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ORIGINAL ARTICLE

Artificial Neural Network Analysis for Prediction of
Headache Prognosis in Elderly Patients

Aim: To investigate the ability of neural networks to detect and classify the complete improvement of
headache in elderly patients during the follow- up period.

Materials and Methods: The multilayer perceptron (MLP), which is the most common neural network, was
used to predict prognosis of headache in elderly patients. The data set was divided into training and test sets,
and back-propagation algorithm was used as the learning algorithm. The accuracies of the models to predict
completely improved patients at the end of 20, 40, and 60 months of follow-up were evaluated by means of
the areas under the receiver operating characteristic (ROC) curves. 

Results: The classification results showed the neural network models had good performance in both training
and test phases. In addition, the areas under the ROC curve for each period showed that the accuracies of the
models to predict the completely improved patients were in the interval of 0.75-0.90. Conclusions: Neural
network model for grouped survival data can be used as a prognostic model. If the prevalence of a disease is
low, the sensitivity of the model for detection of the patients with disease will be low.

Key Words: Artificial neural networks, headache, multilayer perceptron, prognosis

Yaşlı Hastalarda Baş Ağrısı Prognozunun Tahmini İçin
Yapay Sinir Ağları Analizi

Amaç: Çalışmanın amacı, sinir ağlarının takip süresi içinde başağrısı tam olarak iyileşen yaşlı hastaları
belirleyerek sınıflandırma performansını incelemektir.

Gereç ve Yöntem: Yaşlı hastalarda başağrısı prognozunu tahmin etmek için, en yaygın sinir ağı olan çok
tabakalı perseptron kullanıldı. Veri seti, eğitim ve test setlerine ayrılarak, öğrenme algoritması olarak geriye
yayılım algoritması kullanıldı. Tedavinin 20, 40 ve 60. aylarında hastalardaki tam iyileşmeyi tahmin etmek için
kullanılan modellerin doğruluk dereceleri ROC eğrileri altında kalan alanlar kullanılarak değerlendirildi. 

Bulgular: Sınıflandırma sonuçları, sinir ağı modellerinin hem eğitim hem de test aşamalarında yüksek
performansa dahip olduklarını göstermiştir. Ayrıca, her tedavi periyodu için elde edilen ROC eğrisi altında
kalan alanlar, tam iyileşmeyi tahmin etmek için kullanılan modellerin doğruluk derecelerinin 0.75-0.90
aralığında olduğunu göstermiştir. 

Sonuç: Gruplandırılmış sağkalım verileri için sinir ağı modeli prognostik model olarak kullanılabilir. Eğer bir
hastalığın görülme sıklığı düşük ise, modelin gerçek hastaları tayin etme gücü de (duyarlılığı) düşük olacaktır.
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Introduction

Prognostic models are used for diagnosis and analysis of survival time in many clinical
studies. A number of statistical methods have been developed for these studies. Logistic
regression (LR) is one of them and is used to estimate the probability of an outcome. In
the model, covariate may be a prognostic score, or the model consists of a time-
dependent outcome variable. In such cases, survival analysis is used to determine the
change in the survival ratio across time. Censored data can be thought of as an
important task in survival analysis. The data that has not been observed during the data
collection period is referred to as “censored” data, and Cox regression is the method
used for its evaluation (1).

Recently, artificial neural networks (ANNs) have become popular as diagnostic and
prognostic models (2-12). They have been applied to diagnose disease and predict the
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survival ratio of patients. However, for medical analysis,
ANNs have been shown to have some disadvantages as
well as advantages. The most important advantages of
ANN are their discriminating power, detection of complex
and nonlinear relationships between independent and
dependent variables, and prediction of the case. On the
other hand, ANNs can be considered as "black box"
methods, the model is developed empirically, they can be
over-fitted for training data, and their usage is very
difficult because of computational requirements
(3,13,14). The performance of an ANN depends on the
number of parameters, the network weights, the
selection of an appropriate training algorithm, the type of
transfer functions used, and the determination of
network size. Another disadvantage of using ANNs is that
they require the initialization and adjustment of many
individual parameters to optimize their classification
performance (2). However, some software for ANNs such
as STATISTICA Neural Networks Module includes
Intelligent Problem Solver, which does not demand
initialization and finds optimum network for the data.

Many researchers have compared ANN versus LR,
discriminant analysis and Cox proportional hazards
model. Some of them found that ANN and LR have similar
classification performance (15,16), while others showed
that the differences in performances of ANN and Cox
proportional hazards model for predictions were not
significant (4-7). In LR, the most parsimonious model is
the best model. If the model involves a large number of
variables relative to the number of subjects, unrealistically
large coefficients and/or standard errors are estimated
(17). Hence, the model complexity is reduced by
performing variable selection. Compared to LR, neural
network models are more flexible. ANN can be seen as
the nonlinear generalization of LR (13).

Headache is an important cause of morbidity and loss
of productivity and is one of the most common
complaints in general practice for all age groups (18-20).
After the age of 65 years, more than 13% of women and
7% of men continue to complain of headache, and this
causes various social and healthcare problems (3). There
are few data about the determination of headache
prognosis in these age groups. Primary headaches are the
most frequently seen headache form in the elderly, and
the knowledge about the clinical types and the natural
history of these headaches is quite limited. Hence,
analysis of the time for the total improvement of patients,

especially those with primary headaches, is very
important. Moreover, periodic investigation of this time
and determining which prognostic factor is more efficient
in which period will be meaningful to select a suitable
treatment. ANN can be used to solve this problem by
grouping improvement time. 

The aim of this study was to investigate the usefulness
of neural networks to predict and classify the complete
improvement of headache in elderly patients. 

Materials and Methods

Patients

The study population included 341 patients who had
admitted to the headache clinic of Mersin University
Hospital between March 1999 and January 2005.
Headache diagnosis was reviewed by the same headache
specialist (AO) according to the International Classification
of Headache Diagnosis second edition (ICHD-2) criteria
(21) and subgroup distributions are reported in Table 1.
While following these patients, the results of prophylaxis
treatments and attack treatments were observed
periodically. The follow-up periods were 1-3 months and
treatments were changed or some consultations were
repeated in those patients who did not show meaningful
response to treatment in one period. For example, the
psychiatry consultations were repeated for the patients
with migraine if no significant variations of their pain
characteristics were determined in six-month prophylaxis
treatment. A simultaneous treatment was applied to
patients who had comorbid disorders. Finally, invasive
procedures were used for patients who had no response
to any treatment, if they accepted. The most important
factors for the low treatment success were adaptation
difficulty of disease, disregard of headache drugs for the
others taken for comorbid diseases, and terminating
treatment without informing the physician.

The headache features were recorded using headache
diaries and included the duration, frequency and severity
during follow-up. The patients were seen monthly during
the first three months, and once every two months in the
following months. In each visit, the patients and the
headache diaries were evaluated by a headache specialist,
and the headache diagnosis and treatment options were
revised, if needed. Headache severity was evaluated using
visual analogue scale (VAS) (22). The response to
treatment was evaluated in four categories as complete
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improvement, partial improvement, unchanged, and
worsened. The frequency, severity and duration of
headache were recorded in a special database at each
visit. Complete improvement represents having no
headache or a decrease in headache severity and duration
of more than 80%. Partial improvement represents 30-
80% decrease in headache severity and duration.
Worsened represents increased headache severity or
duration of more than 10% during the follow-up process.

In this study, inputs were sex (1: female, 2: male), age
(years), follow-up time (months), headache type (1:
primary, 2: secondary), headache duration (hours/day),
headache frequency (days/month), and headache severity
score (1-10). Binary output variable was recorded
according to complete improvement before the end of the
follow-up period. The patients improved in a given time
were coded as 1, and the others as 0. Although we had
four equal time intervals between 0 and 80 months, the
distribution of patients to the response variable in the last
period was the same as in the third period. Therefore, we
used three neural network models for three response

variables (complete improvement: less than 20 months,
less than 40 months, and less than 60 months). The
characteristics of input variables and the numbers of the
patients who improved completely according to
comorbidities are given in Tables 2 and 3.

Artificial Neural Networks

An ANN is a paradigm that uses interconnected
artificial neurons and mathematical models in order to
represent complex and nonlinear relationships between
input and output variables. ANN architecture divides data
into training (257 samples; 75%) and test (84 samples;
25%) parts. 

Although different neural network types have been
developed, the most common neural network is the
multilayer perceptron (MLP), which is a feed-forward
neural network type and generally uses back-propagation
algorithm to develop a model to illustrate relationships
between inputs and a desired output for training data.
This model is then used to produce output for test data.
The graphical illustration of the network is shown in
Figure 1.

Table 1. The number of patients in the subgroups of headache type.

Primary headache disorders n Secondary headache disorders n

Migraine with aura 16 Acute post-traumatic headache 4

Migraine with visual aura 1 Chronic post-traumatic headache 17

Infrequent episodic tension-type headache 23 Headache attributed to TIA or ischemic stroke 9

Frequent episodic tension-type headache 71 Temporal arteritis 1

Chronic tension type headache 147 Carotidynia 1

Probable tension type headache 1

aroxysmal hemicrania 3 Headache attributed to intracranial tumors 5

Idiopathic stabbing headache 3 Medication-overuse headache 1

Cough headache 5

Headache attributed to systemic infections 1

Headache attributed to arterial hypertension 13

Headache attributed to other metabolic disorders 1

Headache attributed to disorders of neck 12

Headache attributed to disorders of eye 3

Headache attributed to major depressive disorders 1

Headache attributed to generalized anxiety disorders 1

Trigeminal neuralgia 4

TIA: transient ischemic attack
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Table 2. The characteristics of the input variables.

End of follow-up time (months)

20 40 60 80
Total

Input variable 1† 0 1 0 1 0 1 0

Sex
Female 258 19 239 22 236 25 233 25 233
Male 83 3 80 4 79 5 78 5 78
Age
65-74 283 16 267 20 263 23 260 23 260
75-84 51 6 45 6 45 7 44 7 44
85-94 7 0 7 0 7 0 7 0 7
Headache type
Primary 267 19 248 22 245 25 242 25 242
Secondary 74 3 71 4 70 5 69 5 69
Headache frequency
Mean 20.09 17.09 20.29 17.92 20.27 16.70 20.41 16.70 20.41
Standard deviation 11.00 11.44 10.96 11.44 10.96 11.24 10.94 11.24 10.94
Headache duration
Mean 13.96 11.68 14.12 11.62 14.15 11.40 14.21 11.40 14.21
Standard deviation 16.42 21.19 16.07 19.66 16.14 18.52 16.21 18.52 16.21
Headache severity
Mean 6.18 5.91 6.20 5.92 6.20 5.87 6.21 5.87 6.21
Standard deviation 1.70 1.79 1.69 1.79 1.69 1.76 1.69 1.76 1.69

Table 3. The observed frequencies of complete improvement according to comorbidities. 

End of follow-up time (months)

20 40 60
Total

1† 0 1 0 1 0

Hypertension
+ 166 14 152 17 149 19 147
- 175 8 167 9 166 11 164
Diabetes Mellitus
+ 50 2 48 4 46 4 46
- 291 20 271 22 269 26 265
Coronary Artery Disease
+ 49 2 47 3 46 3 46
- 292 20 272 23 269 27 265
Lipidemia
+ 37 2 35 3 34 3 34
- 304 20 284 23 281 27 277
Stroke
+ 12 1 11 1 11 1 11
- 329 21 308 25 304 29 300
Nausea
+ 133 9 124 11 122 13 120
- 208 15 193 17 191 19 189
Vomiting
+ 27 1 26 1 26 1 26
- 314 21 293 25 289 29 285
Photophobia
+ 60 6 54 7 53 8 52
- 281 16 265 19 262 22 259
Phonophobia
+ 113 10 103 11 102 12 101
- 227 12 215 15 212 18 209
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Training of the network requires minimization of the
learning function, which is a distance measure between
observed and predicted outputs. This procedure is applied
iteratively. A MLP consists of three layers: an input layer,
one or more hidden layers and an output layer.  A MLP
model that consists of a single hidden layer is

where I is the number of inputs, H is the number of
hidden layers,  αH and αk are the bias terms for hidden
and output layers. The transfer function f is the logistic
function for MLP

and the cross-entropy error function is used to classify
binary output (5).

Results

Neural Networks Module of STATISTICA 7.0 software
was used to develop the ANN model. A summary of the
model is reported in Table 4. The model profile gives the
model’s structure, which is the form I:N-N-N:O, where I
is the number of inputs, O is the number of outputs, the
first N is the number of units in input layer, the second N
is the number of units in hidden layer, and the last N is
the number of units in output layer. The sensitivities of
input variables for each model were given with their ratio
and ranking values where the ratio for an input variable

is the sensitivity of modeling performance that occurs if
that variable is no longer available to the model. Since the
relationships between comorbid disorders and complete
improvement were not statistically significant (P > 0.05),
ANN models did not include any of them. The
classification results of the training and test phases of
each model are given in Table 5. 

In this study, we assumed that true positive was the
prediction of a patient who improved completely as
improved. Since the proportion of patients who improved
completely was less than 0.10, the sensitivities (0.33,
0.39, and 0.50 for training samples; 0.25, 0.00, and
0.00 for test samples; 0.47, 0.37, and 0.36 for overall
data) of all models were less than their specificities (0.99,
1.00, and 0.99 for training samples; 0.99, 0.97, and
0.97 for test samples; 0.99, 0.99, and 0.99 for overall
data). Positive predictive values for each period in
training samples and overall data set were detected
between 0.67 and 1.00. Negative predictive values for
each period in training samples and overall data set were
found between 0.93 and 0.96.

Discussion

We trained MLP models and selected one of them with
the best performance value for each output variable. The
model used to predict complete improvement before 20
months includes six variables at input layer, two hidden
layers with 10 and 8 units in each layer, and one output
layer. In practice, we may predict which patient will
improve completely, according to the characteristics of
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Figure 1. The neural network for prediction of complete improvement of patients with headache in given follow-up periods. 



Table 5. Confusion matrixes for training, test and overall sets. 1: Complete improvement, 0: Not
complete improvement. The columns show observed frequencies and the rows show predicted
frequencies for each period.

Sampling

Training Test Overall
End of follow-up 
time (months) 0 1 0 1 0 1

0 237 12 79 3 316 15
20 1 2 6 1 1 3 7

0 239 11 74 8 313 19
40 1 0 7 2 0 2 7

0 231 16 76 6 307 22
60 1 2 8 2 0 4 8

sex, age, headache type, headache duration, headache
frequency, and headache severity. In addition, we may
want to learn which patient will improve completely at
the end of a given follow-up period. Thus, we can use
ANN to classify patients as improved or not completely
improved at the end of a period by input variables.

Many researchers have compared ANN versus LR,
discriminant analysis and classification and regression
trees, and showed that ANN and LR have similar
predictive performance [15]. On the other hand, the
sensitivity and specificity of ANN modeling was superior
to multivariate LR analysis [16]. The results of the
comparison of the performance of multiple discriminant
analysis (MDA), LR and ANNs showed that LR and MDA
were both more efficient in the use of computer time
than ANN. The results also suggested that the

classification performance of all methods were almost the
same (23). The accuracies of ANN model and Cox
proportional hazards model with respect to their
sensitivities, specificities, positive and negative predictive
values and the areas under the receiver operating
characteristic (ROC) curves were calculated; both models
had similar performance (4). ANN models have been
recently developed for the analysis of censored survival
data (5-7).

This study gives important results about classification
of patients in a given follow-up period. The performances
of the model were high in both training and test phases
for all periods. We noticed that the sensitivity of headache
frequency was higher than the others for each follow-up
period. In addition, sex was the common variable to
predict improvement for each period. While all variables
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Table 4. A detailed summary of multilayer perceptron models.

End of follow-up time (months)

20 40 60

Profile 6:6-10-8-1:1 6:6-10-10-1:1 6:6-10-8-1:1

Train performance 0.945 0.957 0.929

Test performance 0.952 0.881 0.905

Sensitivity: Ratio (ranking)

Sex 1.315 (3) 1.069 (2) 1.370 (2)

Age 1.095 (6) 1.030 (4) 1.225 (4)

Headache type 1.137 (5) 1.051 (3) 1.150 (5)

Headache frequency 1.639 (1) 1.348 (1) 2.197 (1)

Headache duration 1.149 (4) 0.912 (6) 1.305 (3)

Headache severity 1.454 (2) 1.004 (5) 1.057 (6)



except headache duration in the second period were
important in predicting, headache severity in the first
period, headache type in the second period, and headache
duration in the third period were the most important
variables. Therefore, total improvement of headache
before 20 months more likely depends on headache
frequency, severity, and duration as well as on gender
(Table 4).     

The classification results showed that the neural
network models for each period were good at
discriminating patients who had not improved completely
at the end of the given period. The areas under the ROC
curve for each period are given in Figure 2. The
accuracies of the models to predict completely improved
patients at the end of 20, 40, and 60 months of follow-
up were 0.895, 0.749, and 0.825, respectively.  

Artificial neural networks can be used to analyze the
complex and huge data sets since they are distribution-
free models. They can be applied to multivariate nonlinear
problems. In addition, they can detect complex nonlinear
relationships between independent and dependent
variables and interactions among estimating variables.

In medical practice, ANNs are generally used to
diagnose and monitor the prognosis of a disease. Medical
usage areas of ANN can be explained with some examples
from the literature. ANNs have been used to determine
prognosis in trauma, prognosis after cardiopulmonary
resuscitation, outcome of treatment for ovarian cancer,
prognosis in acquired immunodeficiency syndrome
(AIDS), predicting mortality of patients with end-stage
liver disease, prognosis for patients with colonic cancer,
detecting extensive coronary artery disease, predicting
length of stay in the intensive care unit following cardiac
surgery, and predicting the risk of death for small-cell
lung cancer patients (2,4,8,11,15,24-27). In this study,
we also used ANN to predict complete improvement of
elderly patients with headache.

Headache is an important cause of morbidity and loss
of productivity and is one of the most common
complaints in general practice. We thus used ANNs to
establish prognosis of complete improvement of
headache in patients over 65 years of age. Although ANN
models have the best performance in large data sets, we
notice that they might be good at predicting complete
improvement of patients in a given follow-up period.
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Figure 2. ROC curves and their accuracies for prediction of complete improvement in three periods after treatment.



Therefore, the neural network model for grouped
survival data can be used as a prognostic model, and the
significant risk factors can be determined using sensitivity
analysis. In this study, the prevalence of complete
improvement of patients over 65 years is low, and the

sensitivity of the model for detection of patients who will
improve completely at the end of the follow-up period is
also low. Nevertheless, we can use ANN models to learn
which risk factors affect the complete improvement of
elderly patients with headache in a given period. 
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