SHAFAREVICH-TATE SET FOR $y^4 = x^4 - \ell^2$

Takashi Ono

Dedicated to Professor Masatoshi Ikeda on the occasion of his 70^{th} birthday

Introduction

This paper consists of two parts, a Text and an Appendix. In (T), we consider a single example, i.e., a plane curve $X: y^4 = x^4 - \ell^2$, ℓ being an odd prime, define the Shafarevich-Tate set III (X/\mathbf{Q}) without using p-adic numbers and determine its structure. In (A), we take for X a quasi projective algebraic variety defined over a number field k and define the Shafarevich-Tate set III(X/k) by conventional mode of Galois cohomology. Two definitions are the same, of course. In (A), we assume the existence of a finite Galois extension K/k so that every \overline{k} -automorphism of X is already a K-automorphism. The example in (T) satisfies this assumption with $K = \mathbf{Q}(i, \sqrt{2}, \sqrt{\ell})$. Since the example is so special, we can show that III $(X/\mathbf{Q}) = 1$ (Hasse principle). In a certain sense, (T) is much deeper than (A); (T) should be regarded as a torchlight for further research in the framework (A), especially for an algebraic curve X of genus ≥ 2 defined over a number field k because the finiteness of III(X/k) is guaranteed by Hurwitz theorem.

1. Structure of automorphism group over C.

First of all, we must review some necessary facts on the curve

$$X: y^4 = x^4 - \ell^2, \quad \ell = \text{ an odd prime}$$
(1.1)

Since the projective equation of (1.1) is diagonal, X represents a smooth curve in $P^2(\mathbf{C})$, the complex projective plane. As the degree of X is 4, its genus g=(4-1)(4-2)/2=3. Let us denote by Aut X the group of automorphisms of X, i.e., the group of all birational mappings of X into itself. A good thing about our curve X is that this group is finite. This follows from the celebrated theorem due to Hurwitz:

Let X be a smooth curve of genus $g \ge 2$, then AutX is a finite group of order at most $84(g-1)^*$ (1.2)

Since our (1.1) has g = 3, #Aut $X \le 84(3-1) = 168$. It is interesting that the defining equation (1.1) and the upper bound 168 are sufficient to determine the finite group structure of Aut X:

Let G = Aut X. Then G is a semidirect product $G = A \cdot C$, $A \cap C = 1$, A normal in G, with $A = \mathbf{Z}/4\mathbf{Z} \times \mathbf{Z}/4\mathbf{Z}$, $C = S_3$, the symmetric group on three letters. Consequently, we have $\#G = 4 \cdot 4 \cdot 6 = 96 = 2^5 \cdot 3$. (1.3)

In fact, let

$$\varepsilon = \frac{1+i}{\sqrt{2}}, \qquad \theta = \sqrt{\ell^*}, \ell^* = (-1)^{\frac{\ell-1}{2}}\ell.$$
 (1.4)

Consider rational mappings u,v,w,t given by

$$u(x, y) = (x, iy), \quad v(x, y) = (ix, y),$$

$$(1.5)$$

$$w(x, y) = (\theta x/y, \ell/y), \quad t(x, y) = (\theta y/(ix), \ell/(\varepsilon x)).$$

It is easy to verify that all u, v, w, t belong to Aut X with relations:

$$u^4 = 1, v^4 = 1, uv = vu,$$
 (1.6)

^{*} As for a proof of (1.2), see, e.g., [2, p.242].

$$w^2 = 1, t^3 = 1, wt = t^2 w, tw = wt^2,$$
 (1.7)

$$wuw^{-1} = (uv)^{-1}, wvw^{-1} = v, tut^{-1} = v, tvt^{-1} = (uv)^{-1}.$$
 (1.8)

Since $u^2 \neq 1$, $v^2 \neq 1$, (1.6) means that u and v generate an abelian subgroup A of G of order 16 which is a direct product of two cyclic subgroups of order 4:

$$A = \langle u, v \rangle = \langle u \rangle \times \langle v \rangle = \mathbf{Z}/4\mathbf{Z} \times \mathbf{Z}/4\mathbf{Z}.^{\dagger}$$
(1.9)

The relation (1.7) shows that $C = \{1, w, t, t^2, wt, tw\}$ forms a subgroup of G of order 6 which is isomorphic to S_3 :

$$C = \langle w, t \rangle = S_3$$
, with $w = (12), t = (123)$. (1.10)

The last relation (1.8) shows that A is normal in $H = \langle u, v, w, t \rangle$. From (1.5)-(1.10), it follows that $H = A \cdot C$, $A \cap C = 1$. Since $2\#H = 2 \cdot 96 = 192 > 168$, we find G=H by (1.2).

2. Action of the Galois group on Aut X.

Let ε, θ be the 8th root of unity and the quadratic number, respectively, introduced in (1.4). Clearly $K = \mathbf{Q}(\varepsilon, \theta)$ is a finite algebraic extension of degree 8. As is easily seen it is a Galois extension. The cyclotomic field $E = \mathbf{Q}(\varepsilon)$ may be written $E = \mathbf{Q}(i, \sqrt{2})$; hence K is the union of three distinct quadratic extensions $\mathbf{Q}(i), \mathbf{Q}(\sqrt{2})$ and $\mathbf{Q}(\sqrt{\ell^*})$. Therefore the Galois group $\mathfrak{g} = Gal(K/\mathbf{Q}) = \mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/2\mathbf{Z}$ with generators σ, τ, ρ :

As we see in (1.5) the generators u, v, w, t of G=Aut X are described as rational mappings defined over K. So the Galois group \mathfrak{g} acts on Aut X. The following is the action on the generactors:

[†] For a group G, we write $G = \langle a, b, c, \ldots \rangle$ if the set $\{a, b, c, \ldots\}$ generates G.

The portion of (2.2) on the abelian subgroup A implies:

$$a^{\sigma} = a^{-1}, a^{\tau} = a^{\rho} = a, \quad a \in A.$$
 (2.3)

In particular,

$$A^{\mathfrak{g}} =$$
 the subgroup of fixed points under $\mathfrak{g} = A^2$. (2.4)

Unlike A the subgroup C is not stable under the action of \mathfrak{g} . However, (2.2) shows that

$$\mathfrak{g}$$
 acts trivially on the quotient group G/A . (2.5)

Later we shall find useful the following table on C:

Writing $g = ac, g \in G, a \in A, c \in C$ according to the decomposition $G = A \cdot C$ in (1.3), we have, from (2.4), (2.6):

$$g^{\sigma} = g \iff a^{2} = 1 \text{ and } c = 1, w \iff g = a \text{ or } aw, a^{2} = 1,$$

$$g^{\tau} = g \iff c = 1 \text{ or } w \iff g \in \langle u, v, w \rangle,$$

$$g^{\rho} = g \iff c = 1 \text{ or } wt \iff g \in \langle u, v, wt \rangle.$$
(2.7)

3. Generators of decomposition groups.

Notation being as in 2, for a prime p in \mathbf{Q} let \mathfrak{P} be a prime in $K = \mathbf{Q}(\varepsilon, \theta)$ which divides p. We shall denote by \mathfrak{g}_p the decomposition group of \mathfrak{P} , i.e., the the subgroup of $\mathfrak{g} = Gal(K/\mathbf{Q})$ formed by all $s \in \mathfrak{g}$ such that $\mathfrak{P}^s = \mathfrak{P}$. Since \mathfrak{g} is abelian, \mathfrak{g}_p does not depend on the choice of \mathfrak{P} . As usual, we write e_p, f_p , for the ramification index, residue class degree, respectively, of p for the extension K/\mathbf{Q} ; hence $\#\mathfrak{g}_p = e_p f_p$ and $g_p = \#(\mathfrak{g}/\mathfrak{g}_p) =$ the number of distinct prime factors of p in K. It is very important to know generators of \mathfrak{g}_p for each p.

Let $E = \mathbf{Q}(\varepsilon) = \mathbf{Q}(i, \sqrt{2}), L = \mathbf{Q}(\theta) = \mathbf{Q}(\sqrt{\ell^*})$. Then K is the composite of E, L : K = EL, and E and L are linearly disjoint over \mathbf{Q} .

Suppose \mathfrak{P} divides primes \mathfrak{p} , P in E, L, respectively, as the picture shows. From (2.1) we see that L, E correspond to subgroups $\langle \sigma, \tau \rangle, \langle \rho \rangle$, respectively, in the sense of Galois theory. We summarize here the mode of decomposition of p in E and L: Case E/\mathbf{Q} .

p	$e(\mathfrak{p} p)$	$f(\mathfrak{p} p)$	$g\left(\mathfrak{p} p\right)$
2	4	1	1
$p \equiv 1 \mod 8$	1	1	4
$p \equiv 3, 5, 7 \mod 8$	1	2	2

Case L/\mathbf{Q} .

p		e(P p)	f(P p)	$g\left(P\left p\right)\right.$	_	
ℓ		2	1	1		
2	$\ell^* \equiv 1 \bmod 8$	1	1	2		(
2	$\ell^*\equiv 5 \ \mathrm{mod} \ 8$	1	2	1		l
p	$(\ell^*/p) = 1$	1	1	2		
p	$(\ell^*/p) = -1$	1	2	1		

Now, back to the composite K = EL, when we fix a prime p of \mathbf{Q} , we shall use Z for the decomposition group \mathfrak{g}_p and T for the inertia group for p. Thus, T = 1 if and only if $e_p = e(\mathfrak{P}|p) = 1$ and in that case Z is a cyclic group of order $f_p = f(\mathfrak{P}|p)$ generated by the Frobenius automorphism $(K/\mathbf{Q}, p)$. As usual, we denote by K_Z , K_T the corresponding fields in the sense of Galois theory.

To determine the structure of $\mathfrak{g}_p = Z$, we shall consider the three cases separately. Case 1. $p \neq 2, \ell$.

Since p is unramified in both of E, L by (3.1), (3.2), so is in K; hence T = 1, and Z is cyclic. As $\mathfrak{g} = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} = 1$ or 2. Now we have

$$#Z = 1 \iff p$$
 splits completely for K/Q
 $\iff p$ splits completely for E/Q and L/Q

Therefore, by (3.1), (3.2), we have

$$\#Z = 1 \iff p \equiv 1 \mod 8 \text{ and } (\ell^*/p) = 1. \tag{3.3}$$

and hence

$$\#Z = 2 \iff p \not\equiv 1 \mod 8 \text{ or } (\ell^*/p) = -1. \tag{3.4}$$

In Case 1, we have $Z = \langle (K/\mathbf{Q}, p) \rangle$ because the Frobenius automorphism is the generator of Z :

$$\mathfrak{g}_p = \langle (K/\mathbf{Q}, p) \rangle, \quad p \neq 2, \ell.$$
 (3.5)

Conversely, for any $s \in \mathfrak{g}$, with $s^2 = 1$, there is a prime $p \neq 2, \ell$, such that $(K/\mathbf{Q}, p) = s$. Although this follows from Chebotarev density theorem, the following table which results from (2.1), (3.1), (3.2) reveals the Artin reciprocity for K/\mathbf{Q} :

	p		\mathfrak{g}_p
$p\equiv 1$	$\mod 8$,	$(\ell^*/p) = 1$	1
$p\equiv 1$	$\mod 8$,	$(\ell^*/p) = -1$	$\langle \rho \rangle$
$p\equiv 5$	$\mod 8$,	$(\ell^*/p) = 1$	$\langle \tau \rangle$
$p\equiv 5$	$\mod 8$,	$(\ell^*/p) = -1$	$\langle \tau \rho \rangle$
$p\equiv 3$	$\mod 8$,	$(\ell^*/p) = 1$	$\langle \sigma \tau \rangle$
$p\equiv 3$	$\mod 8$,	$(\ell^*/p) = -1$	$\langle \sigma \tau \rho \rangle$
$p\equiv 7$	$\mod 8$,	$(\ell^*/p) = 1$	$\langle \sigma \rangle$
$p\equiv 7$	$\mod 8$,	$(\ell^*/p) = -1$	$\langle \sigma \rho \rangle$

Case 2. $p = \ell$.

From (3.1), (3.2), we have $e(\mathfrak{p}|\ell) = e(\mathfrak{P}|P) = 1$, $e(P|\ell) = 2$. Hence $\#T = e_{\ell} = e(\mathfrak{P}|\ell) = e(\mathfrak{P}|P)e(P|\ell) = 2$. Since the quotient group \mathfrak{g}_{ℓ}/T is cyclic, either $\mathfrak{g}_{\ell} = T$ or $[\mathfrak{g}_{\ell}:T] = 2$. Now,

 ℓ is unramified for $E/\mathbf{Q} \iff E \subset K_T \iff \langle \rho \rangle \supset T$. Comparing orders of $\langle \rho \rangle$ and T, we have

$$T = \langle \rho \rangle. \tag{3.7}$$

Next,

$$\ell \equiv 1 \mod 8 \iff \ell \text{ splits completely in } E/\mathbf{Q} \iff E \subset K_Z$$
$$\iff \langle \rho \rangle \supset \mathfrak{g}_\ell \iff \langle \rho \rangle = \mathfrak{g}_\ell,$$

so we have

$$\ell \equiv 1 \mod 8 \iff \mathfrak{g}_{\ell} = T = \langle \rho \rangle. \tag{3.8}$$

Suppose now that $\ell \not\equiv 1 \mod 8$. from (3.7) (3.8), we find that $\mathfrak{g}_{\ell} \supset T = \langle \rho \rangle$ and $\#\mathfrak{g}_{\ell} = 4$. Let $F = \mathbf{Q}(i)$; this field corresponds to $\langle \tau, \rho \rangle$. If $\ell \equiv 5 \mod 8$, then

 ℓ splits completely in $F/\mathbf{Q} \iff F \subset K_Z \iff \langle \tau, \rho \rangle \supset \mathfrak{g}_{\ell}$, and so we have

$$\ell \equiv 5 \mod 8 \iff \mathfrak{g}_{\ell} = \langle \tau, \rho \rangle. \tag{3.9}$$

Replacing $F = \mathbf{Q}(i)$ by $\mathbf{Q}(\sqrt{2})$, $\mathbf{Q}(\sqrt{-2})$, we get statements like (3.9) for the case of $\ell \equiv 7, 3 \mod 8$, respectively, and obtain the table:

$$\begin{array}{c|cccc}
\ell & \mathfrak{g}_{\ell} \\
\hline
\ell \equiv 1 \mod 8 & \langle \rho \rangle \\
\ell \equiv 3 \mod 8 & \langle \rho, \sigma \tau \rangle \\
\ell \equiv 5 \mod 8 & \langle \rho, \tau \rangle \\
\ell \equiv 7 \mod 8 & \langle \rho, \sigma \rangle
\end{array}$$
(3.10)

Case 3. p=2.

From (3.1), (3.2), we have $e(P|2) = e(\mathfrak{P}|\mathfrak{p}) = 1$, $e(\mathfrak{p}|2) = 4$. Hence $\#T = 4 = e_2 = e(\mathfrak{P}|2) = e(\mathfrak{P}|\mathfrak{p})e(\mathfrak{p}|2) = 4$. Since 2 is unramified for L/\mathbb{Q} , we have $L \subset K_T$, i.e., $\langle \sigma, \tau \rangle \supset T$. Compairing orders of $\langle \sigma, \tau \rangle$ and T, we have

$$T = \langle \sigma, \tau \rangle. \tag{3.11}$$

Therefore, either $\mathfrak{g}_2 = T$ or $\mathfrak{g}_2 = \mathfrak{g}$. Next,

$$\ell^* \equiv 1 \mod 8 \iff 2 \text{ splits completely in } L/\mathbf{Q} \iff L \subset K_Z$$

 $\iff \langle \sigma, \tau \rangle \supset \mathfrak{g}_2 \iff T = \mathfrak{g}_2,$

so we obtain the table:

Case 4. $p = \infty$

In accordance with the convention, we understand by the decomposition field of $p = \infty$, the maximal real subfield $\mathbf{Q}(\sqrt{2}, \sqrt{\ell})$ of K. As $i^{\sigma} = -i$, we have

$$\mathfrak{g}_{\infty} = \langle \sigma \rangle. \tag{3.13}$$

4. The family $H(\ell)$.

Having determined generators of \mathfrak{g}_p $(p = \infty \text{ inclusive})$, it is natural to introduce a family $H(\ell)$ and its subfamily $H^*(\ell)$ of subgroups of $\mathfrak{g} = Gal(K/\mathbf{Q})$, $K = \mathbf{Q}(\varepsilon, \theta)$, $\varepsilon = (1+i)/\sqrt{2}$, $\theta = \sqrt{\ell^*}$, as follows.

$$H(\ell) = \{\mathfrak{h} \subset \mathfrak{g}; \quad \mathfrak{h} = \mathfrak{g}_p \text{ for some } p \ (p = \infty \text{ inclusive})\}, \tag{4.1}$$

$$H^*(\ell) = \{ \mathfrak{h} \in H(\ell); \ \mathfrak{h} \text{ is maximal} \}$$

$$(4.2)$$

where \mathfrak{h} is maximal if it is not contained in any group in $H(\ell)$ other than \mathfrak{h} itself. The tables in **3** help us to determine $H(\ell)$. First of all, from (3.6), we see that, for each $\ell, H(\ell)$ contains a subfamily H_0 in common:

$$H_0 = \{1, \langle \sigma \rangle, \langle \tau \rangle, \langle \rho \rangle, \langle \sigma \tau \rangle, \langle \sigma \rho \rangle, \langle \tau \rho \rangle, \langle \rho \tau \sigma \rangle\}$$

$$(4.3)$$

Next, using (3.10), (3.12), we obtain the following tables:

5. Shafarevich-Tate set for X over Q.

Let $G = \operatorname{Aut} X$ and $\mathfrak{g} = Gal(K/\mathbf{Q})$ as in 1,2. We remind the reader the definition of the cohomology set $H(\mathfrak{g}, G)$. First, we define a cocycle to be a function $f : \mathfrak{g} \to G$ which satisfies

$$f(st) = f(s)f(t)^s, \quad s, t \in \mathfrak{g}.$$

$$(5.1)$$

We denote by $Z(\mathfrak{g}, G)$ the set of all cocycles. Two cocycles f, f' are equivalent if there exists $g \in G$ such that

$$f'(s) = g^{-1} f(s) g^s \,. \tag{5.2}$$

The quotient

$$H(\mathfrak{g},G) = Z(\mathfrak{g},G)/\sim \tag{5.3}$$

is the cohomology set. $Z(\mathfrak{g}, G)$ contains a distinguished function 1 given by 1(s) = 1 for all $s \in \mathfrak{g}$ We set

$$B(\mathfrak{g},G) = \{f \in Z(\mathfrak{g},G); f \sim 1\}.$$
(5.4)

A function f in (5.4) is a coboundary and, by (5.2),

$$f$$
 is a coboundary $\iff f(s) = g^{-1}g^s$ for some $g \in G$. (5.5)

Let \mathfrak{h} be a subgroup of \mathfrak{g} . We have the restriction map

$$r_{\mathfrak{h}}: H(\mathfrak{g}, G) \to H(\mathfrak{h}, G) \tag{5.6}$$

induced by $\longmapsto f|\mathfrak{h}, f \in Z(\mathfrak{g}, G)$. This mapping sends the distinguished class in $H(\mathfrak{g}, G)$ to the one in $H(\mathfrak{h}, G)$. Hence Ker $r_{\mathfrak{h}}$ makes sense. If \mathfrak{h}' is a subgroup of \mathfrak{h} then we see at once that Ker $r_{\mathfrak{h}} \subset$ Ker $r_{\mathfrak{h}'}$. Therefore, in view of (4.1), (4.2) the following definition of the Shafarevich-Tate set makes sense:

$$\mathrm{III}(X/\mathbf{Q}) = \bigcap_{\mathfrak{h}\in H(\ell)} \mathrm{Ker} \ r_{\mathfrak{h}} = \bigcap_{\mathfrak{h}\in H^{*}(\ell)} \mathrm{Ker} \ r_{\mathfrak{h}}.$$
(5.7)

We have
$$\operatorname{III}(X/\mathbf{Q}) = 1$$
 if $\ell^* \equiv 5 \mod 8$. (5.8)

Proof. If $\ell^* \equiv 5 \mod 8$, i.e., if $\ell \equiv 3, 5 \mod 8$, then $\mathfrak{g} \in H^*(\ell)$ by (4.5). Since $r_{\mathfrak{g}}$ is the identity mapping of $H(\mathfrak{g}, G)$, we find $\operatorname{III}(X/\mathbf{Q}) = 1$ by the definition (5.7), Q.E.D.

Needless to say, the remaining case where $\ell^* \equiv 1 \mod 8$ is more interesting. In this case, again by (4.5), we have

$$III(X/\mathbf{Q}) = \bigcap_{\mathfrak{h}} \operatorname{Ker} r_{\mathfrak{h}}, \mathfrak{h} = \langle \rho \rangle, \langle \sigma \rho \rangle, \langle \tau \rho \rangle, \langle \sigma \tau \rho \rangle, \langle \sigma, \tau \rangle$$
(5.9)
if $\ell \equiv 1 \mod 8$

 and

$$III(X/\mathbf{Q}) = \bigcap_{\mathfrak{h}} \operatorname{Ker} r_{\mathfrak{h}}, \mathfrak{h} = \langle \tau \rho \rangle, \langle \sigma \tau \rho \rangle, \langle \sigma, \tau \rangle, \langle \sigma, \rho \rangle$$
(5.10)
if $\ell \equiv 7 \mod 8$

Since $\mathfrak{h} = \langle \sigma, \tau \rangle$ is contained in $H(\ell)$ by (4.4), if we take a class $[\mathbf{f}] \in \mathrm{III}(X/\mathbf{Q})$, with $f \in Z(\mathfrak{g}, G)$, we have $f(\sigma) = g^{-1}g^{\sigma}, f(\tau) = g^{-1}g^{\tau}, g \in G$. Replacing f by a cocycle equivalent to it using g, we may assume without loss of generality that

$$f(\sigma) = f(\tau) = 1, \quad \text{for any } [f] \in \mathrm{III}(X/\mathbf{Q}). \tag{5.11}$$

Since $\mathfrak{h} = \langle \rho \rangle$ is contained in $H(\ell)$, we have

$$f(\rho) = g^{-1}g^{\rho} \quad \text{for some } g \in G.$$
(5.12)

It is useful to determine explicitly the values (5.12) in A using tables in **2**. By (1.3), write $g = ac, a \in A = \langle u, v \rangle, c \in C = \langle w, t \rangle = S_3$. The $g^{-1}g^{\rho} = c^{-1}c^{\rho}$ by (2.3). By (1.8), (2.6), we have

ONO

$$\frac{c}{c^{\rho}} = \frac{1}{v^{2}w} \frac{wt}{wt} \frac{tw}{u^{2}tw} \frac{t}{v^{2}t} \frac{t^{2}}{u^{2}t^{2}}$$

$$f(\rho) = \frac{1}{v^{2}} \frac{v^{2}}{u^{2}} \frac{u^{2}}{u^{2}} \frac{v^{2}}{v^{2}}$$
(5.13)

If $f(\rho) = 1$, then $f(\sigma) = f(\tau) = f(\rho) = 1$ and so $f \sim 1$.Next, suppose that $f(\rho) = v^2$. Consider a coboundary defined by $\varphi(s) = w^{-1}w^s$, $s \in \mathfrak{g}$. Then, by (2.2), we have $\varphi(\sigma) = w^{-1}w^{\sigma} = 1 = f(\sigma), \varphi(\tau) = w^{-1}w^{\tau} = 1 = f(\tau)$ and $\varphi(\rho) = w^{-1}w^{\rho} = v^2 = f(\rho)$; hence $f = \varphi \sim 1$, again. The last possibility is:

$$f(\sigma) = f(\tau) = 1, \ f(\rho) = u^2.$$
 (5.14)

Now, by the definition of the cocycle, we have, from (5.14),

$$f(\tau \rho) = f(\rho \tau) = f(\rho) f(\tau)^{\rho} = u^{2}.$$
(5.15)

On the other hand, since $\mathfrak{h} = \langle \tau \rho \rangle$ belongs to $H(\ell)$ and $[f] \in \mathrm{III}(X/\mathbf{Q})$, we must have

$$f(\tau \rho) = x^{-1} x^{\tau \rho}, \text{ for some } x \in G.$$
(5.16)

Comparing (5.15), (5.16), we have

$$x^{-1}x^{\tau\rho} = u^2. (5.17)$$

Writing, as usual, x = ac, $a \in A = \langle u, v \rangle$, $c \in C = \langle w, t \rangle$, we find $x^1 x^{\tau \rho} = c^{-1} c^{\tau \rho}$ by (2.3). In view of (5.17), we are reduced to solve the following equation in the group $C = S_3$:

$$c^{-1}c^{\tau\rho} = u^2. (5.18)$$

Now, look at the following table similar to (5.13)

568

ONO

$$\operatorname{III}(X/\mathbf{Q}) = 1.$$

(5.21) Remark. The famous quartic $X : x^3y + y^3z + z^3x = 0$ is a smooth curve over \mathbf{Q} with g = 3 and $G = \operatorname{Aut} X = PSL_2(\mathbf{F}_7)$, a simple group of order $168 = 2^3 \cdot 3 \cdot 7$. In [3], Klein shows that each automorphism of X is induced by a collineation of $\mathbf{P}^2(\mathbf{C})$ and finds collineations u, v, w in $PGL_3(\mathbf{C})$ which generate G. Three matrices in $GL_3(\mathbf{C})$ inducing u, v, w are described in terms of elements in $K = \mathbf{Q}(\zeta), \zeta$ a primitive 7th root of unity. Since the prime 7 is totally ramified for the absolute cyclotomic extension K/\mathbf{Q} , the decomposition group $\mathfrak{g}_7 = \mathfrak{g} = Gal(K/\mathbf{Q})$ and so we obtain $\operatorname{III}(X/\mathbf{Q}) = 1$ without any effort.

Appendix

Let X be an algebraic variety defined over a number field k of finite degree over **Q**. The curve $y^4 = x^4 - \ell^2$ is an example of X with $k = \mathbf{Q}$. Another variety Y over k is called a k-twist (or a k-form) of X if Y is isomorphic with X over \bar{k} , an algebraic closure of k. Let α be an isomorphism $X \simeq Y$ over \bar{k} . Then, for $s \in \mathfrak{g}_k = Gal(\bar{k}/k), \alpha^s$ is also such an isomorphism; and so $f(s) = \alpha^{-1}\alpha^s$ becomes an automorphism of X over $\bar{k} : f(s) \in Aut_{\bar{k}}(X)$. For simplicity we shall set $G = Aut_{\bar{k}}(X)$. Then, the map fis continuous for the Krull topology on \mathfrak{g}_k and the discrete topology on G with the equation $f(st) = f(s)f(t)^s$, $s, t \in \mathfrak{g}_k$, i.e., a cocycle of the Galois group \mathfrak{g}_k in the group G. Two cocycles f, f' are equivalent: $f \sim f'$ if there exists $g \in G$ such that $f'(s) = g^{-1}f(s)g^s$, and the quotient set H(k, G) is the cohomology set. Notice that there is a distinguished class in it. Let us denote by Twist (X/k) the set of all k-twists of X modulo k- isomorphisms. Then, in most cases (e.g. X is quasi projective, i.e. X is isomorphic to a locally closed subvariety of some projective space), the above cocyle induces a bijection:

$$Twist(X/k) \cong H(k,G). \tag{A.1}$$

When a cocycle f = f(s) comes from $Y \in \text{Twist}(X/k)$ as above, we have the following chain of equivalences showing that the distinguished elements of two sets in (A.1) correspond each other:

$$f \sim 1 \iff f(s) = \alpha^{-1} \alpha^s = g^{-1} g^s, g \in G$$
$$\iff g \alpha^{-1} = (g \alpha^{-1})^s, \text{ for all } s \in \mathfrak{g}_k \iff g \alpha^{-1}$$
is defined over k $\iff X \cong Y$ over k.

Now, for each place v of k, let k_v denote the completion of k at v. We take an algebraic closure \bar{k}_v of k_v and embed \bar{k} in \bar{k}_v . For simplicity, put $\mathfrak{g} = \mathfrak{g}_k = Gal(\bar{k}/k)$, $\mathfrak{g}_v = Gal(\bar{k}_v/k_v)$. Since \bar{k}_v is the composite of \bar{k} and k_v over k, \mathfrak{g}_v may be identified with $Gal(\bar{k}/(\bar{k} \cap k_v))$ and we shall consider \mathfrak{g}_v as a subgroup of \mathfrak{g} . In this situation, the Shafarevich-Tate set makes sense:

$$\begin{aligned} \mathrm{III}(X/k) &\stackrel{def}{=} & \mathrm{III}(k,G) \\ &= & Ker\left\{H(k,G) \to \prod_{v} H(k_{v},G)\right\} \\ &= & \{Y;Y \cong X \text{ over } \bar{k} \text{ and over } k_{v}, \text{ for all } v\} \end{aligned}$$

In particular, the Hasse principle (for twists) means:

$$\operatorname{III}(X/k) = \operatorname{III}(k,G) = 1,$$

in other words,

 $Y \cong X$ over \overline{k} and k_v for all $v \iff Y \cong X$ over k.

If the group
$$\mathfrak{g} = Gal(\overline{k}/k)$$
 acts trivially on G then (A.2)
 $\operatorname{III}(X/k) = \operatorname{III}(k, G) = 1.$

In fact, by the assumption, \mathfrak{g} and \mathfrak{g}_v act on G trivially. Hence the set $\mathrm{III}(k, G)$ is nothing else than the kernel of the natural map

$$\theta: Hom(\mathfrak{g}, G) \to \prod_{v} Hom(\mathfrak{g}_v, G).$$

Now take any $\rho \in \text{Ker } \theta$. Then there is an open normal subgroup \mathfrak{h} of \mathfrak{g} such that $\rho(\mathfrak{h}) = 1$, and hence $\rho(\mathfrak{g}_v \mathfrak{h}) = 1$ for all v. Call K/k the finite Galois extension corresponding to \mathfrak{h} . To $\mathfrak{g}_v \mathfrak{h}$ corresponds the decomposition field of a place w of K which induces v on k. For any $s \in \mathfrak{g}$, put $s^* = s\mathfrak{h} \in \mathfrak{g}/\mathfrak{h} = Gal(K/k)$. By Chebotarev density theorem, we have $t^*s^*(t^*)^{-1} \in Gal(K/(K \cap k_\mathfrak{p}))$ for some finite prime \mathfrak{p} of k and $t^* \in Gal(K/k)$. If $t^* = t\mathfrak{h}$ with $t \in \mathfrak{g}$, then $tst^{-1} \in \mathfrak{g}_\mathfrak{p}\mathfrak{h}$. Since $\rho(\mathfrak{g}_\mathfrak{p}\mathfrak{h}) = 1$, we have $\rho(tst^{-1}) = 1$, and hence $\rho(s) = 1$ for any $s \in \mathfrak{g}$, i.e., θ is injective, Q.E.D.

(A.3) Let \mathfrak{h} be an open normal subgroup of $\mathfrak{g} = Gal(\overline{k}/k)$ and K/k be a finite Galois extension corresponding to \mathfrak{h} . Assume that $\mathfrak{h} = Gal(\overline{k}/K)$ acts trivially on G. Then there is a bijection

$$\begin{split} & \mathrm{III}(k,G) \approx \mathrm{III}(K/k,G), where \\ & \mathrm{III}(K/k,G) = Ker \left\{ H(K/k,G) \to \prod_{v} H(K_{(v)}/k_{v},G) \right\} \end{split}$$

and $K_{(v)}$ is the field which is the completion of K in \bar{k}_v .

 ${\bf Proof.}\$ Consider the following commutative diagram:

where all columns and the middle row are exact, α , inf, ε are injective and K_w is the completion at a place w of K. We shall show that Im $\alpha = \text{Ker } \beta$. In fact, take

 $x \in \operatorname{III}(K/k, G)$. Then we have $\beta \alpha(x) = res \operatorname{inf}(x) = 1$ and hence $\operatorname{Im} \alpha \subset \operatorname{Ker} \beta$. Next, take $y \in \operatorname{Ker} \beta \subset \operatorname{Ker}(res)$. Then $y = \operatorname{inf}(x)$ for some $x \in H(K/k, G)$. It then follows that $1 = \delta(y) = \delta \operatorname{inf}(x) = \varepsilon \gamma(x)$. Since ε is injective, we have $\gamma(x) = 1$, i.e., $x \in \operatorname{III}(K/k, G)$ which shows that $\operatorname{Ker} \beta \subset \operatorname{Im} \alpha$. Now, as $\operatorname{III}(K, G) = 1$ by (A.2), the relation $\operatorname{Im} \alpha = \operatorname{Ker} \beta$ means that α is surjective, which proves our assertion.

Let X be, as before, a quasi projective variety defined over a number field k. Assume that there is a finite Galois extension K/k so that $G = \operatorname{Aut}_{\bar{k}}(X) = \operatorname{Aut}_{K}(X)$, i.e., every \bar{k} -automorphism of X is a K-automorphism. This is certainly the case of our curve (1.1) with $k = \mathbf{Q}, K = \mathbf{Q}(\varepsilon, \theta)$. In accordance with notation in the text, put $\mathfrak{g} = Gal(K/k)$, $\mathfrak{g}_{\mathfrak{p}}$ =the decomposition group of a prime \mathfrak{P} in K which lies above a prime \mathfrak{p} in k.[‡] As in 4, we introduce a family H(K/k) and its subfamily $H^*(K/k)$ of subgroups of $\mathfrak{g} = Gal(K/k)$ as follows.

$$H(K/k) = \{ \mathfrak{h} \subset \mathfrak{g}; \mathfrak{h} = \mathfrak{g}_{\mathfrak{p}} \text{ for some } \mathfrak{p} (\mathfrak{p}|\infty \text{ inclusive}) \}$$
(A.4)
$$H^*(K/k) = \{ \mathfrak{h} \in H(K/k); \mathfrak{h} \text{ maximal } \}.$$

For a subgroup \mathfrak{h} of \mathfrak{g} , we have the restriction map $r_{\mathfrak{h}}$: $H(\mathfrak{g}, G) \to H(\mathfrak{h}, G)$. If \mathfrak{h}' is a subgroup of \mathfrak{h} , then we see that Ker $r_{\mathfrak{h}} \subset \text{Ker } r_{\mathfrak{h}'}$. By (A.4), we can speak of the Shafarevich-Tate set

$$\mathrm{III}(X/k) = \bigcap_{\mathfrak{h}\in H(K/k)} \mathrm{Ker} \ r_{\mathfrak{h}} = \bigcap_{\mathfrak{h}\in H^{*}(K/k)} \mathrm{Ker} \ r_{\mathfrak{h}}.$$
(A.5)

In view of (A.3), (A.4) and (A.5), the two modes of defining the Shafarevich-Tate set $\operatorname{III}(X/k)$ coincide with each other.

For a prime \mathfrak{p} in k, set

$$P_{\mathfrak{p}} = \{\mathfrak{P}; \text{ prime in } K \text{ dividing } \mathfrak{p}\}.$$
(A.6)

[‡] We include as a prime \mathfrak{p} the one at infinity in k. I beg of readers to be generous with a crash of notation $\mathfrak{g}, \mathfrak{g}_{\mathfrak{p}}$, occuring above in Appendix. Since the conjugacy of subgroups of \mathfrak{g} does not affect the cohomology, we can use the notation $\mathfrak{g}_{\mathfrak{p}}$ safely.

(A.7) (Hasse principle for X/k). Let X be a quasi projective variety over k, G the group of automorphisms of X over \overline{k} . Assume that there is a finite Galois extension K/k so that every element of G is defined over K. If, for a prime $\mathfrak{p}, \mathfrak{g} = Gal(K/k)$ has has a fixed point in the set (A.6), then the Shafrarevich-Tate set III(X/k) = 1.

(A.8) Remark. The statement (5.8) for our curve $X : y^4 = x^4 - \ell^2$ is a (very) special case of (A.7). On the other hand, (5.20) is not a consequence of (A.7).

References

- Cassels, J. W. S and Fröhlich, A, eds., Algebraic Number Theory, Academic Press, London-New York, 1990.
- [2] Farkas, H. M. and Kra, I., Riemann Surfaces, Springer-Verlag, New York-Heidelberg-Berlin, 1980.
- Klein, F., Über die Transformation siebenter Ordnung elliptischen Funktionen, Math. Ann.14, (1878/79), 428-471 (=Klein, F., Gesammelte Mathematische Abhandlungen, vol. III, Springer, Berlin, 1923, 90-135).

Takashi Ono Department of Mathematics The Johns Hopkins University Baltimore MD.21218 USA Received 15.01.1998