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Introduction

This paper consists of two parts, a Text and an Appendix. In (T), we consider

a single example, i.e., a plane curve X:y4 = x4 � `2 , ` being an odd prime, de�ne the

Shafarevich-Tate set W(X=Q) without using p-adic numbers and determine its structure.

In (A), we take for X a quasi projective algebraic variety de�ned over a number �eld k

and de�ne the Shafarevich-Tate set W(X=k) by conventional mode of Galois cohomology.

Two de�nitions are the same, of course. In (A), we assume the existence of a �nite Galois

extension K/k so that every k -automorphism of X is already a K-automorphism. The

example in (T) satis�es this assumption with K = Q(i;
p
2;
p
`). Since the example is

so special, we can show that W(X=Q) = 1 (Hasse principle). In a certain sense, (T) is

much deeper than (A); (T) should be regarded as a torchlight for further research in the

framework (A), especially for an algebraic curve X of genus � 2 de�ned over a number

�eld k because the �niteness of W(X=k) is guaranteed by Hurwitz theorem.

1. Structure of automorphism group over C.

First of all, we must review some necessary facts on the curve

X : y4 = x4 � `2; ` = an odd prime (1.1)
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Since the projective equation of (1.1) is diagonal, X represents a smooth curve in P 2(C),

the complex projective plane. As the degree of X is 4, its genus g=(4-1)(4-2)/2=3. Let

us denote by Aut X the group of automorphisms of X , i.e., the group of all birational

mappings of X into itself. A good thing about our curve X is that this group is �nite.

This follows from the celebrated theorem due to Hurwitz:

Let X be a smooth curve of genus g � 2 , then AutX is a �nite group of order at most

84(g � 1)� (1.2)

Since our (1.1) has g = 3; #Aut X � 84(3 � 1) = 168. It is interesting that

the de�ning equation (1.1) and the upper bound 168 are suÆcient to determine the �nite

group structure of Aut X:

Let G = Aut X. Then G is a semidirect product G = A �C; A \C = 1;A normal in G,

with A = Z=4Z� Z=4Z; C = S3; the symmetric group on three letters. Consequently,

we have #G = 4 � 4 � 6 = 96 = 25 � 3: (1.3)

In fact, let

" =
1 + ip

2
; � =

p
`�; `� = (�1) `�1

2 `: (1.4)

Consider rational mappings u,v,w,t given by

u(x; y) = (x; iy); v(x; y) = (ix; y);

(1.5)

w(x; y) = (�x=y; `=y); t(x; y) = (�y=(ix); `=("x)):

It is easy to verify that all u; v; w; t belong to Aut X with relations:

u4 = 1; v4 = 1; uv = vu; (1.6)

�As for a proof of (1.2), see, e.g., [2, p.242].

558



ONO

w2 = 1; t3 = 1; wt = t2w; tw = wt2; (1.7)

wuw�1 = (uv)�1; wvw�1 = v; tut�1 = v; tvt�1 = (uv)�1: (1.8)

Since u2 6= 1, v2 6= 1, (1.6) means that u and v generate an abelian subgroup A of G of

order 16 which is a direct product of two cyclic subgroups of order 4:

A = hu; vi = hui � hvi = Z=4Z � Z=4Z:y (1.9)

The relation (1.7) shows that C = f1; w; t; t2; wt; twg forms a subgroup of G of order 6

which is isomorphic to S3 :

C = hw; ti = S3; with w = (12); t = (123): (1.10)

The last relation (1.8) shows that A is normal in H = hu; v; w; ti . From (1.5)-(1.10), it

follows that H = A � C; A \ C = 1. Since 2#H = 2 � 96 = 192 > 168, we �nd G=H by

(1.2).

2. Action of the Galois group on Aut X.

Let "; � be the 8th root of unity and the quadratic number, respectively, introduced

in (1.4). Clearly K = Q("; �) is a �nite algebraic extension of degree 8. As is easily seen

it is a Galois extension. The cyclotomic �eld E = Q(") may be written E = Q(i;
p
2);

hence K is the union of three distinct quadratic extensions Q(i);Q(
p
2) and Q(

p
`�).

Therefore the Galois group g = Gal(K=Q) = Z=2Z � Z=2Z � Z=2Z with generators

�; �; � :

i
p
2 " �

� �i p
2 �" �

� i �p2 �" �

� i
p
2 " ��

(2.1)

As we see in (1.5) the generators u, v, w, t of G=Aut X are described as rational

mappings de�ned over K. So the Galois group g acts on Aut X. The following is the

action on the generactors:

y For a group G, we write G = ha; b; c; : : :i if the set fa; b; c; : : :g generates G.
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u v w t

� u�1 v�1 w uv2t

� u v w u2t

� u v v2w v2t

(2.2)

The portion of (2.2) on the abelian subgroup A implies:

a� = a�1; a� = a� = a; a 2 A: (2.3)

In particular,

Ag = the subgroup of �xed points under g = A2: (2.4)

Unlike A the subgroup C is not stable under the action of g . However, (2.2) shows that

g acts trivially on the quotient group G=A: (2.5)

Later we shall �nd useful the following table on C:

1 w wt tw t t2

� 1 w u�1vwt uv2tw uv2t u�1vt2

� 1 w u2v2wt u2tw u2t u2v2t2

� 1 v2w wt u2tw v2t u2t2

(2.6)

Writing g = ac; g 2 G; a 2 A; c 2 C according to the decomposition G = A �C in

(1.3), we have, from (2.4), (2.6):

g� = g () a2 = 1 and c = 1; w() g = a or aw; a2 = 1;

g� = g () c = 1 or w() g 2 hu; v; wi; (2.7)

g� = g () c = 1 or wt() g 2 hu; v; wti:
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3. Generators of decomposition groups.

Notation being as in 2, for a prime p in Q let P be a prime in K = Q("; �) which

divides p . We shall denote by gp the decomposition group of P , i.e., the the subgroup

of g = Gal(K=Q) formed by all s 2 g such that Ps = P . Since g is abelian, gp does

not depend on the choice of P . As usual, we write ep; fp , for the rami�cation index,

residue class degree, respectively, of p for the extension K=Q ; hence #gp = epfp and

gp = #(g=gp) = the number of distinct prime factors of p in K . It is very important to

know generators of gp for each p.

Let E = Q(") = Q(i;
p
2); L = Q(�) = Q(

p
`�). Then K is the composite of

E;L : K = EL; and E and L are linearly disjoint over Q.

p E

K

Q

P

p

L P

�
�

@
@

@
@
@

�
�

@
@
@
@
@

Suppose P divides primes p , P in E;L , respectively, as the picture shows. From (2.1)

we see that L;E correspond to subgroups h�; � i; h�i , respectively, in the sense of Galois

theory. We summarize here the mode of decomposition of p in E and L :

Case E=Q .

p e(pjp) f(pjp) g(pjp)
2 4 1 1

p � 1 mod 8 1 1 4

p � 3; 5; 7 mod 8 1 2 2

(3.1)

Case L=Q .
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p e(P jp) f(P jp) g(P jp)
` 2 1 1

2 `� � 1 mod 8 1 1 2

2 `� � 5 mod 8 1 2 1

p (`�=p) = 1 1 1 2

p (`�=p) = �1 1 2 1

(3.2)

Now, back to the composite K = EL , when we �x a prime p of Q, we shall use

Z for the decomposition group gp and T for the inertia group for p . Thus, T = 1 if

and only if ep = e(Pjp) = 1 and in that case Z is a cyclic group of order fp = f(Pjp)
generated by the Frobenius automorphism (K=Q; p): As usual, we denote by KZ , KT

the corresponding �elds in the sense of Galois theory.

To determine the structure of gp = Z , we shall consider the three cases separately.

Case 1. p 6= 2; ` .

Since p is unrami�ed in both of E;L by (3.1), (3.2), so is in K ; hence T = 1, and

Z is cyclic. As g = Z=2Z� Z=2Z� Z=2Z;#Z = 1 or 2. Now we have

#Z = 1 () p splits completely for K/Q

() p splits completely for E/Q and L/Q

Therefore, by (3.1), (3.2), we have

#Z = 1() p � 1 mod 8 and (`�=p) = 1: (3.3)

and hence

#Z = 2() p 6� 1 mod 8 or (`�=p) = �1: (3.4)

In Case 1, we have Z = h(K=Q; p)i because the Frobenius automorphism is the generator

of Z :

gp = h(K=Q; p)i; p 6= 2; `: (3.5)
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Conversely, for any s 2 g , with s2 = 1, there is a prime p 6= 2; `; such that (K=Q; p) = s .

Although this follows from Chebotarev density theorem, the following table which results

from (2.1), (3.1), (3.2) reveals the Artin reciprocity for K=Q :

p gp

p � 1 mod 8; (`�=p) = 1 1

p � 1 mod 8; (`�=p) = �1 h�i
p � 5 mod 8; (`�=p) = 1 h� i
p � 5 mod 8; (`�=p) = �1 h��i
p � 3 mod 8; (`�=p) = 1 h�� i
p � 3 mod 8; (`�=p) = �1 h���i
p � 7 mod 8; (`�=p) = 1 h�i
p � 7 mod 8; (`�=p) = �1 h��i

(3.6)

Case 2. p = ` .

From (3.1), (3.2), we have e(pj`) = e(PjP ) = 1, e(P j`) = 2. Hence #T = e` =

e(Pj`) = e(PjP )e(P j`) = 2. Since the quotient group g`=T is cyclic, either g` = T or

[g` : T ] = 2. Now,

` is unrami�ed for E=Q() E � KT () h�i � T: Comparing orders of h�i and
T, we have

T = h�i: (3.7)

Next,

` � 1 mod 8 () ` splits completely in E/Q() E � KZ

() h�i � g` () h�i = g`;

so we have

` � 1 mod 8() g` = T = h�i: (3.8)

Suppose now that ` 6� 1 mod 8. from (3.7) (3.8), we �nd that g` � T = h�i and #g` = 4.

Let F=Q(i); this �eld corresponds to h�; �i . If ` � 5 mod 8, then
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` splits completely in F=Q() F � KZ () h�; �i � g` , and so we have

` � 5 mod 8() g` = h�; �i: (3.9)

Replacing F = Q(i) by Q(
p
2); Q(

p�2), we get statements like (3.9) for the case of

` � 7; 3 mod 8, respectively, and obtain the table:

` g`

` � 1 mod 8 h�i
` � 3 mod 8 h�; �� i
` � 5 mod 8 h�; � i
` � 7 mod 8 h�; �i

(3.10)

Case 3. p=2.

From (3.1), (3.2), we have e(P j2) = e(Pjp) = 1, e(pj2) = 4. Hence #T = 4 =

e2 = e(Pj2) = e(Pjp)e(pj2) = 4. Since 2 is unrami�ed for L=Q , we have L � KT , i.e.,

h�; � i � T . Compairing orders of h�; � i and T, we have

T = h�; � i: (3.11)

Therefore, either g2 = T or g2 = g . Next,

`� � 1 mod 8 () 2 splits completely in L=Q() L � KZ

() h�; � i � g2 () T = g2;

so we obtain the table:

2 g2

`� � 1 mod 8 (` � 1; 7 mod 8) h�; � i
`� � 5 mod 8 (` � 3; 5 mod 8) g

(3.12)

Case 4.p =1
In accordance with the convention, we understand by the decomposition �eld of

p =1 , the maximal real sub�eld Q(
p
2;
p
`) of K. As i� = �i , we have
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g1 = h�i: (3.13)

4. The family H(`).

Having determined generators of gp (p = 1 inclusive), it is natural to introduce

a family H(`) and its subfamily H�(`) of subgroups of g = Gal(K=Q), K = Q("; �),

" = (1 + i)=
p
2, � =

p
`� , as follows.

H(`) = fh � g; h = gp for some p (p =1 inclusive)g; (4.1)

H�(`) = fh 2 H(`); h is maximal g (4.2)

where h is maximal if it is not contained in any group in H(`) other than h itself. The

tables in 3 help us to determine H(`). First of all, from (3.6), we see that, for each

`;H(`) contains a subfamily H0 in common:

H0 = f1; h�i; h� i; h�i; h�� i; h��i; h��i; h���ig (4.3)

Next, using (3.10), (3.12), we obtain the following tables:

` H(`)

` � 1 mod 8 H0; h�; � i
` � 3 mod 8 H0; h��; �i; g
` � 5 mod 8 H0; h�; �i; g
` � 7 mod 8 H0; h��i; h�� i;

(4.4)

` H�(`)

` � 1 mod 8 h�i; h��i; h��i; h���i; h�; � i
` � 3 mod 8 g

` � 5 mod 8 g

` � 7 mod 8 h��i; h���i; h�; � i; h�; �i;

(4.5)
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5. Shafarevich-Tate set for X over Q .

Let G = AutX and g = Gal(K=Q) as in 1,2. We remind the reader the de�nition

of the cohomology set H(g; G). First, we de�ne a cocycle to be a function f : g ! G

which satis�es

f(st) = f(s)f(t)s ; s; t 2 g: (5.1)

We denote by Z(g; G) the set of all cocycles. Two cocycles f; f 0 are equivalent if there

exists g 2 G such that

f 0(s) = g�1f(s)gs : (5.2)

The quotient

H(g; G) = Z(g; G)= � (5.3)

is the cohomology set. Z(g; G) contains a distinguished function 1 given by 1(s) = 1 for

all s 2 g We set

B(g; G) = ff 2 Z(g; G); f � 1g : (5.4)

A function f in (5.4) is a coboundary and, by (5.2),

f is a coboundary () f(s) = g�1gs for some g 2 G: (5.5)

Let h be a subgroup of g . We have the restriction map

rh : H(g; G)! H(h; G) (5.6)

induced by 7�! f jh , f 2 Z(g; G). This mapping sends the distinguished class in H(g; G)

to the one in H(h; G). Hence Ker rh makes sense. If h0 is a subgroup of h then we see

at once that Ker rh � Ker rh0 . Therefore, in view of (4.1), (4.2) the following de�nition

of the Shafarevich-Tate set makes sense:
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W(X=Q) =
\

h2H(`)

Ker rh =
\

h2H�(`)

Ker rh: (5.7)

We haveW(X=Q) = 1 if `� � 5 mod 8: (5.8)

Proof. If `� � 5 mod 8, i.e., if ` � 3; 5 mod 8, then g 2 H�(`) by (4.5). Since rg is the

identity mapping of H(g; G), we �nd W(X=Q) = 1 by the de�nition (5.7), Q.E.D.

Needless to say, the remaining case where `� � 1 mod 8 is more interesting. In

this case, again by (4.5), we have

W(X=Q) =
\
h

Ker rh; h = h�i; h��i; h��i; h���i; h�; � i (5.9)

if ` � 1 mod 8

and

W(X=Q) =
\
h

Ker rh; h = h��i; h���i; h�; � i; h�; �i (5.10)

if ` � 7 mod 8

Since h = h�; � i is contained in H(`) by (4.4), if we take a class [f] 2W(X=Q),

with f 2 Z(g; G), we have f(�) = g�1g� ; f(� ) = g�1g� , g 2 G . Replacing f by a

cocycle equivalent to it using g , we may assume without loss of generality that

f(�) = f(� ) = 1; for any [f ] 2W(X=Q): (5.11)

Since h = h�i is contained in H(`), we have

f(�) = g�1g� for some g 2 G: (5.12)

It is useful to determine explicitly the values (5.12) in A using tables in 2. By (1.3), write

g = ac; a 2 A = hu; vi; c 2 C = hw; ti = S3 . The g�1g� = c�1c� by (2.3). By (1.8), (2.6),

we have
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c 1 w wt tw t t2

c� 1 v2w wt u2tw v2t u2t2

f(�) 1 v2 1 u2 u2 v2

(5.13)

If f(�) = 1, then f(�) = f(� ) = f(�) = 1 and so f � 1.Next, suppose that f(�) = v2 .

Consider a coboundary de�ned by '(s) = w�1ws , s 2 g . Then, by (2.2), we have

'(�) = w�1w� = 1 = f(�); '(� ) = w�1w� = 1 = f(� ) and '(�) = w�1w� = v2 = f(�);

hence f = ' � 1, again. The last possibility is:

f(�) = f(� ) = 1; f(�) = u2: (5.14)

Now, by the de�nition of the cocycle, we have, from (5.14),

f(��) = f(�� ) = f(�)f(� )� = u2: (5.15)

On the other hand, since h = h��i belongs to H(`) and [f ] 2W(X=Q), we must have

f(��) = x�1x��; for some x 2 G: (5.16)

Comparing (5.15), (5.16), we have

x�1x�� = u2: (5.17)

Writing, as usual, x = ac , a 2 A = hu; vi , c 2 C = hw; ti , we �nd x1x�� = c�1c��

by (2.3). In view of (5.17), we are reduced to solve the following equation in the group

C = S3 :

c�1c�� = u2: (5.18)

Now, look at the following table similar to (5.13)

c 1 w wt tw t t2

c 1 v2w u2v2tw tw u2v2t v2t2

f(��) 1 v2 u2v2 1 v2 u2v2

(5.19)
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Since u2 does not appear in the last row, we see that the equation (5.18) has no solutions.

Hence the last possibility (5.14) is unreal. Consequently, in view of (5.8), we proved

(5.20) For the curve X : y4 = x4 � `2; ` an odd prime, we have

W(X=Q) = 1:

2

(5.21) Remark. The famous quartic X : x3y + y3z + z3x = 0 is a smooth curve over Q

with g = 3 and G = AutX = PSL2(F7), a simple group of order 168 = 23 � 3 � 7. In

[3], Klein shows that each automorphism of X is induced by a collineation of P2(C) and

�nds collineations u; v; w in PGL3 (C) which generate G . Three matrices in GL3 (C)

inducing u; v; w are described in terms of elements in K = Q(�); � a primitive 7th root

of unity. Since the prime 7 is totally rami�ed for the absolute cyclotomic extension K=Q ,

the decomposition group g7 = g = Gal(K=Q) and so we obtain W(X=Q) = 1 without

any e�ort.

Appendix

Let X be an algebraic variety de�ned over a number �eld k of �nite degree over

Q. The curve y4 = x4 � `2 is an example of X with k = Q . Another variety Y over k

is called a k-twist (or a k -form) of X if Y is isomorphic with X over �k , an algebraic

closure of k . Let � be an isomorphism X ' Y over �k . Then, for s 2 gk = Gal(�k=k); �s

is also such an isomorphism; and so f(s) = ��1�s becomes an automorphism of X

over �k : f(s) 2 Aut�k(X). For simplicity we shall set G = Aut�k(X). Then, the map f

is continuous for the Krull topology on gk and the discrete topology on G with the

equation f(st) = f(s)f(t)s ; s; t 2 gk , i.e., a cocycle of the Galois group gk in the

group G . Two cocycles f; f 0 are equivalent: f � f 0 if there exists g 2 G such that

f 0(s) = g�1f(s)gs , and the quotient set H(k;G) is the cohomology set. Notice that

there is a distinguished class in it. Let us denote by Twist(X=k) the set of all k -twists

of X modulo k - isomorphisms. Then, in most cases (e.g. X is quasi projective, i.e. X

is isomorphic to a locally closed subvariety of some projective space), the above cocyle

induces a bijection:
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Twist(X=k) �= H(k;G): (A.1)

When a cocycle f = f(s) comes from Y 2 Twist(X=k) as above, we have the follow-

ing chain of equivalences showing that the distinguished elements of two sets in (A.1)

correspond each other:

f � 1() f(s) = ��1�s = g�1gs; g 2 G

() g��1 = (g��1)s; for all s 2 gk () g��1

is de�ned over k () X �= Y over k:

Now, for each place v of k , let kv denote the completion of k at v . We take an

algebraic closure �kv of kv and embed �k in �kv . For simplicity, put g = gk = Gal(�k=k),

gv = Gal( �kv=kv). Since �kv is the composite of �k and kv over k , gv may be identi�ed

with Gal(�k=(�k \ kv)) and we shall consider gv as a subgroup of g . In this situation, the

Shafarevich-Tate set makes sense:

W(X=k)
def
= W(k;G)

= Ker

(
H(k;G)!

Y
v

H(kv; G)

)

= fY ;Y �= X over �k and over kv; for all vg

In particular, the Hasse principle (for twists) means:

W(X=k) =W(k;G) = 1;

in other words,

Y �= X over �k and kv for all v () Y �= X over k .

If the group g = Gal(�k=k)acts trivially on G then (A.2)

W(X=k) =W(k;G) = 1:

570



ONO

In fact, by the assumption, g and gv act on G trivially. Hence the set W(k;G)

is nothing else than the kernel of the natural map

� : Hom(g; G)!
Y
v

Hom(gv ; G):

Now take any � 2 Ker � . Then there is an open normal subgroup h of g such that

�(h) = 1, and hence �(gvh) = 1 for all v . Call K=k the �nite Galois extension

corresponding to h . To gvh corresponds the decomposition �eld of a place w of K

which induces v on k . For any s 2 g , put s� = sh 2 g=h = Gal(K=k). By Chebotarev

density theorem, we have t�s�(t�)�1 2 Gal(K=(K \ kp)) for some �nite prime p of k

and t� 2 Gal(K=k). If t� = th with t 2 g , then tst�1 2 gph . Since �(gph) = 1, we have

�(tst�1) = 1, and hence �(s) = 1 for any s 2 g , i.e., � is injective, Q.E.D.

(A.3) Let h be an open normal subgroup of g = Gal(�k=k) and K/k be a �nite Galois

extension corresponding to h . Assume that h = Gal (�k=K) acts trivially on G. Then

there is a bijection

W(k;G) �W(K=k;G);where

W(K=k;G) = Ker

(
H(K=k;G)!

Y
v

H(K(v)=kv; G)

)

and K(v) is the �eld which is the completion of K in �kv .

Proof. Consider the following commutative diagram:

1 1 1

# # #
1 ! W(K=k;G)

�! W(k;G)
�! W(K;G)

# #
1 ! H(K=k;G)

inf! H(k;G)
res! H(K;G)

# #Æ
1 ! Q

vH(K(v)=kv; G)
"! Q

v(kv; G) ! Q
wH(Kw; G)

where all columns and the middle row are exact, � , inf, " are injective and Kw is

the completion at a place w of K . We shall show that Im � = Ker � . In fact, take
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x 2 W(K=k;G). Then we have ��(x) = res inf(x) = 1 and hence Im � � Ker � .

Next, take y 2 Ker � � Ker(res). Then y = inf(x) for some x 2 H(K=k;G). It then

follows that 1 = Æ(y) = Æ inf(x) = "(x). Since " is injective, we have (x)=1, i.e.,

x 2W(K=k;G) which shows that Ker � � Im � . Now, as W(K;G) = 1 by (A.2), the

relation Im �=Ker � means that � is surjective, which proves our assertion.

Let X be, as before, a quasi projective variety de�ned over a number �eld k .

Assume that there is a �nite Galois extension K=k so that G = Aut�k(X) = AutK(X),

i.e., every �k -automorphism of X is a K-automorphism. This is certainly the case of

our curve (1.1) with k = Q;K = Q("; �). In accordance with notation in the text, put

g = Gal(K=k), gp=the decomposition group of a prime P in K which lies above a prime

p in k .z As in 4, we introduce a family H(K=k) and its subfamily H�(K=k) of subgroups

of g = Gal(K=k) as follows.

H(K=k) = fh � g; h = gp for some p (pj1 inclusive)g (A.4)

H�(K=k) = fh 2 H(K=k); h maximal g :

For a subgroup h of g , we have the restriction map rh : H(g; G) ! H(h; G). If

h0 is a subgroup of h , then we see that Ker rh � Ker rh0 . By (A.4), we can speak of the

Shafarevich-Tate set

W(X=k) =
\

h2H(K=k)

Ker rh =
\

h2H� (K=k)

Ker rh: (A.5)

In view of (A.3), (A.4) and (A.5), the two modes of de�ning the Shafarevich-Tate set

W(X=k) coincide with each other.

For a prime p in k , set

Pp = fP; prime in K dividing pg : (A.6)

zWe include as a prime p the one at in�nity in k . I beg of readers to be generous with a crash of

notation g; gp , occuring above in Appendix. Since the conjugacy of subgroups of g does not a�ect the

cohomology, we can use the notation gp safely.

572



ONO

The �nite group g = Gal(K=k) acts on this �nite set. We see that g has a �xed point

in Pp if and only if H�(K=k) = fgg . Now, assuming that K is a �eld of rationality for

G = Aut�k(X), we obtain, from (A.5), an inexpensive theorem

(A.7) (Hasse principle for X=k ). Let X be a quasi projective variety over k , G the group

of automorphisms of X over �k . Assume that there is a �nite Galois extension K/k so

that every element of G is de�ned over K. If, for a prime p; g = Gal(K=k) has has a �xed

point in the set (A.6), then the Shafrarevich-Tate set W(X=k) = 1.

(A.8) Remark. The statement (5.8) for our curve X : y4 = x4� `2 is a (very) special case

of (A.7). On the other hand, (5.20) is not a consequence of (A.7). 2
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