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Abstract
We prove that all but finitely many Heegner points on a given modular elliptic
curve (or, more generally, on a given quotient of the modular Jacobian variety Jo(V))

are of infinite order in the Mordell-Weil group where they naturally live, i.e., over
the corresponding ring class field.

1. Notations

1.1 Let N > 1. The quasi-projective curve Yy(IN) defined over Q classifies isogenies
[E 2, E'] of elliptic curves with cyclic kernel ker\ = Z/NZ. Over C, the isogeny

[C/Z+Z1 xA] C/Z+ZNT] corresponds to the point I'g(N)-7 of the quotient To(N)\H =
Yo(N)(C) of the complex upper half-plane H. The dual isogeny [C/Z + ZNT —
C/Z + Z7] induced by the identity on C corresponds to the point I'o(N) - wn(7), where
wy(7) = F+ denotes the Fricke involution.

We write as usual Xo (V) for the smooth projective curve defined over Q which is the
compactification of Yp(V) and classifies cyclic N-isogenies between generalized elliptic
curves. And we denote by Jy(NN) the Jacobian of Xy(N). We embed X(N) in Jo(N) by

sending oo to 0, where oo is the cusp corresponding to the Néron polygon with a single
side.
Finally, we fix a nonzero quotient defined over Q, Jo(N) — A of the abelian variety

Jo(N), and we let Xo(N) =% A be the nonconstant morphism defined over Q which
arises from composing the fixed embedding of Xo(N) into Jo(N) with the projection of
Jo(N) onto A. The following results will therefore apply in particular to the case of a

(modular) elliptic curve A over Q.
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1.2 Let K be an imaginary quadratic field such that all prime numbers dividing N split
in K. Note right away that, for any given N, there are infinitely many K satisfying this

so-called “Heegner-condition” (which was introduced by Birch). It implies that there
exists an ideal n of the ring of integers ox such that one has ox /n = Z/NZ.

More explicitly, let D be the discriminant of K and let v/D be the square root of D
which belongs to ‘H. Then o = Z + Za and n = NZ + Za, with o = % such that
o’ + Ba+ AN =0 and B> —4AN = D. Or again, ox = Z+Z¥4, n"! =Z 4+ Z2.

For every f > 1 relatively prime to N, we write oy = Z + fox for the order of
conductor f in K. Its discriminant is Dy = Df?. And we put ny = oy Nn. Since
(f,N) =1, ny is a proper oy-ideal, that is to say, oy = {x € K | zny Cns}.

More explicitly, we have that oy = Z 4+ Zay and ny = NZ + Zay for ay = fa. Thus

ap = ZANVPL 02 L Brag+ ApN = 0 with By = fB, Af = f2A, B2 —4A;N = Dy =
f2D. oragain,of=z+zNa—‘;f=z+z%, n;1=z+zz—§=z+z%.

Given our choice of n, the Heegner point yy of conductor f on Yy(N) is defined to be
the point represented by the isogeny [C/o; — C/n~!] which is induced by the identity
on C. Its image m4(ys) € A(K) is called the Heegner point of conductor f on A.

The point wy(yy) is represented by the dual isogeny

fA

(07

NfA

[C/n~t — CJos] = [C/z +2:5 — ¢z 2=,

which is induced by multiplication by N. The point wx(yy) therefore corresponds to the

point T'o(N) - 74 of To(N)\'H, where 7 = —% = f(B;i]\}/ﬁ).

1.3 The field of definition K of y; — and therefore also that of w4 (ys) — is the field

generated over K by the j-invariants of elliptic curves with complex multiplication by the
order oy. It is the ring class field of conductor f of K, i.e., the abelian extension of K

which is unramified outside of f and in which a prime ideal of K not dividing f is totally
split if and only if it is not only principal, but can be generated by an element which,
modulo f, is congruent to a rational number.

If f and f’ are relatively prime, then K and K are linearly disjoint over the Hilbert
class field K; of K. Also, Ky is the compositum of K; and K. The same holds true

for the rings of integers.
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1.4 We can now state our main finiteness result, in which NV > 1 is a fixed positive
integer, D varies over the discriminants of imaginary quadratic fields K satisfying the
Heegner condition of 1.2, and f varies over positive integers prime to V.

1.5 Theorem. There are only a finite number of pairs (D, f) as above such that the

point wa(ys) € A(Ky) is a torsion point.

2. The first finiteness result
Theorem 1.5 will result from a quantitative version of the following proposition—see 3.3

below. Proposition 2.1 has already been used in the literature—see [3].

2.1 Proposition. There exists fy > 0, depending on the level N and the discriminant
D, such that for every f > fo relatively prime to N, the point wa(ys) € A(Ky) is a point
of infinite order on the abelian variety A.

The proof proceeds in three steps, 2.2 — 2.4.
2.2 Let Ko = Uf21 K. We show that the subgroup of torsion points A(Kso)tors iS

finite.
Let ¢ be a prime number which is inert in K. Every prime ideal A of K¢ above ¢ has

norm N = ¢2. — In fact, writing f = ¢*f’ with f’ not divisible by ¢ one sees that the
prime divisors of fog, are totally ramified in Ky /K and fog splits completely in K.

Since ¢ does not divide N (the primes dividing N split in K), the abelian variety A,
as any quotient of Jo(NV), has good reduction at A, and for every f > 1 prime to N the

torsion subgroup of order prime to £ of A(K ) reduces injectively modulo A. This gives
card (A(K;)pon=*) | card(A5(F2)).
Taking a second prime ¢, distinct from £, which remains in K we see that
card (A(Ky )tors) | card(ZA(ng)) -card(gx (Fy2)[0%]),
where the suffix [¢°°] signifies taking the ¢-primary part. This proves 2.2.

2.3 Over C, 74 lifts to a holomorphic mapping F' on the completed upper half-plane.
H U Pl (Q) i) Cdim A

1 1
Do(N)\HUPHQ) — A(C) CamA/A

IR
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We fix F by requiring that F'(co) = 0. Then, for every m > 1, there exists M, € R such
that for all 7 € H with Im(7) > M,, we have:

1
0<||F < — inf .
IF@Il < — inf bl

2.4 We now conclude the proof of proposition 2.1 first under the additional hypothesis
that the Fricke involution wy induces an automorphism of A: According to 2.2, put

m = card(A(Koo)mrs), and pick M,, for this choice of m as in 2.3. Let fy = lgl—]}mem.

Then we find, in the notation introduced at the end of 1.2 above, that for every integer

/2
f greater than fy and prime to N one has Im(77) = % > M,,. 2.3 now ensures that
the point ma(wn(yyr)) € A(Ky), which corresponds to F(7y), is not an m-torsion point

of A. In view of our choice of m it has to be of infinite order. Since the involution wy
induces an automorphism of A, the same holds for the Heegner point w4 (yy) itself.

Finally, in order to prove the proposition for an arbitrary quotient A of Jy(N),
not necessarily invariant under wy, one only has to modify the preceding argument
by applying 2.3 to wx(A) rather than A.

2.5 Remarks. (1) For f as above, put Gy = Gal(K;/K). Assume that A is of dimension

1, i.e., a (modular) elliptic curve. For a ring class character x € C:';v of conductor dividing
f, we define the L-function of A twisted by x by the following Euler product, which
converges for Re(s) > 3/2.

L(A/K,x,s) = [] det(1 —Frob, - x(Frob,)Np~* | Vi(A)7,) "

pCok
Here, Frob, denotes the arithmetic Frobenius, and we put x(Frob,) = 0 for p | f. It
follows from the Heegner condition of 1.2 that the order of L(A/K,x,s) at s = 1 is
odd and therefore that L(E/K, x,1) = 0. Write ( , ); for the sesquilinear extension
to A(Ky) ®z C of the canonical Néron-Tate height pairing on A(Ky). Finally, put

ey = #;szgecf x(0)"to. Then the following formula is conjectured to hold, with
the real period wa and some nonzero rational number r = r(D, f).

w

(2.6) L'(A/K,x,1) =7“\/|%| (exyrsexys)y

In the particular case where f = 1, this is the well-known theorem of B.H. Gross and

D. Zagier [4]. The generalization 2.6 is not completely proved yet. Assuming it, our
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theorem shows that, for every sufficiently big f, there is at least one ring class character
X € é\f such that L'(A/K,x,1) # 0. On the other hand, guided by results of Rohrlich’s
[11], one may wonder whether, given K, there are only a finite number of pairs (f, x), with
f > 1 prime to N and x € C/J\f a character of conductor f, such that L'(E/K, x,1) = 0.
(2) The second step in the above proof transfers to our situation (and simplifies) an
argument given in a more general context by S. Bloch and C. Schoen — see [12].

(3) The above proposition generalizes an analogous result proved in a particular case by
P.F. Kur¢anov [6]. The proof given by Kur¢anov is certainly different from ours, but does

rely on similar principles.

3. Effectivity questions
3.1 Tt follows from the Poélya-Vinogradov theorem that we may always find distinct
prime numbers ¢, ¢’ as in 2.2 such that ¢, ¢ < |D|¢ for an absolute constant c¢. This gives

the following bound for m.

S |D|4cdimA

card (A(K e )tors) < CaI‘d(zz[)\(F@))-Card(;[)\/(Fe,z)) < ((€+1)(€I+1))2dimA

3.2 In 2.3, we may always take

for some constant ¢; depending on the map 74. Indeed, a local parameter at oo is given

by 27T and |62i7r7'| — 6—271'11'1’1(7').
3.3 Proof of theorem 1.5. Let us put together 2.4, 3.1 and 3.2. We see that there exists

an absolute constant cy and a constant ¢y depending on A such that for all positive
integers f prime to N and satisfying

2N .
f> |D|—1/2 {Cl +cod1mA10g|D|},

the Heegner point w4(yy) has infinite order in A. For |D| sufficiently big, this inequality
holds for any f > 1. This concludes the proof of theorem 1.5.

4. The anticyclotomic Z,-extension and Mazur’s module of Heegner points

We will now restrict to the case where A/Q is of dimension 1, i.e., A is a (modular)

elliptic curve, assumed to be of conductor N. Let p be a prime number which stays prime
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in K, and such that a, =p+1 — #(flp (Fp)), the eigenvalue of the Hecke-operator T},

on A, is not divisible by p. In other words, assume that p is ordinary for A.

Let Hoo = |J H,, be the anticyclotomic Z,-extension of our fixed imaginary quadratic
field K, i.e., Hy is the unique Z,-extension of K contained in Ky = [JKpns1. We
consider the Heegner points z, = trx ., /m, (a(ypn+1)) € A(Hy) and following Mazur
[9], no. 19, we write £ for the projective limit (with respect to the trace maps) of the
submodules &, of (E(H,,)®Z,)/(torsion) which are generated by all the conjugates of z,.
For n > 2, the points on different levels are linked by the following distribution relations,

which are immediate consequences of [10], p. 430.
tan+1/Hn (Zn-i-l) = QpZp — Zn-—1

Ex is an Iwasawa module, i.e., a finitely generated module over A = Z,[[T']] = Z,[[T]],
where I' = Gal(Ho /K). Moreover, as Mazur observed [9], no. 19, £ is a A-module (in
fact, free) of rank 1 if and only if z,, is a point of infinite order for (any, and thus for all)
n >> 0. Mazur conjectured that this is always the case. Note that this conjecture is a
special instance of the question formulated at the end of remark 2.5(1).

Recall the definitions of the relevant Selmer groups. For any number field F' and any
m > 2, the m-Selmer group of A over F is defined to be the torsion group

Sel, (A/F) = ker(Hl(F, An) — [[H (., A)m).

Via direct limits, we obtain Q,/Z,-modules

Selyee (A/F) =limSel,n (A/F),  Selyse(A/Hoo) = lim Sely (A/ Ho).

4.1 Theorem. If z, is a point of infinite order for n >> 0, then the Selmer group
Selpe (A/K) contains a subgroup isomorphic to Q,/Z,.

The following immediate consequence of this is particularly interesting when the order
of vanishing of L(A/Q, s) at s =1 is at least 2.

4.2 Corollary. Assume that the p-part ILI(A/K)(p>) of the Tate-Safarevic group of A
over K is finite and that z, is a point of infinite order for n >> 0. Then dim A(K)®Q > 1.
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4.3 Proof of theorem 4.1 (argument suggested by K. Rubin). Put Heo = 1i_)m€n ®Qp/Zyp.

By the assumption of the theorem, £ is a rank one A-module, so its coinvariants (oo )r
admit a quotient isomorphic to Z,. Therefore the invariants HL C Sel,=(A/Ho)! C
H'(H, Apoc)F contain a copy of Q,/Z,. However, in our case the p™-Selmer group
along the anticyclotomic extension is “controlled” in the sense that the canonical map
Sely (A/K) — Sely~(A/Ho)' has finite kernel and cokernel. This control can be
wielded locally, the only interesting place being at p. More precisely, write the local

descent sequences

~

0— A(H))©Qu/Zy — H((H)pA) — (AH))9Z,) — 0
T T T
0— AK)) @ Q/Z —  H(K)yAx) —  (A(K),)©2,) — 0

where the last vertical arrow is given by the dual of the trace map on local points. Its
kernel is bounded independently of n since p is ordinary for A and thus the universal

local traces have finite index in the local points A((K'),). This control theorem is due to
Mazur [8]; for our situation see Manin [7], Thm. 4.5 together with Cor. 4.11(a).

4.4 Remarks. (1) Bertolini [1] (see also [2]) has established an Iwasawa theoretic analogue
of Kolyvagin’s method to prove in particular (under additional hypotheses on the prime
p) that, if £ is indeed of rank 1, then it agrees with the dual of the Selmer group up to
a torsion module for which he can exhibit an annihilating power series.

(2) 4.1 provides an example of how the behaviour of higher Heegner points (granting
the non-triviality assumption) govern the arithmetic of E over K, and therefore over Q.
Another striking instance of such a relationship was given by Kolyvagin in [5]. It also

depends on an initial non-triviality conjecture, and is more like an f-adic descent, for
some fixed prime ¢ different from the primes entering into the conductors of the Heegner
points. It would be interesting to be able to combine these two theories.
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