
(
a b
0 1

)
| a ∈ F∗q , b ∈ A}. For k > 0,

0 ≤ m ≤ k
q+1 , k ≡ 2m (mod q − 1), the Poincaré series

Pk,m(z) =
∑

γ∈H\Γ

(det γ)m

(cz + d)k
tm(γz)

is well-defined, converges, and defines an element 0 6= Pk,m ∈ Mk,m. Here, as usual, an

element γ of Γ representing a class in H \ Γ is written as γ =
(
a b
c d

)
.

Comparing with section 1, our present Eisenstein series Ek (but in view of (1.8) also the

αi) correspond to the elliptic Eisenstein series Ek of (1.7), whereas the li(a, z) are similar

to certain functions derived from coordinates on elliptic curves. In particular, g and ∆

play the role of the classical functions g2, g3 and ∆, respectively.

(3.8) From (2.7) it is obvious that j(φ) := gq+1

∆ is a complete invariant for rank-two

Drinfeld modules φ defined by

φT (X) = TX + gXq + ∆Xq2
.

That is, two such, given by coordinates (g,∆) and (g′,∆′), are isomorphic if and only

if gq+1

∆ = g′q+1

∆′ . Therefore, the holomorphic Γ-invariant function j : Ω −→ C given by

z 7−→ g(z)q+1/∆(z) identifies the quotient Γ \ Ω with the affine line C = A1(C) both

set-theoretically and analytically.

(3.9) As in (1.15), there are elliptic points z on Ω, namely those whose stabilizer groups

Γz in Γ are strictly larger than Z(Fq) = {
(
a 0
0 a

)
| a ∈ F∗q}, which is the stabilizer of generic

points. We have equivalence between

(i) z is elliptic;
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(ii) z is Γ-conjugate to an element of Fq2 − Fq ;
(iii) Γz ∼= F∗q2 ;

(iv) j(z) = 0.

Hence there is only one equivalence class of elliptic points, represented by any element e

of Fq2 − Fq . Correspondingly, the map j : Ω −→ C is unramified off elliptic points, and

ramified with index (q2 − 1)/(q− 1) = q+ 1 in elliptic points. As an easy consequence of

(3.8) we get the relation (proof: [7] V sect. 5)

(3.10)
∑
z∈Γ\Ω

∗νz(f) +
νe(f)
q + 1

+
ν∞(f)
q − 1

=
k

q2 − 1
,

valid for any f ∈Mk,m which doesn’t vanish identically. As in (1.16), the sum
∑∗ is over

the non-elliptic classes in Γ \Ω. As an example

(3.11)
νe(g) = 1, ν∞(g) = νz(g) = 0 (z non-elliptic),

ν∞(∆) = q − 1, νz(∆) = 0 (z ∈ Ω).

Letting now h := Pq+1,1, we get

3.12 Theorem ([16], [8]). (i) M0 =
⊕
k≥0

Mk,0 = C[g,∆]

(ii) M =
⊕
k≥0

m(mod q−1)

Mk,m = C[g, h] with algebraically independent forms (g,∆), (g, h), respec-

tively.

About ∆ we have the following result, which is analogous to Jacobi’s formula

∆(z) = (2πi)12q
∏
n≥1

(1− qn)24 (q = e2πiz)

for the classical discriminant.

3.13 Theorem [6]. For 0 6= a ∈ A define the polynomial fa(X) ∈ A[X] derived from the

Carlitz module ρ as fa(X) = Xqdeg a

ρa(X−1). Then ∆(z) has the product expansion in
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t(z) convergent for |z|i sufficiently large:

∆(z) = −πq
2−1tq−1

∏
a monic

fa(t)(q2−1)(q−1).

As a consequence, π1−q2
∆ has a t-expansion with coefficients in A. More generally, there

is the next integrality result.

3.14 Theorem ([16], [8]).

(i) The subset Mk,m(A) of forms having their t-coefficients in A defines an A-structure

on the C-vector space Mk,m.

(ii) Defining gnew := π1−qg and ∆new := π1−q2
∆, we have

M0(A) :=
⊕
k

Mk,0(A) = A[gnew,∆new].

(iii) Similarly, M(A) :=
⊕
k,m

Mk,m(A) = A[gnew, h].

As we see from (3.10), h never vanishes on Ω, therefore ν∞(h) = 1 and hq−1 must be

proportional to ∆. Comparing the leading terms yields

3.15 Theorem ([8] 9.1). ∆new = −hq−1.

(3.16) We finally mention how new modular forms may be constructed from differentiating

old ones. First note that dt
dz = −πt2 since deL(z)

dz = 1. Therefore,

θ := π−1 =
d

dz
= −t2 d

dt

acts on the power series ring A[[t]]. Applying θ to (3.5) (i) gives the transformation rule

(θf)(γz) =
(cz + d)k+2

(det γ)m+1
(θf)(z) +

k · c
π

(cz + d)k+1

(det γ)m+1
f(z)

for θf . Letting f = ∆ and dividing by ∆ yields

E(γz) =
(cz + d)2

det γ
E(z) − c(cz + d)

det γ
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for E(z) := θ∆(z)
∆(z)

. With a small calculation, we get the next assertion.

3.17 Proposition. For f ∈Mk,m define ∂kf := θf + kEf. Then

(i) ∂kf ∈Mk+2,m+1

(ii) ∂ = (∂k)k∈N0 is a graded differential operator of weight two on M . That is, for

fi ∈Mki,mi (i = 1, 2), the rule

∂k1+k2(f1 · f2) = ∂k1(f1)f2 + f1∂k2(f2)

holds.

(iii) M(A) is stable under ∂.

Again from comparing leading coefficients, we get

3.18 Corollary. ∂gnew = h.

4. Some congruence properties of modular forms [8].

(4.1) Recall that [k] = T q
k − T , Dk = [k][k − 1]q · · · [1]q

k−1
. We further define Lk =

[k][k− 1] · · · [1]. Their arithmetic meaning is:

[k] =
∏
f f monic, prime, of degree a divisor of k

Dk =
∏
f f monic of degree k

Lk = l.c.m.{f | f monic of degree k}.

The special Eisenstein series of weight of shape qk − 1 are particularly important, see

(2.10). We normalize them as follows:

(4.2) gk := (−1)k+1π1−qkLkEqk−1.

4.3 Proposition ([8] 6.9). The gk satisfy

(i) gk = 1 + o(t)

(ii) gk ∈ Mqk−1,0(A);
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(iii) g0 = 1, g1 = gnew, and for k ≥ 2,

gk = −[k − 1]gk−2∆qk−2

new + gk−1g
qk−1

new .

Therefore there exists a unique polynomial Ak(X, Y ) ∈ A[X, Y ], isobaric of weight qk−1

(where the weights of X and Y are q − 1 and q2 − 1, respectively), such that gk =

Ak(gnew,∆new). With a view towards (3.15), we further put Bk(X,Z) = Ak(X,−Zq−1).

Then Bk(gnew, h) = gk.

We next consider congruence properties. For an ideal a of A and f, f ′ ∈ M(A), f ≡
f ′ (mod a) means congruence (mod a) of all the t-coefficients.

4.4 Proposition (loc. cit. 6.11): Let p be a prime ideal of A of degree d. Considering gk
as a power series in t, the congruence

gk+d(t) ≡ gk(tq
d

) (mod p)

holds for k ≥ 0. In particular, gd ≡ 1 (mod [d]).

As we will see below, this is “the only congruence mod p” for elements of M(A). To

make this precise, we define the homomorphism εp : M(A) −→ Fp[[t]] composed of the

canonical injection

M(A) ↪→ A[[t]]

f 7−→ t-expansion of f

and the reduction map ∼: A −→ Fp = A/p (everything derived from reduction (mod p)

will equally be denoted by a “∼”). We further let εp,0 be the restriction of εp to M0(A).

4.5 Theorem (loc. cit. 12.1 + 12.3). The kernel of εp (of εp,0) is the ideal of M(A) =

A[gnew, h] (of M0(A) = A[gnew,∆new]) generated by gd − 1.

4.6 Remark. By the theorem, Ãd(g̃new, ∆̃new) = 1 = B̃d(g̃new, h̃), where ( ∼ ) means

reduction (mod p). Actually Ãd equals the reduction F̃d of the polynomial Fd(X, Y )

(loc. cit. 11.6), i.e., the supersingular polynomial (mod p), which describes the Hasse

invariant of Drinfeld A-modules in characteristic p. This has rather strong consequences.

For example, F̃d is square-free, which gives the simplicity of zeroes of gd as a function on

Ω (see (7.13)).
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5. Dictionary classical versus Drinfeld modular forms.

We summarize here some of the analogies and similarities between data and results in

the classical and in the Drinfeld setting of modular forms.

Number field side Function field side

Z A

Q, absolute value “| . |” K, absolute value “| . |”
R K∞

C C

imaginary part im(z) |z|i
H (or rather H± = C− R) Ω = C −K∞
Γ = SL(2,Z) (or rather GL(2,Z)) Γ = GL(2, A)

elliptic points on H (equivalent elliptic points on Ω (equivalent

with 4-th or 3-rd roots of unity) with (q2 − 1)-th roots of unity)

Gm = multiplicative group ρ = Carlitz module

2πi, 2πiZ π, πA = L

℘Λ Weierstrass function eΛ

elliptic curve Drinfeld module of rank two

q(z) = e2πiz t(z) = eL(πz)−1

elliptic modular forms Drinfeld modular forms

Eisenstein series Eisenstein series

g2, g3,∆, j g,∆, j

(1.16) (3.10)

(1.17) (3.12)

Jacobi’s formula (3.13)

special Eisenstein series special Eisenstein series Ek,

Ep−1, p ≥ 5 prime k = qd − 1, p a prime of degree d

6. The Bruhat-Tits tree.

The Bruhat-Tits tree T of PGL(2, K∞) is extensively discussed in [21]. Most of the
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explicit calculations below are taken from [9] or [10]. It is a (q+1)-regular tree (i.e., each

vertex connects to q + 1 non-oriented edges) upon which GL(2, K∞) acts (vertex- and

edge-) transitively.

(6.1) For abbreviation, let G denote the group scheme GL(2) with center Z = scalar

matrices in G, and put

K := G(O∞), J := {
(
a b
c d

)
∈ K | c ≡ 0 (mod π)}.

Then the sets X(T ) of vertices and Y (T ) of oriented edges of T are given by

X(T ) = G(K∞)/Z(K∞) · K
Y (T ) = G(K∞/Z(K∞) · J ,

and the action of G(K∞) is left multiplication. The canonical map from Y (T ) to X(T )

associates with each oriented edge e its origin o(e). The edge e is e with orientation

reversed: o(e) = t(e) = terminus of e, t(e) = o(e).

For k ∈ Z and u in a system of representatives of K∞/πkO∞ let m(k, u) be the matrix

m(k, u) =
(
πk

0
,
,
u
1

)
. Then

SX := {m(k, u) | k ∈ Z, u ∈ K∞/πkO∞} and SY := SX
·
∪ SX

(
0 1
π 0

)
are systems of representatives for X(T ) and Y (T ), respectively. We let v(k, u) (e(k, u))

be the vertex (oriented edge) represented by m(k, u). Moreover, we put vk = v(−k, 0)

and ek = e(−k, 0). An end of T is an equivalence class of infinite half lines • − − − • −
− − • − − − • − · · ·, two of which are identified if they differ in a finite graph. The set

of ends of T is canonically identified with P1(K∞). E.g., “∞” is given by (v0, v1, v2, . . .)

and “0” by (v0, v−1, v−2, . . .). The straight line (. . . , vk−1, vk, vk+1, . . .) joining 0 to ∞ is

called the principal axis A(0,∞) of T .

A first important result on T is due to Goldman-Iwahori ([15]; they actually prove a more

general assertion valid for arbitrary dimensions).

6.2 Theorem. The set T (R) of real points of T is in canonical bijection with the set of
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similarity classes of non-archimedean norms on the two-dimensional vector space K2
∞.

We briefly describe the map on vertices of T and refer e.g. to [12] for a thorough

discussion. To each x ∈ T (Z) = X(T ), given by a matrix gx ∈ G(K∞), there corresponds

an O∞-lattice Lx := O2
∞g
−1
x ⊂ K2

∞, which is well-defined up to scalars. Hence the norm

“| . |x” on K2
∞ with unit ball Lx is well-defined up to scaling, i.e., up to similarity. Points

of T (R) situated in the interior of an edge correspond to classes of norms whose unit balls

are not O∞-lattices in K∞.

(6.3) The above allows to define a map λ from Ω to the set T (Q) of elements of T (R)

with rational barycentric coordinates. Namely, for z ∈ Ω let νz : K2
∞ −→ R be the norm

given by νz(u, v) := |uz + v|. By construction of the bijection in (6.2), the class of νz
corresponds to an element in T (Q). The reason is that the value group |C∗| equals

qQ ↪→ R∗+. Hence

λ : Ω −→ T (Q)

z 7−→ class of νz

is well-defined. Moreover, it is onto T (Q) and G(K∞)-equivariant. Furthermore, the

values |z| and |z|i of some z ∈ Ω depend only on λ(z) ∈ T (Q).

We next consider group actions.

6.4 Theorem. The half-line h∞ := (v0, v1, v2, . . .) of T is a fundamental domain for the

action of Γ on T . That is, each vertex is Γ-equivalent to precisely one of the vk (k ≥ 0).

Similarly, each oriented edge is equivalent to precisely one of the ek or ek (k ≥ 0).

(This has been proved on and on in the literature. Perhaps the first proof is due to A.

Weil [25].) Since vk corresponds to the matrix m(−k, 0), its stabilizer Γvk in Γ is

(6.5)

Γk := m(k, 0)Γm(−k, 0) ∩ Z(K∞) · K
= G(Fq) = GL(2,Fq) k = 0

= {
(
a b
0 d

)
| a, d ∈ F∗q , b ∈ A, deg b ≤ k} k > 0.

The stabilizer of ek or ek is Γvk ∩ Γvk+1 = Γk ∩ Γk+1. Directly from the definition of λ

we get:
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6.6 Proposition. The inverse image λ−1(vk) of the vertex vk ∈ X(T ) is Fk := {z ∈
C | |z| = |z|i = qk}. The invese image of the half-line h∞ of (6.4) is F := {z ∈ C | |z| =
|z|i ≥ 1}.

Together with (6.4) there results the next corollary, which states that F is as close to a

fundamental domain for Γ on Ω as is possible in our situation.

6.7 Corollary. (i) Each z ∈ Ω is Γ-equivalent to an element of F .

(ii) Let z, z′ be elements of F such that z′ = γz with γ ∈ Γ. Then |z| = |z′| and γ ∈ Γk
if |z| = qk, γ ∈ Γk ∩ Γk+1 if qk < |z| < qk+1.

Of course, (6.7) may be proved directly without reference to T .

(6.8) We need to introduce certain Z-valued functions on Y (T ). Such a function ϕ is

called alternating if ϕ(e) + ϕ(e) = 0 for e ∈ Y (T ), and harmonic in v ∈ X(T ) if the sum∑
ϕ(e) over the edges e with o(e) = v vanishes. We put H(T ,Z) for the group (actually

the G(K∞)-module) of alternating and everywhere harmonic Z-valued functions on Y (T ).

Typical examples of such functions arise from holomorphic functions f on Ω as follows.

A holomorphic function f on Ω is bounded on each λ−1(v), v ∈ X(T ). We let ‖f‖v :=

sup{|f(z)| | z ∈ λ−1(v)} be its spectral norm. For f not identically vanishing, we define

the function r(f) on Y (T ) through

(6.9) r(f)(e) := logq
‖f‖t(e)
‖f‖o(e)

.

Then r(f) is alternating and satisfies r(f1 · f2) = r(f1) + r(f2).

The next result is due to Marius van der Put ([18], [5]).

6.10 Theorem. (i) Let f be invertible on Ω. Then |f(z)| is constant on each λ−1(v)

and r(f) ∈ H(T ,Z).

(ii) The following sequence is exact, where the middle term denotes the multiplicative

group of invertible holomorphic functions on Ω:

1 −→ C∗ −→ OΩ(Ω)∗ −→ H(T ,Z) −→ 0

f 7−→ r(f)
.
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By means of the “contour integration” formalism of [14] p. 93-95, the first part of the

theorem may be generalized.

6.11 Proposition. Let f ∈ OΩ(Ω) be a holomorphic function on Ω and v ∈ X(T ) a

vertex. Suppose that f(z) 6= 0 whenever λ(z) lies in the interior of some edge e with

o(e) = v. Then

∑
o(e)=v

r(f)(e) = number of zeroes of f on λ−1(v),

counted with multiplicity,

where all the r(f)(e) are integers.

(6.12) The above will allow us to relate the growth of e.g. modular forms on Ω with

the distribution of their zeroes. As a first example, consider the function j on Ω, which

has its only zeroes at the elliptic points, all of multiplicity q + 1, and no poles on Ω (see

(3.11)). It follows from (6.7) that the elliptic points in F are precisely the elements of

Fq2 − Fq ⊂ F0. Since j is Γ-invariant, r(j) is a function on the edges of the graph Γ \ T ,

which is isomorphic under the quotient map with the half-line h∞ of (6.4). Further, r(j)

is harmonic at vertices inequivalent with v0. Now all the q+1 edges e of T with o(e) = v0

are equivalent to e0, thus

(q + 1)r(j)(e0) = #{zeroes of j in F0, with multiplicities}
= (q + 1)#(Fq2 − Fq)
= (q + 1)q(q − 1).

Hence finally

(6.13) r(j)(e0) = q(q − 1) and r(j)(ek) = qk+1(q − 1) for k > 0.

The last equality stems from the fact:

(6.14) The q edges e 6= ek with o(e) = vk are identified under the quotient map (mod Γ).
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7. Zeroes and growth of Eisenstein series.

In view of the functional equation (3.5) (i), the divisor (set of zeroes with multiplicities)

of a modular form f is invariant under Γ. For the investigation of the zeroes of f , we

may therefore restrict to the “fundamental domain” F for Γ on Ω.

7.1 Proposition. Let 0 < k ≡ 0 (mod q − 1). The Eisenstein series Ek satisfies

|Ek(z)| ≤ 1 for z ∈ F , with equality if z 6∈ F0.

Proof. We have Ek(z) =
∑
a,b∈A

′ 1
(az + b)k

, where |az + b| = max{|az|, |b|} ≥ 1 since

|z| = |z|i ≥ 1. Further, if z 6∈ F0 then |z| > 1 and |az+ b)−k| < 1 whenever (a, b) 6= (0, c)

with c ∈ Fq. But
∑
c∈Fq

′ 1
ck

= −1 has absolute value 1, thus |Ek(z)| = 1 in this case. �

7.2 Corollary. Let z ∈ F be a zero of Ek. Then already z ∈ F0.

7.3 Proposition. The number of zeroes of Ek on F0 (counted with multiplicities) is q ·k.

Proof. Ek doesn’t vanish at ∞ since the constant term of its t-expansion is

lim
|z|i→∞

∑
a,b

′ 1
(az + b)k

=
∑
b

′ 1
bk
≡ −1 (mod π).

Hence formula (3.10) multiplied by q(q2 − 1) yields

(∗) q(q2 − 1)
∑
z∈Γ\Ω

∗νz(Ek) + q(q − 1)νe(Ek) = qk.

By (7.2), the sum
∑
z∈Γ\Ω

∗ may be written as a sum over z ∈ Γ0 \F0. Now the quotient map

from F0 to Γ0 \ F0 is (q3 − q)-to-one off elliptic points and identifies the q2 − q elliptic

points. We thus see that the left hand side of (∗) is just the number in question. �

The functional equation of Ek under γ =
(
a b
c d

)
∈ Γ together with the multiplicativity of

the map r implies

(7.4) r(Ek)(γe) = k · S(γ, e) + r(Ek)(e),
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where S(γ, e) := r(cz+d)(e), e ∈ Y (T ). The quantity S(γ, e) is discussed and calculated

in [10] 2.1 + 2.2. It is given by

(7.5)

S(γ, e) = +1 (resp. − 1) if c 6= 0 and
(
c d
0 1

)
(e) = ek (resp. ek)

for some k ∈ Z,
= 0 otherwise.

This may also be shown directly from the definitions.

The function r(g) as well as the spectral norms ‖g‖v for v ∈ X(T ) have been calculated

loc. cit. 2.18. On the principal axis, the result for Eq−1 = [1]−1 · g is:

(7.6)
r(Eq−1)(ek) = 0 (for k ≥ 0) and 1− q (for k < 0),

logq ‖Eq−1‖vk = 0 (for k ≥ 0) and −k(q − 1) (for k < 0),

where ‖Eq−1‖vk = |Eq−1(z)| (z ∈ Fk) as long as k 6= 0.

Again, this may be obtained directly from combining (3.11), (6.11), (7.4), and (7.5). Note

that (6.13) gives a corresponding result for ‖j‖, up to scaling. The missing scalar factor

is determined loc. cit. 2.13, which yields

(7.7) logq ‖j‖vk = q|k|+1 with ‖j‖vk = |j(z)| (z ∈ Fk) if k 6= 0.

7.8 Proposition. Let k be divisible by q − 1. Then r(Ek) = k
q−1

r(Eq−1).

Proof. Put ϕ = r(Ek) − k
q−1r(Eq−1). As a function on Y (T ), it is alternating and

harmonic. The harmonicity in v 6∈ Γv0 holds for both terms individually ((6.11) + (7.2)),

whereas harmonicity in v ∈ Γv0 results from (6.11) and (7.3). On the other hand, (7.4)

yields that ϕ is Γ-invariant. Both properties together force that ϕ = 0, taking (6.4) into

account. �

7.9 Corollary. The meromorphic modular function Ek/E
k/(q−1)
q−1 has constant absolute

value 1 on Ω− ΓF0.

Proof. Let e = (o(e), t(e)) be an edge of T . Then logq |Ek(z)| factors over λ and

interpolates linearly the values logq ‖Ek‖o(e) and logq ‖Ek‖t(e). Now the assertion follows
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from (6.9), (7.6) and (7.8). �

(7.10) Much more can be said about the arithmetic of zeroes of the special Eisenstein

series gk = const. Eqk−1. As has already been noted in (4.6), their roots on Ω are simple.

We list here some of their properties known so far.

Let Ak(X, Y ) ∈ A[X, Y ] be the polynomial producing gk:

Ak(gnew,∆new) = gk,

and define further

χ(k) = 0 for even and χ(k) = 1 for odd k

λ(k) = qk−1+(−1)k

q+1

µ(k) = qk−qχ(k)

q2−1

ϕk = Ak(X,Y )
Xχ(k)Y µ(k) .

Then ϕk is a monic polynomial of degree µ(k) in Xq+1

Y , and satisfies (as is easily derived

from the results of section 4):

(7.11) For each non-elliptic z ∈ Ω,

ϕk(j(z)) = 0⇔ gk(z) = 0,

(7.12) ϕ0 = ϕ1 = 1, ϕk(X) = Xλ(k)ϕk−1(X) − [k − 1]ϕk−2(X) (k ≥ 2).

E.g., ϕ2(X) = X − [1], ϕ3(X) = Xq − [1]Xq−1 − [2].

7.13 Theorem ([1] [2]). All the roots x of ϕk are simple and satisfy |x| = qq.

Note that (7.2) together with (7.7) yields only |j(z)| ≤ qq for zeroes z of gk. Further:

7.14 Theorem (G. Cornelissen, in preparation). ϕk is irreducible.

It is conjectured that Gal(ϕk) is always the full symmetric group if k ≥ 4. This has been

proved in some cases by Cornelissen (q odd, k satisfying certain congruence conditions),

and relates to intriguing questions about the j-invariants of zeroes of classical Eisenstein

series, see [11] section 8. About the distribution of zeroes of ϕk in F0, we have the
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following result.

7.15 Theorem ([11] 8.5). For each z0 ∈ Fqk+1 −Fq, there exists a unique zero z ∈ F0 of

gk that satisfies |z − z0| < 1, and these are all the zeroes of gk in F0 and even in F .

The following definition has been proposed by Cornelissen [2]. Put

Dk =
∏

0<i<k

[i]µ(k)−µ(i)−χ(k−i) ∈ A.

Then Dk is close (and presumably identical) to the discriminant of ϕk.

7.16 Theorem ([11] 7.14 + 8.11). Let disc(ϕk) be the discriminant. Then

(i) |disc(ϕk)| = |Dk|.
(ii) disc(ϕk) and Dk have the same prime divisors, namely the primes p of A of degree less

than k (with the exception of the case q = 2, k = 3, where the prime p = (T 2 +T+1)

divides neither disc(ϕk) nor Dk).

We don’t know, however, whether these primes appear in disc(ϕk) with the exponents

prescribed by Dk.

8. The lattice functions αk.

In this section, the only one in which we give detailed proofs, we investigate the functions

αk introduced in (3.7). We first determine their zeroes in F , which happen to be located

in the Fi with 0 ≤ i ≤ k − 1. Applying contour integration, we get the growth of |αk|
along the principal axis of T .

(8.1) Let φ be the Drinfeld module associated with the generic lattice Λ = Az+A, where

z ∈ Ω. We write the attached exponential function eΛ as

eΛ(w) =
∑
k≥0

αk(z)wq
k

.

First note that

(8.2) αk(∞) := lim
|z|i→∞

αk(z) = αk(A) =
πq

k−1

Dk
,
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which results from (2.14) and simple non-archimedean estimates. From the functional

equation eΛ(Tw) = TeΛ(w) + g(z)eΛ(w)q + ∆(z)eΛ(w)q
2
, we derive

(8.3) [k]αk = gαqk−1 + ∆αq
2

k−2

for k ≥ 1 with αk = 0 for k < 0 and α0 = 1. If Ck(X, Y ) is the unique polynomial

such that Ck(g,∆) = αk, we get the corresponding recursion [k]Ck = XCqk−1 + Y Cq
2

k−2.

Similar to (7.10), we define

(8.4) ξk =
Ck(X, Y )

X(qk−1)/(q−1)
.

Then ξk is a polynomial in Y
Xq+1 with coefficients in K (note here the change from Xq+1

Y

to its reciprocal!). The next three properties are easily verified.

(8.5) For each non-elliptic z ∈ Ω,

ξk(j−1(z)) = 0⇔ αk(z) = 0.

The quantity j(z) with a zero z of αk is briefly called a j-zero of αk.

(8.6) [k]ξk(X) = ξk−1(X)q +Xξk−2(X)q
2

for k ≥ 1 with ξ0 = 1, ξk = 0 for k < 0. The first few of the ξk are

ξ1(X) =
1
[1]
, ξ2(X) =

1
[2]

(
1

[1]q
+ X), ξ3(X) =

1
[3]

(
1

[2]q[1]q2 +
1

[1]q2 +
1

[2]q
Xq).

(8.7) deg ξk = µ(k).

(See (7.10); use (8.6) and induction.)

8.8 Proposition. ξk(X) is separable.

Proof. From (8.6), [k]ξ′k(X) = ξq
2

k−2(X). Hence a multiple root x of ξk is also a root of

ξk−2, hence a root of ξk−1. From (8.6) applied to k − 1, x is also a root of ξk−3, thus a

multiple root of ξk−1. Now use induction. �

8.9 Corollary. (i) αk(z) vanishes in elliptic points if and only if k is odd.
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(ii) All the zeroes of αk on Ω are simple.

Proof. The modular form αk has weight qk−1 and doesn’t vanish at infinity (8.2). Hence

(i) and the simplicity of zeroes in elliptic points follows from (8.5), (8.7) and (3.10).

Assertion (ii) follows from (8.8) since j : Ω −→ C is unramified off elliptic points. �

Now write ξk(X) =
∑
n

ξk,nX
n , and let E(k) ⊂ {0, 1, . . . , µ(k)} be the set of subscripts

n such that ξk,n doesn’t vanish.

8.10 Proposition. (i) We have E(0) = E(1) = {0} and the recursion (k ≥ 2)

E(k) = qE(k − 1)
·
∪ q2E(k − 1) + 1 = E(k − 1)

·
∪ E(k − 2) + qk−2.

(ii) E(k) = {0} ∪ {qi1 + · · ·+ qis | 0 ≤ i1 < · · · < is ≤ k − 2, |it+1 − it| ≥ 2 ∀ t < s}
(iii) If n =

∑
1≤t≤s

qit ∈ E(k) then v(ξk,n) = (k − s)qk (recall that v is the valuation on

K∞).

(iv) Consider the Newton polygon of ξk(X) as e.g. defined in [17]. Its vertices (n, v(ξk,n))

are given by the following table:

k even:

n 0 1 1 + q2 1 + q2 + q4 · · · 1 + q2 + · · ·+ qk−2

v(ξk,n) kqk (k − 1)qk (k − 2)qk (k − 3)qk · · · k
2 q
k

k odd:

0 1 1 + q2 · · · 1 + q2 + · · ·+ qk−3 q + q3 + · · ·+ qk−2

kqk (k − 1)qk (k − 2)qk · · · k+1
2 qk k+1

2 qk

Proof. (i) The first equality results immediately from (8.6). Note that there is no

cancellation in (8.6) since terms coming from ξk−1 (resp. ξk−2) have subscript congruent

to 0 (resp. 1) modulo q. Therefore #(E(k)) = Fk, the k-th Fibonacci number, F0 =

F1 = 1, Fk = Fk−1 + Fk−2 (k ≥ 2).

For the second equation, we note that the two sets E(k−1) and E(k−2)+qk−2 are always
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disjoint since deg ξk−1 = µ(k − 1) < qk−2. Hence E(k) and E(k − 1)
·
∪ E(k − 2) + qk−2

have the same cardinality Fk and it suffices to show an inclusion between them. This is

postponed for the moment.

(ii) Let Mk be the number of subsets {i1, i2, . . . , is} of {0, 1, . . . , k − 2} satisfying the

stated conditions. Then M0 = M1 = 0, M2 = 1, and a moment’s thought shows that

Mk = Mk−1 + Mk−2 + 1 for k ≥ 3. Thus Mk = Fk − 1, and both sets in (ii) have the

same cardinality. Using again (8.6) and induction, we see that E(k) is contained in the

right hand side, and we have identity.

(i) (continued) It is obvious from (ii) that E(k − 1)
·
∪ E(k − 2) + qk−2 is contained in

E(k), and the two sets therefore agree.

(iii) From (8.6) we have

ξk,n =
1

[k]
(ξqk−1,n/q + ξq

2

k−2,(n−1)/q2),

where ξk,m = 0 if m is not an integer. Now v([k]) = −qk, and the assertion follows as

usual from induction on k.

(iv) This is clear from (iii). �

Now we are able to describe the location of the j-zeroes of αk.

8.11 Theorem. For 0 ≤ i < k−χ(k)
2 , there are precisely q2i j-zeroes x of αk that satisfy

logq |x| = qk−2i. For k odd, there are λ(k) = qk−1−1
q+1 further j-zeroes x with logq |x| = 0

and the j-zero x = 0. These are all the j-zeroes of αk.

Proof. Immediate from (8.10) (iv), (8.9) and the properties of the Newton polygon. �

Recall from (6.6) and (7.7) that for k ≥ 0, Fk = λ−1(vk) = {z ∈ C | |z| = |z|i = qk}, and

this equals {z ∈ F | logq |j(z)| = qk+1} for k > 0 and

{z ∈ F | logq |j(z)| ≤ qq} for k = 0. Furthermore, the group Γk of (6.5) acts on Fk
and actually, Γk = {γ ∈ Γ | γFk ∩ Fk 6= ∅}. Hence the quotient map j : Ω −→ C

restricted to Fk identifies precisely #(Γk)
q−1 = (q − 1)qk+1 elements of Fk if k > 0 and

#(Γ0)
q−1 = q3 − q elements of F0, provided they are non-elliptic. Also, the q2 − q elliptic

points in F0 are identified. Taking this into account, we get the following distribution of
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zeroes of αk on F .

8.12 Corollary. All the zeroes of αk in F lie in some Fi. If k is even (odd), αk has

precisely (q − 1)qk zeroes in F1,F3,F5, . . . ,Fk−1 (in F0,F2,F4, . . . ,Fk−1) each, and no

further zeroes in F . �

We use this information to determine or at least to estimate |αk(z)| on F .

8.13 Corollary. Let hk−1 be the half-line (vk−1, vk, vk+1, . . .) in T (R). Then |αk(z)| is

constant on λ−1(hk−1−{vk−1}) with logq |αk(z)| = ( q
k−1
q−1 )q−kqk, which also agrees with

logq ‖αk‖vk−1 = logq ‖αk‖k−1.

Proof. By the preceding corollary and (6.11), r(αk) is harmonic at vk, vk+1, . . . In view

of (6.14), we get

qr(αk)(ei−1) = r(αk)(ei) for i ≥ k.

Since αk(∞) 6= 0 with logq |αk(∞)| = ( q
k−1
q−1

)q − kqk (see (8.2)), r(αk) = 0 on the edges

of hk−1, which gives the result. �

The spectral norm ‖αk‖i of αk on Fi for 0 ≤ i < k − 1 is given by

(8.14) logq ‖α‖k−1 − logq ‖αk‖i =
∫ vk−1

vi

r(αk)(e)de,

with the obvious meaning of the integral. The relevant r(αk)(ej) may be calculated from

(8.12), (6.11) and (6.14), see below.

(8.15) It is quite easy to determine ‖αk‖0 at least for even k. Let z ∈ F0. Then

|az + b| = sup{|a|, |b|} for a, b ∈ A, hence the lattice Λz = Az + A has precisely q2(i+1)

elements of degree less or equal to i (i ≥ 0), i.e., of absolute value≤ qi. Since the elements

of Λz are also the zeroes in w of

eΛz (w) =
∑
k≥0

αk(z)wq
k

,

the Newton polygon of eΛz has

one segment of length q2 − 1 and slope 0, one segment of length q4 − q2 and slope 1, ...
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one segment of length q2(i+1) − q2i of slope i, ...

Summing up, its vertices are given by (qk, q2( q
k−1
q2−1 )− k

2 q
k) for k = 0, 2, 4, . . .. Therefore:

(8.16) For even k, the absolute value |αk(z)| is constant on F0 and satisfies logq |αk(z)| =

q2( q
k−1
q2−1

) − k
2
qk.

This method fails however for αk with odd k. We will therefore pursue the approach in

(8.14) to get a uniform description of ‖αk‖0 for even and odd k.

(8.17) The edges ej with −1 ≤ j < k − 1 join v−1 to vk−1. We let

rk,j := r(αk)(ej ).

The basic relations between these numbers come from (6.11), (6.14), (8.12) and r(αk)(γe) =

(qk − 1)S(γ, e) + r(αk)(e) (see (7.4) and (7.5)), viz.,

(8.18)

k even: qrk,−1 − rk,0 = 0

qrk,0 − rk,1 = −qk(q − 1)

qrk,1 − rk,2 = 0

...

qrk,k−2− rk,k−1 = −qk(q − 1)

k odd: qrk,−1 − rk,0 = −qk(q − 1)

qrk,0 − rk,1 = 0

qrk,1 − rk,2 = −qk(q − 1)

...

qrk,k−2− rk,k−1 = −qk(q − 1).

Furthermore, in both cases

−rk,0 = qk − 1 + rk,−1
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since
(

0 1
1 0

)
e−1 = e0. Solving yields

(8.19)

k even: rk,−1 = −( q
k−1
q+1 ) =: ρ

rk,0 = qρ

rk,1 = q2ρ+ qk(q − 1)

rk,2 = q3ρ+ qk+1(q − 1)

rk,3 = q4ρ+ qk+2(q − 1) + qk(q − 1)

...

rk,k−1 = qkρ+ (qk + qk+2 + · · ·+ q2k−2)(q − 1)

k odd: rk,−1 = −( q
k+1−1
q+1 )

rk,0 = −q( q
k−1−1
q+1

) =: ρ

rk,1 = qρ

rk,2 = q2ρ+ qk(q − 1)

rk,3 = q3ρ+ qk+1(q − 1)

...

rk,k−1 = qk−1ρ+ (qk + qk+2 + · · ·+ q2k−3)(q − 1).

Note that (8.13) prescribes that rk,k−1 = 0 in each case, which is easily checked from the

above. Now we have all the ingredients (formulas (8.13) and (8.19)) of (8.14) to evaluate

logq ‖αk‖i for i = 0, 1, . . . , k − 1. We restrict to write down the result for i = 0, which

comes out from a lengthy exercise in summing up geometric series.

8.20 Theorem. Let k′ = k for even and k′ = k − 1 for odd k ≥ 1. Then ‖αk‖0 is given

by the formula

logq ‖αk‖0 = q2(
qk
′ − 1

q2 − 1
)− k′

2
qk.

For even k, the spectral norm even equals the common absolute value |αk(z)| for all

z ∈ F0. �
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8.21 Remarks. (i) The statement for even k has already been given in (8.16). For odd

k, the value for ‖αk‖0 is the upper bound for |αk(z)| allowed by the Newton polygon for

eΛz (w), see (8.15). That is, for almost all z ∈ F0, |αk(z)| is as large as allowed by the

Newton polygon. Note also that for λ(z) in the interior of an edge e ∈ Y (T ), logq |αk(z)|
interpolates linearly the values of logq ‖αk‖v on the extremities v of e. We therefore have

complete control over the behavior of |αk(z)| on F .

(ii) In the dictionary given in section 5, eΛ corresponds to the Weierstrass function ℘Λ of

some lattice Λ in C, and therefore its Laurent coefficients αk(z) to the coefficients of ℘Λ,

which by (1.8) are the classical Eisenstein series Eclass
k . Hence both our Ek and the αk are

analogues of Eclass
k . Whereas the Ek are similar to the Eclass

k regarding their congruences

([24] - results of section 4) or their zeroes ([19] - (7.2), (7.13)), the αk differ significantly

in that their zeroes tend to∞ with k growing. It is worthwhile to study the arithmetical

properties of their zeroes in the style of theorems (7.14) to (7.16), the field generated over

K by their j-values, etc. Moreover, it would be desirable to extend the investigation to

other classes of modular forms like e.g. the coefficient forms lk(T i, z) and the Poincaré

series Pk,m mentioned in (3.7), or to the “Serre derivatives” introduced in (3.17) of such

forms.
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