ON THE ASYMPTOTIC BEHAVIOUR OF HEEGNER POINTS

Jan Nekovář \& Norbert Schappacher

Dedicated to Professor Masatoshi Ikeda on the occasion of his $70^{t h}$ birthday

Abstract

We prove that all but finitely many Heegner points on a given modular elliptic curve (or, more generally, on a given quotient of the modular Jacobian variety $J_{0}(N)$) are of infinite order in the Mordell-Weil group where they naturally live, i.e., over the corresponding ring class field.

1. Notations

1.1 Let $N>1$. The quasi-projective curve $Y_{0}(N)$ defined over \mathbf{Q} classifies isogenies $\left[E \xrightarrow{\lambda} E^{\prime}\right]$ of elliptic curves with cyclic kernel $\operatorname{ker} \lambda \cong \mathbf{Z} / N \mathbf{Z}$. Over \mathbf{C}, the isogeny $[\mathbf{C} / \mathbf{Z}+\mathbf{Z} \tau \xrightarrow{[\times N]} \mathbf{C} / \mathbf{Z}+\mathbf{Z} N \tau]$ corresponds to the point $\Gamma_{0}(N) \cdot \tau$ of the quotient $\Gamma_{0}(N) \backslash \mathcal{H}=$ $Y_{0}(N)(\mathbf{C})$ of the complex upper half-plane \mathcal{H}. The dual isogeny $[\mathbf{C} / \mathbf{Z}+\mathbf{Z} N \tau \longrightarrow$ $\mathbf{C} / \mathbf{Z}+\mathbf{Z} \tau]$ induced by the identity on \mathbf{C} corresponds to the point $\Gamma_{0}(N) \cdot w_{N}(\tau)$, where $w_{N}(\tau)=\frac{-1}{N \tau}$ denotes the Fricke involution.

We write as usual $X_{0}(N)$ for the smooth projective curve defined over \mathbf{Q} which is the compactification of $Y_{0}(N)$ and classifies cyclic N-isogenies between generalized elliptic curves. And we denote by $J_{0}(N)$ the Jacobian of $X_{0}(N)$. We embed $X_{0}(N)$ in $J_{0}(N)$ by sending ∞ to 0 , where ∞ is the cusp corresponding to the Néron polygon with a single side.

Finally, we fix a nonzero quotient defined over $\mathbf{Q}, J_{0}(N) \longrightarrow A$ of the abelian variety $J_{0}(N)$, and we let $X_{0}(N) \xrightarrow{\pi_{A}} A$ be the nonconstant morphism defined over \mathbf{Q} which arises from composing the fixed embedding of $X_{0}(N)$ into $J_{0}(N)$ with the projection of $J_{0}(N)$ onto A. The following results will therefore apply in particular to the case of a (modular) elliptic curve A over \mathbf{Q}.

NEKOVÁŘ, SCHAPPACHER

1.2 Let K be an imaginary quadratic field such that all prime numbers dividing N split in K. Note right away that, for any given N, there are infinitely many K satisfying this so-called "Heegner-condition" (which was introduced by Birch). It implies that there exists an ideal \mathfrak{n} of the ring of integers \mathfrak{o}_{K} such that one has $\mathfrak{o}_{K} / \mathfrak{n} \cong \mathbf{Z} / N \mathbf{Z}$.

More explicitly, let D be the discriminant of K and let \sqrt{D} be the square root of D which belongs to \mathcal{H}. Then $\mathfrak{o}_{K}=\mathbf{Z}+\mathbf{Z} \alpha$ and $\mathfrak{n}=N \mathbf{Z}+\mathbf{Z} \alpha$, with $\alpha=\frac{-B+\sqrt{D}}{2}$ such that $\alpha^{2}+B \alpha+A N=0$ and $B^{2}-4 A N=D$. Or again, $\mathfrak{o}_{K}=\mathbf{Z}+\mathbf{Z} \frac{N A}{\alpha}, \mathfrak{n}^{-1}=\mathbf{Z}+\mathbf{Z} \frac{A}{\alpha}$.

For every $f \geq 1$ relatively prime to N, we write $\mathfrak{o}_{f}=\mathbf{Z}+f \mathfrak{o}_{K}$ for the order of conductor f in K. Its discriminant is $D_{f}=D f^{2}$. And we put $\mathfrak{n}_{f}=\mathfrak{o}_{f} \cap \mathfrak{n}$. Since $(f, N)=1, \mathfrak{n}_{f}$ is a proper \mathfrak{o}_{f}-ideal, that is to say, $\mathfrak{o}_{f}=\left\{x \in K \mid x \mathfrak{n}_{f} \subseteq \mathfrak{n}_{f}\right\}$.

More explicitly, we have that $\mathfrak{o}_{f}=\mathbf{Z}+\mathbf{Z} \alpha_{f}$ and $\mathfrak{n}_{f}=N \mathbf{Z}+\mathbf{Z} \alpha_{f}$ for $\alpha_{f}=f \alpha$. Thus $\alpha_{f}=\frac{-B_{f}+\sqrt{D_{f}}}{2}, \alpha_{f}^{2}+B_{f} \alpha_{f}+A_{f} N=0$ with $B_{f}=f B, A_{f}=f^{2} A, B_{f}^{2}-4 A_{f} N=D_{f}=$ $f^{2} D$. Or again, $\mathfrak{o}_{f}=\mathbf{Z}+\mathbf{Z} \frac{N A_{f}}{\alpha_{f}}=\mathbf{Z}+\mathbf{Z} \frac{N f A}{\alpha}, \mathfrak{n}_{f}^{-1}=\mathbf{Z}+\mathbf{Z} \frac{A_{f}}{\alpha_{f}}=\mathbf{Z}+\mathbf{Z} \frac{f A}{\alpha}$.

Given our choice of \mathfrak{n}, the Heegner point y_{f} of conductor f on $Y_{0}(N)$ is defined to be the point represented by the isogeny $\left[\mathbf{C} / \mathfrak{o}_{f} \longrightarrow \mathbf{C} / \mathfrak{n}^{-1}\right]$ which is induced by the identity on C. Its image $\pi_{A}\left(y_{f}\right) \in A\left(K_{f}\right)$ is called the Heegner point of conductor f on A.
The point $w_{N}\left(y_{f}\right)$ is represented by the dual isogeny

$$
\left[\mathbf{C} / \mathfrak{n}^{-1} \longrightarrow \mathbf{C} / \mathfrak{o}_{f}\right]=\left[\mathbf{C} / \mathbf{Z}+\mathbf{Z} \frac{f A}{\alpha} \longrightarrow \mathbf{C} / \mathbf{Z}+\mathbf{Z} \frac{N f A}{\alpha}\right]
$$

which is induced by multiplication by N. The point $w_{N}\left(y_{f}\right)$ therefore corresponds to the point $\Gamma_{0}(N) \cdot \tau_{f}$ of $\Gamma_{0}(N) \backslash \mathcal{H}$, where $\tau_{f}=-\frac{f A}{\alpha}=\frac{f(B+\sqrt{D})}{2 N}$.
1.3 The field of definition K_{f} of y_{f} — and therefore also that of $\pi_{A}\left(y_{f}\right)$ — is the field generated over K by the j-invariants of elliptic curves with complex multiplication by the order \mathfrak{o}_{f}. It is the ring class field of conductor f of K, i.e., the abelian extension of K which is unramified outside of f and in which a prime ideal of K not dividing f is totally split if and only if it is not only principal, but can be generated by an element which, modulo f, is congruent to a rational number.

If f and f^{\prime} are relatively prime, then K_{f} and $K_{f^{\prime}}$ are linearly disjoint over the Hilbert class field K_{1} of K. Also, $K_{f f^{\prime}}$ is the compositum of K_{f} and $K_{f^{\prime}}$. The same holds true for the rings of integers.

NEKOVÁŘ, SCHAPPACHER

1.4 We can now state our main finiteness result, in which $N>1$ is a fixed positive integer, D varies over the discriminants of imaginary quadratic fields K satisfying the Heegner condition of 1.2 , and f varies over positive integers prime to N.
1.5 Theorem. There are only a finite number of pairs (D, f) as above such that the point $\pi_{A}\left(y_{f}\right) \in A\left(K_{f}\right)$ is a torsion point.

2. The first finiteness result

Theorem 1.5 will result from a quantitative version of the following proposition-see 3.3 below. Proposition 2.1 has already been used in the literature - see [3].
2.1 Proposition. There exists $f_{0}>0$, depending on the level N and the discriminant D, such that for every $f>f_{0}$ relatively prime to N, the point $\pi_{A}\left(y_{f}\right) \in A\left(K_{f}\right)$ is a point of infinite order on the abelian variety A.

The proof proceeds in three steps, $2.2-2.4$.
2.2 Let $K_{\infty}=\bigcup_{f \geq 1} K_{f}$. We show that the subgroup of torsion points $A\left(K_{\infty}\right)_{\text {tors }}$ is finite.
Let ℓ be a prime number which is inert in K. Every prime ideal λ of K_{f} above ℓ has norm $\mathbf{N} \lambda=\ell^{2}$. - In fact, writing $f=\ell^{a} f^{\prime}$ with f^{\prime} not divisible by ℓ one sees that the prime divisors of $\ell \mathfrak{o}_{K_{1}}$ are totally ramified in $K_{\ell^{a}} / K_{1}$ and $\ell \mathfrak{o}_{K}$ splits completely in $K_{f^{\prime}}$.

Since ℓ does not divide N (the primes dividing N split in K), the abelian variety A, as any quotient of $J_{0}(N)$, has good reduction at λ, and for every $f \geq 1$ prime to N the torsion subgroup of order prime to ℓ of $A\left(K_{f}\right)$ reduces injectively modulo λ. This gives

$$
\operatorname{card}\left(A\left(K_{f}\right)_{\text {tors }}^{\text {non }-\ell}\right) \mid \operatorname{card}\left(\widetilde{A}_{\lambda}\left(\mathbf{F}_{\ell^{2}}\right)\right)
$$

Taking a second prime ℓ^{\prime}, distinct from ℓ, which remains in K we see that

$$
\operatorname{card}\left(A\left(K_{f}\right)_{\text {tors }}\right) \mid \operatorname{card}\left(\widetilde{A}_{\lambda}\left(\mathbf{F}_{\ell^{2}}\right)\right) \cdot \operatorname{card}\left(\widetilde{A}_{\lambda^{\prime}}\left(\mathbf{F}_{\ell^{\prime 2}}\right)\left[\ell^{\infty}\right]\right)
$$

where the suffix $\left[\ell^{\infty}\right]$ signifies taking the ℓ-primary part. This proves 2.2.
2.3 Over \mathbf{C}, π_{A} lifts to a holomorphic mapping F on the completed upper half-plane.

$$
\begin{array}{cllc}
\mathcal{H} \cup \mathbf{P}^{1}(\mathbf{Q}) & \xrightarrow{F} & & \mathbf{C}^{\operatorname{dim} A} \\
\downarrow & & & \downarrow \\
\Gamma_{0}(N) \backslash \mathcal{H} \cup \mathbf{P}^{1}(\mathbf{Q}) & \xrightarrow{\pi_{A}} & A(\mathbf{C}) & \cong
\end{array} \mathbf{C}^{\operatorname{dim} A} / \Lambda ~ \$
$$

NEKOVÁŘ, SCHAPPACHER

We fix F by requiring that $F(\infty)=0$. Then, for every $m \geq 1$, there exists $M_{m} \in \mathbf{R}$ such that for all $\tau \in \mathcal{H}$ with $\operatorname{Im}(\tau)>M_{m}$ we have:

$$
0<\|F(\tau)\|<\frac{1}{m} \inf _{0 \neq \gamma \in \Lambda}\|\gamma\|
$$

2.4 We now conclude the proof of proposition 2.1 first under the additional hypothesis that the Fricke involution w_{N} induces an automorphism of A : According to 2.2 , put $m=\operatorname{card}\left(A\left(K_{\infty}\right)_{\text {tors }}\right)$, and pick M_{m} for this choice of m as in 2.3. Let $f_{0}=\frac{2 N}{|D|^{1 / 2}} M_{m}$. Then we find, in the notation introduced at the end of 1.2 above, that for every integer f greater than f_{0} and prime to N one has $\operatorname{Im}\left(\tau_{f}\right)=\frac{f|D|^{1 / 2}}{2 N}>M_{m} .2 .3$ now ensures that the point $\pi_{A}\left(w_{N}\left(y_{f}\right)\right) \in A\left(K_{f}\right)$, which corresponds to $F\left(\tau_{f}\right)$, is not an m-torsion point of A. In view of our choice of m it has to be of infinite order. Since the involution w_{N} induces an automorphism of A, the same holds for the Heegner point $\pi_{A}\left(y_{f}\right)$ itself.

Finally, in order to prove the proposition for an arbitrary quotient A of $J_{0}(N)$, not necessarily invariant under w_{N}, one only has to modify the preceding argument by applying 2.3 to $w_{N}(A)$ rather than A.
2.5 Remarks. (1) For f as above, put $G_{f}=\operatorname{Gal}\left(K_{f} / K\right)$. Assume that A is of dimension 1, i.e., a (modular) elliptic curve. For a ring class character $\chi \in \widehat{G_{f}}$ of conductor dividing f, we define the L-function of A twisted by χ by the following Euler product, which converges for $\operatorname{Re}(s)>3 / 2$.

$$
L(A / K, \chi, s)=\prod_{\mathfrak{p} \subset \mathfrak{o}_{K}} \operatorname{det}\left(1-\operatorname{Frob}_{\mathfrak{p}} \cdot \chi\left(\operatorname{Frob}_{\mathfrak{p}}\right) \mathbf{N p}^{-s} \mid V_{l}(A)_{I_{\mathfrak{p}}}\right)^{-1}
$$

Here, Frob $_{\mathfrak{p}}$ denotes the arithmetic Frobenius, and we put $\chi\left(\operatorname{Frob}_{\mathfrak{p}}\right)=0$ for $\mathfrak{p} \mid f$. It follows from the Heegner condition of 1.2 that the order of $L(A / K, \chi, s)$ at $s=1$ is odd and therefore that $L(E / K, \chi, 1)=0$. Write \langle,\rangle_{f} for the sesquilinear extension to $A\left(K_{f}\right) \otimes_{\mathbf{z}} \mathbf{C}$ of the canonical Néron-Tate height pairing on $A\left(K_{f}\right)$. Finally, put $e_{\chi}=\frac{1}{\# G_{f}} \sum_{\sigma \in G_{f}} \chi(\sigma)^{-1} \sigma$. Then the following formula is conjectured to hold, with the real period ω_{A} and some nonzero rational number $r=r(D, f)$.

$$
\begin{equation*}
L^{\prime}(A / K, \chi, 1)=r \frac{\omega_{A}}{\sqrt{|D|}}\left\langle e_{\chi} y_{f}, e_{\chi} y_{f}\right\rangle_{f} \tag{2.6}
\end{equation*}
$$

In the particular case where $f=1$, this is the well-known theorem of B.H. Gross and D. Zagier [4]. The generalization 2.6 is not completely proved yet. Assuming it, our

NEKOVÁŘ, SCHAPPACHER

theorem shows that, for every sufficiently big f, there is at least one ring class character $\chi \in \widehat{G_{f}}$ such that $L^{\prime}(A / K, \chi, 1) \neq 0$. On the other hand, guided by results of Rohrlich's [11], one may wonder whether, given K, there are only a finite number of pairs (f, χ), with $f \geq 1$ prime to N and $\chi \in \widehat{G_{f}}$ a character of conductor f, such that $L^{\prime}(E / K, \chi, 1)=0$.
(2) The second step in the above proof transfers to our situation (and simplifies) an argument given in a more general context by S. Bloch and C. Schoen - see [12].
(3) The above proposition generalizes an analogous result proved in a particular case by P.F. Kurčanov [6]. The proof given by Kurčanov is certainly different from ours, but does rely on similar principles.

3. Effectivity questions

3.1 It follows from the Pólya-Vinogradov theorem that we may always find distinct prime numbers ℓ, ℓ^{\prime} as in 2.2 such that $\ell, \ell^{\prime}<|D|^{c}$ for an absolute constant c. This gives the following bound for m.

$$
\operatorname{card}\left(A\left(K_{\infty}\right)_{\text {tors }}\right) \leq \operatorname{card}\left(\widetilde{A}_{\lambda}\left(\mathbf{F}_{\ell^{2}}\right)\right) \cdot \operatorname{card}\left(\widetilde{A}_{\lambda^{\prime}}\left(\mathbf{F}_{\ell^{\prime 2}}\right)\right) \leq\left((\ell+1)\left(\ell^{\prime}+1\right)\right)^{2 \operatorname{dim} A} \leq|D|^{4 c \operatorname{dim} A}
$$

3.2 In 2.3, we may always take

$$
M_{m}=c_{1}+\frac{\log (m)}{2 \pi}
$$

for some constant c_{1} depending on the map π_{A}. Indeed, a local parameter at ∞ is given by $e^{2 i \pi \tau}$, and $\left|e^{2 i \pi \tau}\right|=e^{-2 \pi \operatorname{Im}(\tau)}$.
3.3 Proof of theorem 1.5. Let us put together 2.4, 3.1 and 3.2. We see that there exists an absolute constant c_{0} and a constant c_{1} depending on A such that for all positive integers f prime to N and satisfying

$$
f>\frac{2 N}{|D|^{1 / 2}}\left\{c_{1}+c_{0} \operatorname{dim} A \log |D|\right\}
$$

the Heegner point $\pi_{A}\left(y_{f}\right)$ has infinite order in A. For $|D|$ sufficiently big, this inequality holds for any $f \geq 1$. This concludes the proof of theorem 1.5.

4. The anticyclotomic Z_{p}-extension and Mazur's module of Heegner points

We will now restrict to the case where A / \mathbf{Q} is of dimension 1, i.e., A is a (modular) elliptic curve, assumed to be of conductor N. Let p be a prime number which stays prime

NEKOVÁŘ, SCHAPPACHER

in K, and such that $a_{p}=p+1-\#\left(\tilde{A}_{p}\left(\mathbf{F}_{p}\right)\right)$, the eigenvalue of the Hecke-operator T_{p} on A, is not divisible by p. In other words, assume that p is ordinary for A.

Let $H_{\infty}=\bigcup H_{n}$ be the anticyclotomic \mathbf{Z}_{p}-extension of our fixed imaginary quadratic field K, i.e., H_{∞} is the unique $\mathbf{Z}_{p^{-}}$extension of K contained in $K_{p^{\infty}}=\bigcup K_{p^{n+1}}$. We consider the Heegner points $z_{n}=\operatorname{tr}_{K_{p^{n+1}} / H_{n}}\left(\pi_{A}\left(y_{p^{n+1}}\right)\right) \in A\left(H_{n}\right)$ and following Mazur [9], no. 19, we write \mathcal{E}_{∞} for the projective limit (with respect to the trace maps) of the submodules \mathcal{E}_{n} of $\left(E\left(H_{n}\right) \otimes \mathbf{Z}_{p}\right) /($ torsion $)$ which are generated by all the conjugates of z_{n}. For $n \geq 2$, the points on different levels are linked by the following distribution relations, which are immediate consequences of [10], p. 430.

$$
\operatorname{tr}_{H_{n+1} / H_{n}}\left(z_{n+1}\right)=a_{p} z_{n}-z_{n-1}
$$

\mathcal{E}_{∞} is an Iwasawa module, i.e., a finitely generated module over $\Lambda=\mathbf{Z}_{p}[[\Gamma]]=\mathbf{Z}_{p}[[T]]$, where $\Gamma=\operatorname{Gal}\left(H_{\infty} / K\right)$. Moreover, as Mazur observed [9], no. 19, \mathcal{E}_{∞} is a Λ-module (in fact, free) of rank 1 if and only if z_{n} is a point of infinite order for (any, and thus for all) $n \gg 0$. Mazur conjectured that this is always the case. Note that this conjecture is a special instance of the question formulated at the end of remark 2.5(1).

Recall the definitions of the relevant Selmer groups. For any number field F and any $m \geq 2$, the m-Selmer group of A over F is defined to be the torsion group

$$
\operatorname{Sel}_{m}(A / F)=\operatorname{ker}\left(H^{1}\left(F, A_{m}\right) \longrightarrow \prod_{v} H^{1}\left(F_{v}, A\right)_{m}\right)
$$

Via direct limits, we obtain $\mathbf{Q}_{p} / \mathbf{Z}_{p}$-modules

$$
\operatorname{Sel}_{p^{\infty}}(A / F)=\lim _{\rightarrow} \operatorname{Sel}_{p^{n}}(A / F), \quad \operatorname{Sel}_{p^{\infty}}\left(A / H_{\infty}\right)=\lim _{\rightarrow} \operatorname{Sel}_{p^{\infty}}\left(A / H_{n}\right)
$$

4.1 Theorem. If z_{n} is a point of infinite order for $n \gg 0$, then the Selmer group $\operatorname{Sel}_{p \infty}(A / K)$ contains a subgroup isomorphic to $\mathbf{Q}_{p} / \mathbf{Z}_{p}$.

The following immediate consequence of this is particularly interesting when the order of vanishing of $L(A / \mathbf{Q}, s)$ at $s=1$ is at least 2 .
4.2 Corollary. Assume that the p-part $\amalg(A / K)\left(p^{\infty}\right)$ of the Tate-Šafarevič group of A over K is finite and that z_{n} is a point of infinite order for $n \gg 0$. Then $\operatorname{dim} A(K) \otimes \mathbf{Q} \geq 1$.

NEKOVÁŘ, SCHAPPACHER

4.3 Proof of theorem 4.1 (argument suggested by K. Rubin). Put $\mathcal{H}_{\infty}=\lim _{\rightarrow} \mathcal{E}_{n} \otimes \mathbf{Q}_{p} / \mathbf{Z}_{p}$. By the assumption of the theorem, \mathcal{E}_{∞} is a rank one Λ-module, so its coinvariants $\left(\mathcal{E}_{\infty}\right)_{\Gamma}$ admit a quotient isomorphic to \mathbf{Z}_{p}. Therefore the invariants $\mathcal{H}_{\infty}^{\Gamma} \subset \operatorname{Sel}_{p \infty}\left(A / H_{\infty}\right)^{\Gamma} \subset$ $H^{1}\left(H_{\infty}, A_{p^{\infty}}\right)^{\Gamma}$ contain a copy of $\mathbf{Q}_{p} / \mathbf{Z}_{p}$. However, in our case the p^{∞}-Selmer group along the anticyclotomic extension is "controlled" in the sense that the canonical map $\operatorname{Sel}_{p^{\infty}}(A / K) \longrightarrow \operatorname{Sel}_{p^{\infty}}\left(A / H_{\infty}\right)^{\Gamma}$ has finite kernel and cokernel. This control can be wielded locally, the only interesting place being at p. More precisely, write the local descent sequences

$$
\left.\begin{array}{ccc}
0 \longrightarrow & A\left(\left(H_{n}\right)_{p}\right) \otimes \mathbf{Q}_{p} / \mathbf{Z}_{p} \longrightarrow & H^{1}\left(\left(H_{n}\right)_{p}, A_{p \infty}\right) \longrightarrow \\
\uparrow & \uparrow & \left(A\left(\left(H_{n}\right)_{p}\right) \otimes \mathbf{Z}_{p}\right) \longrightarrow \\
\uparrow \longrightarrow & A\left((K)_{p}\right) \otimes \mathbf{Q}_{p} / \mathbf{Z}_{p} \longrightarrow & H^{1}\left((K)_{p}, A_{p \infty}\right) \longrightarrow
\end{array} \begin{array}{cc}
\uparrow & \left(A\left((K)_{p}\right) \otimes \mathbf{Z}_{p}\right) \longrightarrow
\end{array}\right)
$$

where the last vertical arrow is given by the dual of the trace map on local points. Its kernel is bounded independently of n since p is ordinary for A and thus the universal local traces have finite index in the local points $A\left((K)_{p}\right)$. This control theorem is due to Mazur [8]; for our situation see Manin [7], Thm. 4.5 together with Cor. 4.11(a).
4.4 Remarks. (1) Bertolini [1] (see also [2]) has established an Iwasawa theoretic analogue of Kolyvagin's method to prove in particular (under additional hypotheses on the prime p) that, if \mathcal{E}_{∞} is indeed of rank 1 , then it agrees with the dual of the Selmer group up to a torsion module for which he can exhibit an annihilating power series.
(2) 4.1 provides an example of how the behaviour of higher Heegner points (granting the non-triviality assumption) govern the arithmetic of E over K, and therefore over \mathbf{Q}. Another striking instance of such a relationship was given by Kolyvagin in [5]. It also depends on an initial non-triviality conjecture, and is more like an ℓ-adic descent, for some fixed prime ℓ different from the primes entering into the conductors of the Heegner points. It would be interesting to be able to combine these two theories.

References

[1] M. Bertolini, Selmer groups and Heegner points in anticyclotomic \mathbf{Z}_{p}-extensions, Compositio Math. 99 (1995), 153-182
[2] M. Bertolini, Growth of Mordell-Weil groups in anticyclotomic towers; in: Arithmetic geometry (Cortona, 1994; F. Catanese, ed.), Sympos. Math., XXXVII, Cambridge Univ. Press, Cambridge, 1997, pp. 23-44

NEKOVÁŘ, SCHAPPACHER

[3] M. Bertolini and H. Darmon, Non-triviality of families of Heegner points and ranks of Selmer groups over anticyclotomic towers. J. Ramanujan Math. Soc. 13 (1998), 15-24
[4] B.H. Gross and D. Zagier, Heegner points and the derivatives of L-series, Inventiones Math. 84 (1986), 225-320
[5] V.A. Kolyvagin, On the structure of Selmer groups, Mathematische Annalen 291 (1991), 253-259
[6] P.F. Kurčanov, Elliptic Curves of infinite rank over Γ-extensions, Math. USSR Sbornik 19 (1973), 320-324
[7] Yu. Manin, Krugovye polja i moduljarnye krivye, Uspechi Mat. Nauk, 26 (1971), 7-71. English translation: Cyclotomic fields and modular curves, Russian Math. Surveys 26, no. 6 (1971), 7-78
[8] B. Mazur, Rational points on abelian varieties with values in towers of number fields, Inventiones Math. 18 (1972), 183-266
[9] B. Mazur, Modular Curves and Arithmetic, Proc. ICM Warszawa 1983, vol. I, pp. 185-211
[10] B. Perrin-Riou, Fonctions L p-adiques, théorie d'Iwasawa et points de Heegner, Bull. Soc. Math. France 115 (1987), 399-456
[11] D. Rohrlich, Nonvanishing of L-functions for GL(2), Inventiones Math. 97 (1989), 381-403
[12] C. Schoen, Complex multiplication cycles on elliptic modular threefolds, Duke Math. J. 53 (1986), 771-794

Jan NEKOVÁŘ

Received 24.11.1998

D.P.M.M.S.

University of Cambridge
16 Mill Lane
Cambridge CB2 1SB, UK
nekovar@dpmms.cam.ac.uk

Norbert SCHAPPACHER

U.F.R. de mathématique et d'informatique

Université Louis Pasteur
7, rue René Descartes 67084 Strasbourg Cedex, France
schappa@math.u-strasbg.fr

