Appendix A. Some Classical Results

The Fiber Dimension Theorem

Let V and W be two irreducible varieties. Let $\varphi: V \longrightarrow W$ be a dominant morphism. Then
(a) For all $v \in V$, we have

$$
\operatorname{dim}_{v} \varphi^{-1}(\varphi(v)) \geq \operatorname{dim} V-\operatorname{dim} W
$$

In particular, for all $w \in W$, every component of the fiber $\varphi^{-1}(w)$ has dimension at least $\operatorname{dim} V-\operatorname{dim} W$.
(b) There exits an open dense subset $U \subset W$ such that for all $w \in U$, we have

$$
\operatorname{dim} \varphi^{-1}(w)=\operatorname{dim} V-\operatorname{dim} W
$$

(c) (Chevalley's Semicontinuity Theorem) For every integer k, the set

$$
V_{k}=\left\{v \in V \mid \operatorname{dim}_{v}\left(\varphi^{-1} \varphi(v)\right) \geq k\right\}
$$

is a Zariski closed in V.
For the proofs, we refer to [12, p. 228].

Siegel's Lemma

Let $n>r$ be two positive integers, and let $A=\left(a_{i j}\right)$ be a nonzero $r \times n$ matrix with coefficients in \mathbb{Z}. Then the system of equations defined by $A \mathbf{x}=0$ admits at least a nonzero solution $\left(b_{1}, \cdots, b_{n}\right) \in \mathbb{Z}^{n}$ satisfying

$$
\max _{1 \leq j \leq n}\left|b_{j}\right| \leq\left(n \cdot \max _{1 \leq i \leq r, 1 \leq j \leq n}\left|a_{i j}\right|\right)^{\frac{r}{n-r}}
$$

This lemma says something quite simple. The system of homogeneous linear equations has more variables than equations, so we know it has nontrivial solutions. Since the coefficients are integers, there will be rational solutions and by clearing the denominators of the rational solutions, we can find integer solutions. So it is obvious that there are nonzero integer solutions. The last part of the lemma then says that we can find some solution that is not too large. For the proof, we refer to $[18$, Section D, p. 316].

