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ORIGINAL ARTICLE

Investigation of Four Different Normality Tests in Terms
of Type 1 Error Rate and Power under Different

Distributions

Background: An important aspect of the "description" of a variable is the shape of its distribution, which tells
you the frequency of values from different ranges of the variable. Typically, as most of the statistical tests are
based on the normality assumption, a researcher is interested in how well the distribution can be approximated
by the normal distribution. Unless there are extreme violations of the normality assumptions, approved
statistical tests usually provide accurate results. Although simple descriptive statistics can provide some
information relevant to this issue, more precise information can be obtained by performing one of the tests
of normality to determine whether the sample comes from a normally distributed population or not. 

Aim: Lilliefors corrected Kolmogorov-Smirnov, Shapiro-Wilk, D’Agostino Pearson and Jarqua-Bera tests were
aimed to be compared in terms of Type I error and power of the tests. 

Materials and Methods: The simulation was run 1000 times for 23 different sample sizes and for 8
different distributions. Lilliefors corrected Kolmogorov-Smirnov, Shapiro-Wilk, D’Agostino Pearson and
Jarqua-Bera tests were compared in terms of Type I error and power of the tests. 

Results: The most powerful results for normal distributions were given by the Jarqua-Bera and for non-
normal distributions by the Shapiro-Wilk test.

Conclusions: As it had the lowest Type I error rate, the Jarqua-Bera test was superior for normal and
standard normal distributions. For nonnormal distributions, achieving sufficient power at smaller sample sizes,
the Shapiro-Wilk was the most powerful.

Key Words: Lilliefors corrected Kolmogorov-Smirnov, Shapiro-Wilk, D’Agostino Pearson and Jarqua-Bera
tests 

Dört Farkl› Normallik Testinin Farkl› Da¤›l›mlar ‹çin Tip 1 Hata ve Güç
Aç›s›ndan ‹ncelenmesi

Girifl: Bir de¤iflken, sahip oldu¤u de¤erlerin frekans›na iliflkin bilgi veren da¤›l›m flekli ile tan›mlanabilir.
‹statistiksel testlerin ço¤unlu¤u genellikle normallik varsay›m›na ba¤l› oldu¤u için, araflt›rmac› da¤›l›m›n normal
da¤›l›ma yak›n olup olmad›¤› ile ilgilenir. Normallik varsay›m›ndan çok ciddi sapmalar olmad›¤› sürece, uygun
istatistiksel testler genellikle do¤ru sonuçlar verir. Basit tan›mlay›c› istatistikler, normallik ile ilgili önemli
bilgiler sa¤lasa da, daha kesin bilgi, örneklemin normal da¤›l›ma sahip olan bir kitleden çekilip çekilmedi¤i
hakk›nda bilgi veren mormallik testlerinden birisinin uygulanmas› ile elde edilebilir. 

Amaç: Lilliefors düzeltmeli Kolmogorov-Smirnov, Shapiro-Wilk, D’Agostino Pearson ve Jarqua-Bera
testlerinin, Tip I hata ve güç aç›s›ndan karfl›laflt›r›lmas›.

Yöntem ve Gereç: Simülasyon çal›flmas› 23 farkl› örneklem büyüklü¤ü ve 8 farkl› da¤›l›m için 1000 defa
uygulanm›fl ve Lilliefors düzeltmeli Kolmogorov-Smirnov, Shapiro-Wilk, D’Agostino Pearson ve Jarqua-Bera
testleri, Tip I hata ve güç aç›s›ndan karfl›laflt›r›lm›flt›r. 

Bulgular: Normal da¤›l›mlar için Jarqua-Bera testi, normal olmayan da¤›l›mlar için Shapiro-Wilk testi en güçlü
testler olarak belirlenmifltir 

Sonuç: En küçük Tip I hata oran› nedeniyle, normal da¤›l›m ve standart normal da¤›l›mlar için Jarqua-Bera
testi en iyi sonucu vermifltir. Normal olmayan da¤›l›mlar için küçük örneklem büyüklüklerinde yeterli gücü
sa¤lamas› bak›m›ndan Shapiro-Wilk en güçlü test olarak belirlenmifltir. 

Anahtar Sözcükler: Lilliefors düzeltmeli Kolmogorov-Smirnov, Shapiro-Wilk, D’Agostino Pearson ve Jarqua-
Bera testleri
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Introduction

It is necessary to apply statistical methods in all phases
of the study from collecting data to evaluating its results
in medical sciences. Although researchers commonly use
statistical analyses as computer technology develops, it is
known that some of them do not test parametric test
assumptions, especially the “normality assumption”. This
assumption is crucial for the reliability of test results. In
statistical package programs, there are several tests for
normality. However, the important point is to assess
which test should be used under which condition. We
consider that this study will be a guide for researchers in
medical sciences to decide the most appropriate normality
test for their data set.      

Many data analysis methods depend on the
assumption that data were sampled from a normal
distribution. There are several methods in order to see
whether or not continuous data are distributed normally.
In general, the normality assumption can be evaluated by
graphical and test methods. However, graphical methods
provide us with some information about the shape of the
distribution, but do not guarantee that the distribution is
normal and do not test whether the difference between
the normal distribution and the sample distribution is
significant. Moreover, there are potential problems with
normality tests. Because of a small sample size, normality
tests have little power to reject the null hypothesis that
the data come from a normal distribution. Therefore,
small samples always pass normality tests. With large
samples, minor deviations from normality may be flagged
as statistically significant, even though small deviations
from a normal distribution will not affect the results of a
parametric test (1). Thus, the best way to decide whether
data are normal or not is to evaluate graphs together
with an appropriate normality test.

In the literature, the main tests that assess the
assumption of normality are the chi-square goodness of
fit test, Kolmogorov-Smirnov (K-S) test, Lilliefors
corrected Kolmogorov-Smirnov test, Anderson-Darling
test, Cramer-von Mises test, Shapiro-Wilk test,
D’Agostino skewness test, Anscombe-Glynn kurtosis test,
D’Agostino Pearson omnibus test and Jarqua-Bera test.  

The aim of this study was to evaluate the performance
of the Lilliefors corrected Kolmogorov-Smirnov, Shapiro-
Wilk, D’Agostino-Pearson and Jarqua-Bera tests, which
are commonly used in the SPSS program.

Graphical Methods

Histogram

The simplest and perhaps the oldest graphical display
for one-dimensional data is the histogram, which divides
the range of the data into bins and plots bars
corresponding to each bin, the height of each bar
reflecting the number of data points in the corresponding
bin. Unfortunately, the way in which histograms depict
the distribution of the data is somewhat arbitrary,
depending heavily on the choice of bins and bin widths.
The histogram graphically summarizes the distribution of
a data set such as the center of the data, spread of the
data, skewness of the data, presence of outliers, and
presence of multiple modes in the data (2). 

Stem and Leaf Plot

A stem-and-leaf plot is a variant on histograms that
combines the features of a graphic and a table in that the
original data values are explicitly shown in the display as
a “stem” and a “leaf” for each value. The stems determine
a set of bins into which leaves are sorted, and the
resulting list of leaves for each stem resembles a bar in a
histogram (2).

Boxplot

A boxplot provides an excellent visual summary of
many important aspects of a distribution. Tukey
developed the boxplot display, based on the 5-number
summary (minimum, first quartile, median, third quartile,
maximum) of the data (3). Suspected outliers appear in a
boxplot as individual points o or x outside the box. If
these appear on both sides of the box, they suggest the
possibility of a heavy-tailed distribution. If they appear on
only one side, they suggest the possibility of a skewed
distribution (4).

Each of the aforementioned displays tries to answer
the question of how the data are distributed by showing
what the data distribution “looks like”, but they do not
deal with the issue of how the data distribution compares
with some theoretical distributions.

Normal Quantile Quantile Plot (Q-Q Plot)

The normal Q-Q plot may be the single most valuable
graphical aid in diagnosing how a population distribution
appears to differ from a normal distribution. Normal Q-Q
plots plot the quantiles of a variable’s distribution against
the quantiles of the normal distribution. For values
sampled from a normal distribution, the normal Q-Q plot
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has the points all lying on or near the straight line drawn
through the middle half of the points. Scattered points
lying away from the line are suspected outliers that may
cause the sample to fail a normality test.

Normal Probability Plot (P-P Plot)

A normal probability plot plots observed cumulative
probabilities of occurrence of the standardized residuals
on the Y axis and of expected normal probabilities of
occurrence on the X axis, such that a 45-degree line will
appear when the observed conforms to the normally
expected and the assumption of normally distributed
error is met.

Test Methods

Kolmogorov-Smirnov (KS) Test

The Kolmogorov Smirnov test is an “empirical
distribution function (EDF)” test in which the theoretical
cumulative distribution function of the test distribution is
contrasted with the EDF of the data (5). The KS test was
first proposed by Kolmogorov and then developed by
Smirnov. This test compares the cumulative distribution
of the data with the expected cumulative normal
distribution, and bases its P value on the largest
discrepancy.

The test statistic is defined by D = supx|Fn(x) – F(x, µ,
σ)|, where F(x, µ, σ) is theoretical cumulative distribution
function of the normal distribution function, and Fn(x) is
the empirical distribution function of the data. Large
values of D indicate nonnormality. If the population
parameters (µ and σ) are known, then the original KS
test can be used. When they are not known they can be
replaced by sample estimates (5).

Lilliefors Corrected Kolmogorov-Smirnov Test

The Lilliefors corrected KS test compares the
cumulative distribution of data to the expected cumulative
normal distribution. This test is different from the KS test
because the population parameters that are unknown are
estimated, while the statistic is the same. The Table
values of the two tests are different, which results in
different decisions (6).

Shapiro-Wilk (SW) test

The Shapiro-Wilk test, developed by Shapiro and Wilk,
is the most powerful and omnibus test in most situations.
In recent years, the SW test has become the preferred
test of normality because of its good power properties as

compared to a wide range of alternative tests (6). The
SW test depends on the correlation between given data
and their corresponding normal scores. A significant W
statistic causes the researcher to reject the assumption
that the distribution is normal (7). The test statistic for
this test is

(1)

where x(i) is the i-th largest order statistic,  x- is the sample
mean, and n is the number of observations (6).

D’Agostino-Pearson (DAP) Omnibus Test

The D’Agostino-Pearson test first analyzes data to
determine skewness (to quantify the asymmetry of the
distribution) and kurtosis (to quantify the shape of the
distribution). It then calculates how far each of these
values differs from the value expected with a normal
distribution, and computes a single P value from the sum
of the squares of these discrepancies (1). This test is a
combination of the D’Agostino skewness test and
Anscombe-Glynn kurtosis test. The DAP test statistic is
K2 = Z2(√b1) + Z2(b2), where Z2(√b1) and Z2(√b2) are the
standard normal deviates equivalent to observing
√b1(skewness) and b2 (kurtosis) (5). The K2 statistic has
approximately a chi-squared distribution, with 2 degrees
of freedom when the population is normally distributed.
For sample sizes n ≥ 8, a normal approximation that is
easily computerized is available (8). 

Jarqua-Bera (JB) Test

The Jarqua-Bera test depends on skewness and
kurtosis statistics. The JB test statistic is:

(2)

The T statistic has approximately a chi-squared
distribution, with 2 degrees of freedom (9).                 If
the JB test statistic equals zero, it means that the
distribution has zero skewness and 3 kurtosis, and so it
can be concluded that the normality assumption holds.
Skewness values far from zero and kurtosis values far
from 3 lead to an increase in JB values.

T = n ( b1)2

6
 + (b2 – 3)2

24

W =
aix(i)∑

i = 1

n 2

(xi – x)2∑
i = 1

n
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Table 1. Type I error rates and power of tests for different distributions and sample sizes.

Normal Standard Normal Gamma Exponential

Tests/ Type I Error Rate Type I Error Rate Test Power Test Power
Sample
Size KS SW DAP JB KS SW DAP JB KS SW DAP JB KS SW DAP JB

5 3.8 3.8 - - 4.8 4.5 - - 8.9 11 - - 11.9 15 - -
6 5.1 4.7 - - 3.6 3.8 - - 11.1 12.6 - - 16.8 21.7 - -
7 5.9 5.8 - - 4.6 4.4 - - 11.2 14.5 - - 21.6 29.3 - -
8 5 5 5.3 0.6 5.5 4.5 5.4 0.2 14.1 18.4 18.5 2.6 24 34.6 26.7 5.9
9 4.9 4.9 5.1 0.5 5.6 5.6 6.9 0.4 14.4 19.1 18 3.9 28.7 38.1 31 11
10 5.9 5.6 6.5 0.8 4.7 4.1 5.2 0.3 16.6 23.5 23.1 7.4 30.8 46.7 34 17
11 5.3 4.7 5.1 1.1 6.9 7.3 7.6 3.9 18.4 27.7 23.3 11.1 32.7 51.4 37.3 19
12 4.2 4.7 5.3 1 5 4.5 4.5 1.2 20.6 30.2 25.6 11.8 37.5 54.6 41.6 23.7
13 4.4 3.8 6 1.3 4.7 4.3 4.5 1 22.4 32.9 29.1 15.4 41.1 60.2 44.3 27
14 4.5 5.4 5.9 1.6 3.9 4 4.5 1.4 20.5 34.8 30.1 17 37.6 60.6 44.2 27.2
15 6 4.7 6.1 2 4.6 5 5.3 1.8 23.6 38.8 31.4 18.6 42.4 64.1 47.7 31.1
20 4.2 5 5.9 2.2 3.8 5 6.2 2 31 54.8 42.7 32 58.2 83.3 60.4 49.5
25 5 5.6 6.4 2.9 4.9 4.6 4.6 2.2 37.5 64.4 48.3 39 70.8 91.7 69.5 59.8
30 4.1 5.2 5.2 2.5 4.8 4.7 5.2 2.8 46.4 74.6 54.2 47.8 77.4 96.8 79.4 72.7
35 4.6 5.1 6.5 3.2 5.1 5.6 7 4.3 50.8 84.3 64.6 57.8 86.2 99 85.3 81.9
40 5.6 5.8 6.1 4.1 4.9 4.2 5.4 3.1 59.5 87.6 68.7 63.4 91 99.7 90.2 88.2
45 5.3 5 6.4 4.4 4.9 4.7 5.1 3.1 63.9 91.5 74.8 70.3 93.5 100 93.9 92.5
50 6.1 5.3 2.5 1.2 4.6 5.2 5.5 3.6 69.9 94.6 79 75.5 96.2 99.9 96.8 95.9
75 3.9 3.9 5 3.5 5.2 5.8 5.3 4.1 87 99.7 96.2 95.6 99.9 100 99.9 99.8
100 4.6 3 4 3.2 5.6 6.4 5.1 3.9 95.5 100 99.3 99.3 100 100 100 99.9
150 4.5 4.2 6.4 4.4 5.6 5.5 6 4.4 99.7 100 100 100 100 100 100 100
175 5.3 5.8 6.2 4.4 6 5.6 6.7 5.3 99.9 100 100 100 100 100 100 100
200 6.1 5.2 6.1 4.4 6.3 4.9 5.2 4.7 99.9 100 100 100 100 100 100 100

T Beta Chi-square Uniform

Tests/ Test Power Test Power Test Power Test Power
Sample
Size KS SW DAP JB KS SW DAP JB KS SW DAP JB KS SW DAP JB

5 3.6 3.4 - - 4.7 5 - - 4.5 5.2 - - 3.5 5.2 - -
6 4.8 4.4 - - 6.9 6.8 - - 6.1 6.2 - - 4.1 6.2 - -
7 5.1 4.6 - - 5.6 5.6 - - 5.6 6.9 - - 6.1 6.7 - -
8 4.7 4.7 5.7 0.3 6.7 9.2 8.2 0.2 5.9 6.7 8.7 0.6 5.2 7.3 2.4 0
9 6 6.7 8.1 0.8 7.8 9.2 8.8 1.9 6.4 6.5 7.4 0.8 5.8 7.7 3.3 0.4
10 5 5.7 6.9 1.2 7.2 9.5 9.1 1.4 5.6 7 8.9 1.5 6.6 7.7 2.8 0.2
11 5.8 7 8 1.9 8 9.3 6.7 1.8 6.7 7.5 8.2 1.5 5.9 9.9 1.8 0
12 6.7 5.3 7.2 1.7 7.6 8.7 8 1.8 6.7 7.5 8.4 3.3 6.1 9.9 3 0.2
13 5.5 6.4 7.5 2.3 8.1 9.9 8.5 2.2 6.5 10.6 10.1 4 5.9 11.6 5.4 0.1
14 4.4 5.1 6.1 1.7 9.2 12.1 8 2.8 6.8 9.2 8.3 3.1 8.5 12.8 7.3 0
15 5.1 6.7 7.4 3.6 8.6 10.3 7.9 2.3 6.5 9 9 4.5 8.1 13.8 7.3 0
20 5.4 4.9 5.8 2.5 11.5 16.6 11.7 5.1 7.8 11.6 12.1 6.7 8.9 19.6 14.3 0
25 6.1 6.3 8.8 5.5 12.4 21.9 12.1 5.9 9.8 14 14.3 8.7 10.4 26.9 27.9 0.1
30 5.3 6.3 8.2 5.4 16 29.2 17.4 9.9 9.8 14.8 13.5 9.6 13.1 36 39.2 0
35 5.5 6.1 8.2 5.7 16.9 31.8 17.2 10 11.7 17.1 16.7 12.1 13.8 46.2 53 0.2
40 6 7.7 8.6 7 19.9 41 20.7 12.5 12.1 19.8 16.7 12.9 20 58.3 64.2 0
45 5 5.6 7.7 5.1 21.5 43.9 21.9 12.7 13.9 21.6 17.5 14.3 22.6 65.5 70.4 0
50 4.8 7.1 9.5 7.6 26.8 48.6 22.9 15.2 4 11 12.3 11.5 27.9 75.7 82.4 0
75 5.1 8.1 8.2 8.2 39.2 76.1 40.2 30.1 18.4 35.9 30.8 26.5 41.7 95.1 97.3 7.5
100 5.8 7.8 9.2 8.5 50.4 89 59.2 48.5 22.7 43.7 37.9 34.5 57.3 99.7 99.5 55
150 6 7.9 10.6 12 72.6 99 90.4 86.3 34.4 60.5 54.4 51.6 84.4 100 100 98
175 6.1 8.8 10.7 12 77.2 99.6 96 94.2 39.1 68.9 62.2 61 89.9 100 100 100
200 4.9 8.5 10.4 12 83.1 100 98.7 97.7 44.8 74.6 68.7 66.1 93.7 100 100 100



Materials and Methods

In order to compare the performances of the 4 tests
considered above, for each of the samples of sizes n = 5,
6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40,
45, 50, 75, 100, 150, 175 and 200, 1000 samples were
generated from Normal (100, 4), Standard Normal (0,
1), Gamma (2, 1), Exponential (1), t (30), Beta (2, 5),
Chi-square (30) and Uniform (40, 60) distributions.
Random samples were generated by using the functions
RV.NORMAL, RV.GAMMA, RV.EXP, RV.T, RV.BETA,
RV.CHISQ and RV.UNIFORM in “Transform-Compute
Menu” in SPSS for Windows 11.5. Then each pair was
compared by the four tests. When samples were taken
from normal (0, 1) populations, the number of rejected
null hypotheses was declared as the probability for a Type
I error. When samples were taken from populations with
non-normal distributions, the number of rejected null
hypotheses was declared as the test’s power. Therefore,
to compute the empirical Type I error rate and test
power, the program ran each condition 1000 times and
recorded the proportion of significant statistics. DAP and
JB test statistics were calculated for sample sizes n ≥ 8.

Results

Empirical results of 1000 simulation runs are given in
Table 1. Since the DAP and JB test statistics could not be
calculated for sample sizes smaller than 8, 4 tests were
compared for 8 or larger sample sizes. For samples of
size n < 8, no differences were observed between the
Lilliefors corrected KS and SW tests for normal, standard
normal, t or beta distributions; however, the SW test
seemed more powerful for other distributions. 

When the distribution was normal, especially for
n ≤ 30, the JB test yielded the smallest Type I error rate,
followed by the Lilliefors corrected KS and SW tests.

When the distribution was gamma, SW and DAP were
the most powerful tests. Although there was no
difference between these tests for sample sizes smaller
than 20, for sample sizes larger than 20 the power of the
SW test was greater than that of the DAP test. The
powers of Lilliefors corrected KS and JB tests were quite
low for sample sizes smaller than 35.

For exponentially distributed samples, the SW test
was the most powerful for all sample sizes. When the
sample size was greater than 30, the DAP and Lilliefors

corrected KS tests were similar in power, but for 30 or
smaller sample sizes the DAP test was more powerful.

When the distribution was t, none of the tests had
enough power to reject the null hypothesis As the t
distribution approaches the normal distribution for
sample sizes larger than 30, tests were compared in
terms of Type I error and the Lilliefors corrected KS test
had the best performance. 

When the distribution was beta, the SW test was most
powerful; for the sample size of 75, it reached a power
of 80%. The DAP and Lilliefors corrected KS tests were
the most powerful tests after the SW test, but there was
no difference between them. 

For the chi-square distributed samples, the SW and
DAP tests were similar in power, but they had more
power compared to the other tests. Their powers were
less than 80% even when the sample size was 200.
Although the JB test and Lilliefors corrected KS test had
similar performance, for sample sizes larger than 50, the
Lilliefors corrected KS test had less power.

When the distribution was uniform, the SW and DAP
tests had similar power, but were more powerful than
the other tests. They reached the power of 80% for 50
or larger sample sizes. The JB test was the weakest one
among the 4 tests; there were even samples with zero
power.

When the results were evaluated generally, we
concluded that for normal distributions the JB and for
non-normal distributions the SW test gave the most
powerful results. 

Discussion

Many statistical tests require the data to be
approximately normally distributed. Usually, the first step
of data analysis is to test the normality. There are several
tests that provide an easy way to test this.

The KS test can be applied to test whether the data
follow any specified distribution, not just the normal
distribution. As a general test, it may not be as powerful
as a test specifically designed to test for normality.
Moreover, because of the difficulty in specifying the mean
and/or variance beforehand, in practice the Lilliefors
corrected KS test is used instead of the KS test.
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The SW test is difficult for non-mathematicians to
understand, and it does not work well when several
values are the same in the data set. In contrast, the DAP
omnibus test is easy to understand. Unlike the SW test,
this test is not affected if the data contain identical values.
The SW and DAP tests are specifically designed to detect
departures from normality, without requiring that the
mean or variance of the hypothesized normal distribution
be specified in advance. These tests tend to be more
powerful than the KS test. Furthermore, Monte Carlo
simulations studies have indicated that the SW test has
good power properties for a wide range of alternative
distributions (6). As the measures of skewness and

kurtosis are based on the moments of the data, the JB
test has zero breakdown. In other words, a single outlier
can make the test worthless (9). The JB test is an
asymptotic test in which reliability increases with the
number of observations.

In conclusion, because it had the lowest Type I error
rate, the JB test was superior for normal and standard
normal distributions. The SW and Lilliefors corrected KS
tests can also be used for practical purposes. For
nonnormal distributions, except for the t distribution,
achieving sufficient power at smaller sample sizes, the SW
was the most powerful. For the t distribution, all of the
tests had low and insufficient power. 
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