
Epidemiology

Thermal burns and related injuries are a major cause
of death and disability, especially in subjects under the age
of 40. Even in developed countries, more than 2 million
individuals annually are burned seriously and require
medical treatment (1). The average burn patient is 24.4
years old and has a mean burn size of 19% of the total
body surface area (TBSA) (2). Most burns are caused by
carelessness and appear to be preventable, while the rest
of the cases are associated with smoking and alcohol. The
face and hands are the most common sites of injury,
followed by respiratory damage, with eye damage being
the least common injury (3). Men, especially young men,
tend to be more prone to burn injury than women (4).
Hot or corrosive substances account for two-thirds of all
burns, with fire and flame accounting for one-fourth (5).
Multivariate analysis revealed that cardiovascular/renal
failure, pulmonary failure, extent of burn, age and female
sex are the major determinants in mortality. It was also
found that patients with failure of 2 or more organ

subsystems had a 98% mortality rate (6), while infection
is the major cause in 75% of deaths from burns (7). It is
customary to classify burn injuries etiologically as
thermal, electrical or chemical in origin (8).

In thermal burns the local wound occurs as a result of
heat necrosis of cells. The conductance of involved tissue
determines the rate of dissipation or absorption of heat
and depends upon several factors. These include the
peripheral circulation, water content of the tissue,
thickness of the skin and its pigmentation, and the
presence or absence of external insulating substances such
as hair and skin oil. Among these factors perhaps the most
important in determining the degree of injury is the
peripheral circulation (8). Electrical burns result from the
heat produced by the flow of electrical current through the
resistance of body tissues. Factors of primary importance
in determining the effect of the passage of an electric
current through the human body include the type of
circuit, voltage, amperage, resistance of the tissues
involved, the path of current through the body and
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duration of contact with the current (9). Several chemical
agents may be responsible for chemical burns. Most of the
chemical agents produce skin destruction through chemical
reactions rather than hyperthermic injury. Included among
these reactions are coagulation of protein by reduction,
corrosion, oxidation, formation of salts, poisoning of
protoplasm and desiccation. Acids promote collagen
denaturation and subsequent degradations (10-12).

Burn management

Healing of a burn wound is a normal response to
injury and the formation of scar tissue is a result of
cellular and biochemical processes. Five factors determine
the seriousness of a burn: depth, size, area(s) of
involvement, age and general health status of the burn
victim. Burns are classified as partial-thickness (first or
second degree) or full-thickness (third or fourth degree),
and the extent of a burn wound is calculated as a
percentage of the total body surface area (13).

Initial treatment of the burn patient is aimed to stop
respiratory distress, start fluid resuscitation, and prevent
burn shock. After the patient is stabilized, drug therapy
can be initiated to control pain and prevent infection (14).
The application of ice or cold water soaks is effective in
decreasing pain in areas of second-degree burn and
should be used for analgesic effect if the burns involve
less than 25% of the total body surface (15). In the
emergency room, fluid resuscitation should be initiated by
infusing a balanced salt solution from a peripheral vein
underlying unburned skin or underlying the burn wound,
or a central vein in that order of preference (15). An
arterial blood sample should be obtained from any patient
with a major burn injury for the determination of pH
blood gases, carboxyhemoglobin, electrolytes, urea
nitrogen, glucose and hematocrit. The patient should be
weighed, the depth of the burns must be assessed and the
extent of the burn should be estimated by the rule of
nines (where each upper limb accounts as 9%; each lower
limb, 18%; anterior and posterior trunk, each 18%; head
and neck, 9%; and perineum and genitalia, 1%) and on
the basis of these calculations, the fluid infusion rate is
adjusted accordingly. A urethral catheter should be placed
in all burn patients requiring intravenous fluid therapy for
the measurement of hourly urinary output.

The clinical course of a burn is a dynamic cascade of
pathological changes including hypermetabolism,

hypovolemia and decreased immune function. The major
causes of death in burn patients include multiple organ
failure and infection. It is important for the clinician to
understand the pathophysiology of burn injury and the
effects it will have on the pharmacokinetics of a drug.
After the initial treatment, the patient must be admitted
for further non-operative treatment including
resuscitation, nutrition, infection control, ventilation and
other burn wound management techniques (16).
Ventilatory status should again be assessed to determine
the need for endotracheal intubation, oxygen
administration and mechanical ventilatory support. The
use of clinically effective topical antimicrobial agents
developed in the mid-1960s has significantly decreased
the occurrence of invasive burn wound infections and
burn wound sepsis; thus this effect has been associated
with the improved survival of burn patients (17). In
particular silver nitrate soaks and silver sulfadiazine are
most effective when initiated immediately after burning,
before significant microbial colonization has occurred
(15).

Pathophysiology of Thermal Injury

The local and systemic inflammatory response to
thermal injury is extremely complex, resulting in both
local burn tissue damage and deleterious systemic effects
on all other organ systems distant from the burn area
itself. Although the inflammation is initiated almost
immediately after the burn injury, the systemic response
progresses with time, usually peaking 5 to 7 days after
the burn injury (18-20). Much of the local and certainly
the majority of the distant changes are caused by
inflammatory mediators (21-23). Thermal injury initiates
systemic inflammatory reactions producing burn toxins
and oxygen radicals and finally leads to peroxidation. The
relationship between the amount of products of oxidative
metabolism and natural scavengers of free radicals
determines the outcome of local and distant tissue
damage and further organ failure in burn injuries (24).
The injured tissue initiates an inflammation-induced
hyperdynamic, hypermetabolic state that can lead to
severe progressive distant organ failure (21-23,25,26). 

Cardiovascular Response

Immediately after thermal injury, the changes that
occur in the cardiovascular system are of vital importance
and require treatment priority in order to limit volume
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deficits, prevent the development of burn shock, and
achieve maximal salvage (15). The cardiovascular
response to thermal injury has 2 separate phases: the
first is the acute or resuscitative phase, which
immediately follows the burn trauma. It is characterized
by decreased blood flow to tissues and organs and is
thought to be caused by hypovolemia following injury
(27). Hypovolemia may be a direct effect of heat, while
the liberation of vasoactive materials from the injured
area, which increases the capillary permeability and
promotes fluid and protein loss into the extravascular
compartment, contributes even more to hypovolemia.
Within minutes of burning, cardiac output falls in
proportion to burn size in association with an increase in
peripheral vascular resistance (28). 

The acute phase lasts about 48 h and is followed by a
hypermetabolic phase characterized by increased blood
flow to the tissues and organs and increased internal core
temperature. During the hypermetabolic phase rapid
edema formation occurs and this has been attributed to
hypoproteinemia, which favors the outward movement of
water from the capillary to the interstitium. Secondly, an
increase in the water permeability of the interstitial space
is evident, which further increases edema formation (29).
Patients with acute burn injuries develop a
hypermetabolic state with associated catecholamine
production and release. Increased adrenergic stimulation
is one of the triggers of myocardial infarction and cardiac
arrhythmias. In burn patients, end-diastolic volume
indices increase while right ventricular ejection fractions
decrease, which strongly indicate myocardial dysfunction
(30). Cardiac instability in burned patients is associated
with hypovolemia, increased afterload and direct
myocardial depression. Additionally, the
hyperaggregability, hypercoagulability, and impaired
fibrinolysis resulting from any acute injury may
predispose to myocardial infarction (31-36).

Pulmonary Response

Respiratory failure is one of the major causes of death
after burn injury. Thermal injury itself, without smoke
inhalation, has been shown to produce significant lung
changes in numerous animals and in humans (37,38).
There is increasing evidence that lung inflammation and
lipid peroxidation occur in the first several hours after a
local burn injury and these processes are initiated by
oxidants, in particular hydroxyl radicals. In accordance
with these, we have reported that the levels of the end

products of lipid peroxidation are significantly increased
in lung tissues 24 h after burn injury, suggesting that
pulmonary injury is dependent upon oxygen radicals (39).
On the other hand, systemic activation of the complement
may initiate the process (40,41). Lung inflammation and
lipid peroxidation are not simply an initial transient
response, but persist for at least 5 days after the burn.
With early and complete removal of the burn wound, the
histologic and biochemical abnormalities resolve, again
indicating that the inflammation perpetuates the systemic
inflammatory changes (40,42). In addition, lung
antioxidant defenses may also be decreased postburn. In
the sheep model, lung tissue catalase levels have been
reported to be significantly decreased by 3 days postburn,
even in the absence of any wound infection, the catalase
possibly being inactivated by an early superoxide release
(43). Respiratory complications from smoke inhalation
have become the primary cause of mortality for burn
victims and are attributed to a combination of hypoxemia,
and thermal and chemical effects. Typically, the
pathophysiological sequence 24-72 h after burn trauma
with inhalation injury, includes pulmonary arterial
hypertension, bronchial obstruction, increased airway
resistance, reduced pulmonary compliance, atelectasis and
increased pulmonary shunt fraction. Pulmonary vascular
hypertension and altered capillary permeability are
exaggerated after an inhalation injury. Arachidonic acid,
which is released by disturbed cell membranes, is
converted by cyclooxygenase to cyclic endoperoxides,
thromboxane A2, and prostacyclin (PGI2). Both agents
mediate pulmonary hypertension, ventilation and
perfusion abnormalities leading to progressive hypoxemia
and severe gas exchange disturbances (30). 

Renal Response

During the acute phase of burn injury, renal blood
flow and glomerular filtration rate (GFR), as measured
by creatinine clearance, decrease. In the hypermetabolic
phase, creatinine clearance is increased, indicating that
both blood flow and GFR are raised; however, tubular
function is impaired (44). Diminished blood volume and
cardiac output cause a post burn decrease in renal blood
flow and glomerular filtration rate. If untreated, the
resulting oliguria may progress to acute renal failure.
The incidence of acute renal failure (ARF) in severely
burned patients ranges from 1.3 to 38% and this
complication has always been associated with high
mortality rates (73 to 100%). The pathophysiologic
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mechanism may be related to filtration failure or tubular
dysfunction (45). Two different forms of acute renal
failure have been described in burned patients, differing
in terms of their time of onset (45-51). The first occurs
during the first few days after the injury and is related
to hypovolemia with low cardiac output and systemic
vasoconstriction during the resuscitation period or to
myoglobinuria, which damages the tubular cells
(45,46,50,51). Elevated levels of stress hormones like
catecholamines, angiotensin, aldosterone and
vasopressin have been reported to be implicated in the
pathogenesis of this form of ARF (50). Although this
form of ARF has become less frequent than before with
aggressive fluid resuscitation, it still is a life-threatening
complication in patients with extensive deep burns or
with electro-trauma (46,47,51). The other form of ARF
develops later and has a more complex pathogenesis.
This form has been reported to be related to sepsis and
multiorgan failure and is most often fatal. It has been
said to occur more often in patients with inhalation
injury and is considered the most frequent cause of renal
insufficiency in burn patients (49,51). In addition to
these mechanisms that support the pathogenesis, we
have recently shown that the kidney damage induced by
burn injury is dependent upon the formation of oxygen
radicals, as evidenced by increased lipid and protein
oxidation with a concomitant decrease in renal
antioxidant (glutathione) levels (52).

Gastrointestinal Response

Adynamic ileus, gastric dilatation, increased gastric
secretion and ulcer incidence, gastrointestinal
hemorrhage and local and general distribution of the
blood flow with a decrease of mesenteric blood flow are
among the effects of thermal injury on the
gastrointestinal system (53). A decrease in mesenteric
blood flow has been described in a number of burn and
smoke inhalation animal models, even in the absence of
any evidence of inadequate systemic perfusion (54). The
effect of acute burn trauma, produced by hot water
scalding in the rat, has demonstrated that there is
decreased nutrient absorption (glucose, calcium and
amino acids) and DNA synthesis in the small intestine
(55). The burn patient has been found to have a high
incidence of ulcers. Erosion of the stomach lining and
duodenum has been demonstrated in 86% of major burn
patients within 72 h of injury, with more than 40% of
patients having gastrointestinal bleeding (56). In
addition, the process of increased bacterial translocation
and macromolecular leak have been well documented
after burn injury, being evident in humans as well (57-
60). Intestinal ischemia resulting from decreased
splanchnic blood flow may activate the neutrophils and
tissue-bound enzymes such as xanthine oxidase and these
factors destroy the gut mucosal barrier and result in
bacterial translocation. These data indicate an early
postburn gut barrier leak after the burn, which may be
the source of circulating endotoxin (61). Endotoxin, a
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Table. Systemic responses to burn injury.

Cardiovascular system

Acute (hypovolemia) phase:

• ↓ blood flow

• ↓ cardiac output

• ↑ capillary permeability

• ↑ peripheral vascular resistance

Hypermetabolic phase:

• ↑ blood flow

• edema formation

• cardiac arrhythmias

• myocardial infarction

• myocardial dysfunction/cardiac instability

(↑ end-diastolic volume and ↓ right ventricular

ejection fraction)

Excretory system

Acute (hypovolemia) phase:

• ↓ renal blood flow

• ↓ GFR

Hypermetabolic phase:

• ↑ renal blood flow

• ↑ GFR

• impaired tubular functions

• acute renal failure

Respiratory system

• hypoxemia

• pulmonary hypertension

• ↑ airway resistance

• ↓ pulmonary compliance

Gastrointestinal system

• adynamic ileus

• gastric dilatation 

• delay in gastric emptying 

• gastrointestinal hemorrhage

• ↑ gastric secretions

• ↑ ulcer incidence 

• ↓ intestinal & colonic motility

• ↓ mesenteric blood flow

• ↓ nutrient absorption

• bacterial translocation

• hepatic injury



lipopolysaccharide derived from the outer membrane of
Gram-negative bacteria, translocates across the
gastrointestinal tract barrier within 1 h of thermal injury
(62). Although the burn wound is initially sterile, plasma
endotoxin concentration reaches a peak at 12 h and 4
days postburn (63). Endotoxins are potent activators of
the macrophages and neutrophils. This leads to the
release of massive amounts of oxidants, arachidonic acid
metabolites and proteases, which cause further local and
systemic inflammation in burn-induced tissue damage
(64). 

Chen et al. (65) demonstrated that intestinal and
colonic motility in the rat were decreased following burn
injury accompanied by a delay in gastric emptying. In a
group of studies performed in our laboratory, we
observed a marked delay in the intestinal transit of
burned animals (66-68). Bombesin, which is known to
have a wide spectrum of biological actions in the
gastrointestinal tract, was found to ameliorate intestinal
inflammation due to burn injury by a neutrophil-
dependent mechanism (68). On the other hand,
endogenous endothelins were shown to play an important
role in the systemic response to burn injury, as observed
by a delay in intestinal motility and an infiltration of
neutrophils (67).

A 40-50% decrease in effective or nutrient liver blood
flow has been described in an ovine burn model,
beginning several hours after injury, and persisting even
with apparent adequate volume restoration (69). A
significant increase in liver malondialdehyde has been
reported in the same animal model along with evidence of
increased vacuolization of liver parenchymal cells
(42,69). In similar studies conducted by our group, burn-
induced severe remote organ damage was found in the
gastric and hepatic tissues (70,71). Since a significant
degree of reduction was observed in the severity of liver
and stomach injuries through the inhibition of nitric oxide
synthase (NOS) and this reduction was cancelled by
adding L-arginine as a precursor of nitric oxide (NO), it is
likely that endogenous NO has a significant exacerbatory
role in the pathogenesis of burn-induced remote organ
injury (71). In another study carried out in our
laboratory, the role of cyclooxygenease (COX) inhibition
in intestinal motility and in the extent of tissue injury of
the small intestine and liver at the early phase of burn
injury was investigated. It was concluded that not only
COX-2 but also COX-1 inhibition is required for

protection against inflammatory changes in liver and
small intestine following burn injury (66). The results of
another recent study by our group also showed that a
small and local dermal burn results in oxidant injury of the
liver, which is still evident on the postburn 5th day (72).
This local trauma appears to stimulate the replenishment
of hepatic and intestinal Glutathione (GSH) stores,
resulting in significant elevations after burn injury,
implying that a preconditioning feedback mechanism is
involved in triggering GSH synthesis. Thus, the
antioxidant capacity of the remote organs to cope with
other oxidative challenges appears to be enhanced with
the challenge of minor burns.

Immune Response

Severe thermal injury induces an immunosuppressed
state that predisposes patients to subsequent sepsis and
multiple organ failure, which are the major causes of
morbidity and mortality in burn patients (73,74). A
growing body of evidence suggests that the activation of
a pro-inflammatory cascade after burn injury is
responsible for the development of immune dysfunction,
susceptibility to sepsis, and multiple organ failure (75).
Moreover, thermal injury increases the macrophage
activity, thereby increasing the productive capacity for the
pro-inflammatory mediators (76). There have been
several reports indicating that circulating levels of IL-1β,
IL-6 and TNF-α are increased in patients with burn injury
(77). 

The immunological response to thermal injury is a
depression in both the first and second lines of defense.
The epidermis of the skin becomes damaged, allowing
microbial invasion; the coagulated skin and exudate of the
patient create an ideal environment for microbial growth
(78). We have recently demonstrated that even a local
burn trauma leads to neutrophil infiltration in the wound
site, as well as in the remote organs, the liver and
intestines (72). Since much of the local and certainly the
majority of the distant changes are caused by
inflammatory mediators, these results suggest that a
neutrophil-dependent oxidant injury is present both
locally and remote to injury during the late phase of a
burn wound. Thermal injury also produces a burn-size-
related depression of both the cellular and humoral
aspects of the immune response (78), and the phagocytic
activity of both fixed and blood-borne macrophages and
neutrophils is decreased (79,80). Thermal injury initiates
systemic inflammatory reactions producing burn toxins
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and oxygen radicals and finally leads to peroxidation.
Reactive oxygen metabolites lead to destruction and
damage to cell membranes by lipid peroxidation. Lipid
peroxides have been demonstrated to be increased in
burned animal and patient plasma (81). The relationship
between the amount of products of oxidative metabolism
and natural scavengers of free radicals determines the
outcome of local and distant tissue damage and further
organ failure in burn injury (24). 

Recent evidence suggests that activation of a pro-
inflammatory cascade plays an important role in the
development of major complications associated with burn
trauma (75). With regard to this, macrophages are major
producers of pro-inflammatory mediators, i.e.
prostaglandin E2 (PGE2), reactive nitrogen intermediates,
interleukin (IL)-6, and tumor necrosis factor-α (TNF-α)
(76,82). Dysregulation of macrophage activity leading to
increased release of pro-inflammatory factors appears to
be of fundamental importance in the development of
post-burn immune dysfunction and additional factors
such as T-cell dysfunction, glucocorticoids and T-helper
(Th)-2 cytokines are also causative factors in postburn
immune dysfunction (83- 86). Previous studies have
implicated macrophage hyperactivity (the increased
productive capacity for inflammatory mediators) in the
increased susceptibility to sepsis following thermal injury
(87-89). This concept is explained by Deitch as a “2-hit”
phenomenon (90), where the major burn injury is the
first hit that “primes” the host to exhibit an abnormal
response (i.e. increased pro-inflammatory mediator
release) to a second hit (i.e. sepsis) leading to multiple
organ failure and death. 

The release of pro-inflammatory cytokines (TNF-α,
IL-1 and IL-6) is an important mechanism in the
regulation of the acute phase responses to injury. TNF-α
is a triggering cytokine that induces a cascade of
secondary cytokines and huımoral factors that then lead
to local and systemic sequelae (91). Furthermore, TNF-α
is involved in the development of the shock-like state
associated with thermal injury and sepsis (92). IL-1 is also
a pleiotropic cytokine having a variety of biological
activities including the regulation of the inflammatory
response by acting as a pyrogen, exerting chemotactic
activity and inducing maturation and activation of
granulocytes, and T- and B-cells (93,94). Similarly, IL-6 is
another pleiotropic cytokine that is of vital importance for
B-cell maturation, acute phase protein induction and

regulation of T-cell activation (95). Results of clinical and
experimental studies have shown that IL-6 exhibits a
significant and consistent elevation after burn injury and
sepsis, which correlates with suppresed cell-mediated
immunity and increased mortality (96-98). TGF-β is a
potent chemoattractant of monocytes, neutrophils and
fibroblasts and stimulates many aspects of tissue repair.
Additionally, TGF-β acts as an immunosuppressive and
suppresses the proliferation and differentiation of B- and
T-cells and the expression of cytotoxic T-cells (99-101)
and induces splenocyte apoptosis (102-104). TGF-β
plasma levels are shown to be elevated 6-8 days
postburn.

Experimental and clinical studies have shown elevated
systemic nitrate levels after thermal injury (105-108).
Inducible NOS (iNOS) activity is an important marker of
macrophage hyperactivity postburn. Moreover, other
macrophage derived pro-inflammatory factors induced by
thermal injury (IL-1, TNF-α, PGE2) can all positively
influence macrophage iNOS activity (76,109-112).
Recent studies have also implicated iNOS induction in
vascular hyperpermeability and derangement of gut
barrier function following thermal injury as well as
increased vascular permeability in a combined injury
model of burn and smoke inhalation (113-115). In
accordance with these observations, we have
demonstrated that the inhibition of NO synthesis
ameliorates burn-induced gastric and hepatic damage,
emphasizing the critical role of NO in burn-induced
remote organ injury (71).

Another important immunological aspect of thermal
injury is the increased production of eicosanoids, which
are metabolites of arachidonic acid (e.g., prostaglandins,
leukotrienes, thromboxanes) that have multiple biological
effects. In general, prostaglandins, which are elevated in
burned patients or in experimental animals, are
considered important immunosuppressive mediators
(116,117) and macrophages from burned hosts exert an
enhanced prostaglandin productive capacity (118-125).
Since COX enzyme is responsible for some of the
deleterious consequences associated with thermal injury,
COX inhibitors are capable of restoring the various
aspects of immune function and improve survival after
thermal injury (121,126,127).

It has been implied that the elevated production of
PGE2 and NO by macrophages can suppress T-cell activity
(128-131) and impaired T-cell function may be the end
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point in the development of thermal injury-induced
immunosuppression. Several findings suggest a potential
dual role for γ/δ T-cells postburn. Although gut barrier
function is compromised following thermal injury,
increased “early postburn mortality” in mice lacking γ/δ T-
cells is suggestive of a role for these cells in maintaining
some aspect of gut barrier function following burn injury
(125). In a recent study, we investigated whether
exogenous leptin, an adipose tissue derived circulating
hormone, reduces remote organ injury and burn-induced
immunosuppression in rats with thermal burn. In order
to assess the impact of leptin administration on burn-
induced immune response, the profile of circulating
leukocytes and their apoptotic responses in burn injury
were evaluated. Moreover, the effect of leptin treatment
on tissue neutrophil infiltration, which is known to be a
potential source of free oxygen radicals in mediating
postburn injury, was also investigated. Our results
demostrate the presence of elevated myeloperoxidase
activity in all the studied remote organs, implicating the
contribution of neutrophil infiltration. Leptin
administration was found to be effective in protecting the
liver, kidney and the gut within 24 h of burn injury, while
lung injury was not alleviated with by leptin treatment. All
the organs that were protected against burn trauma
demonstrated a reduction in tissue neutrophil infiltration,
suggesting that the protective effect of leptin may involve
an inhibitory action on tissue neutrophil accumulation.
Furthermore, leptin treatment reduced the burn–induced

death and apoptosis of circulating leukocytes and
prevented the apoptosis of both the monocytes and
granulocytes (unpublished observations). Since it was
previously shown that leptin replacement in mice was
protective against susceptibility to endotoxic shock by
inhibiting TNF induction (132), our results suggest that
leptin ameliorates burn-induced remote tissue injury that
appears to be due to its inhibitory effect on the apoptosis
of cytokine-producing leukocyte subsets, which may or
may not directly involve the inhibition of TNF induction. 

Despite recent advances, multiple organ failure (such
as cardiac instability, respiratory or renal failure) and
compromised immune function, which results in
increased susceptibility to subsequent sepsis, remain
major causes of burn morbidity and mortality (133).
Further experimental and clinical studies will hopefully
lead to a more complete understanding of these
pathological processes. From that point it should be then
possible to develop improved treatments for burn
patients. 
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