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Piracetam reverses haloperidol-induced catalepsy in mice

Omar Abdel SALAM1, Somaia NADA2

Aim: To investigate the memory-enhancing drugs piracetam, vinpocetine, and ginkgo biloba for their ability to reduce 
catalepsy in mice treated with haloperidol. Haloperidol is a classic neuroleptic drug that induces motor abnormalities 
and cognitive impairment due to a blockade of dopamine D2 receptors in the striatum. 
Materials and methods: Catalepsy was induced by intraperitoneal haloperidol (2 mg/kg) administration. Th e drugs 
being tested were either administered intraperitoneally (IP) along with the dosage of haloperidol or 30 min prior to the 
introduction of the haloperidol. Catalepsy was measured using the bar test.  
Results: Th e administration of haloperidol (2 mg/kg, IP) resulted in signifi cant catalepsy. Piracetam (in dosages of 50, 
100, and 300 mg/kg) given IP at the time of haloperidol administration reduced the duration of catalepsy by 24.4%, 
32.3%, and 48.2%, respectively. Piracetam given as a 30-min pretreatment reduced the duration of catalepsy by 59.5%, 
72.3%, and 78.2%, respectively. Vinpocetine coadministered IP with haloperidol did not modify catalepsy, but given as 
a 30-min pretreatment, the drug increased catalepsy duration by 53.5%, 53.6%, and 65.1%, respectively. Ginkgo biloba 
coadministered IP with haloperidol at 25, 50, or 150 mg/kg increased catalepsy duration by 13.6%-17.1%. Ginkgo biloba 
given 30 min prior to haloperidol increased catalepsy duration by 29.1%, 35.1%, and 37.2%, respectively. 
Conclusion: Th e present study indicates that the nootropic drug piracetam reduces haloperidol-induced catalepsy in 
mice. 
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Introduction
Typical antipsychotics used in schizophrenia treatment, such as haloperidol, produce 

extrapyramidal side eff ects, which are attributed to a blockade of D2 in the striatum (1). 
Catalepsy is a state of postural immobility (akinesia) with muscular rigidity. Catalepsy induced 
by haloperidol is considered a rodent model of the Parkinson’s-like side eff ects caused by typical 
antipsychotics in humans (2). Antipsychotics can also induce defi cits in working memory (3,4) 
and, accordingly, drugs that improve learning and memory are oft en prescribed to counteract the 
cognitive impairment.

Piracetam is a pyrrilodine derivative (2-oxo-1-pyrrolidine acetamide) that has been shown to 
facilitate learning and prevent the development of amnesia under diff erent experimental conditions 
(5). In clinical practice, the drug has been shown to enhance recovery from aphasia aft er stroke 
(6), and to improve cognitive function in the elderly (7) and aft er coronary artery bypass (8). It 
also improved degenerative cerebellar ataxia (9) and prevented alcohol withdrawal delirium (10).

Vinpocetine (vinpocetine-ethyl apovincaminate) is a synthetic derivative of the alkaloid 
vincamine, an extract of periwinkle (Vinca minor), and is widely used to improve the cognitive 
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function of patients with cerebrovascular disease. Th is 
eff ect is a result of its ability to increase cerebral blood 
fl ow, which in turn increases the regional cerebral 
glucose uptake (11). It also signifi cantly decreased 
the risk of transient ischemic attacks and strokes in 
patients with chronic cerebrovascular insuffi  ciency 
(12). Th e drug displayed memory-protective and 
memory-enhancing properties (13,14). Vinpocetine 
is a phosphodiesterase 1 inhibitor (15) and a blocker 
of voltage-gated Na+ channels (16), which are thought 
to be especially relevant to its anticonvulsant and 
neuroprotective eff ects. Vinpocetine also inhibited 
lipid peroxidation stimulated by ascorbate/Fe2+ in 
rat brain synaptosomes (17).  

Standardized extracts from the leaves of ginkgo 
biloba are widely used to improve cognition and 
memory in cases of cerebral insuffi  ciency (18,19). 
Extracts of ginkgo biloba contain 24% ginkgo-
fl avone glycosides and 6% terpenoids (ginkgolides, 
bilobalide). Th e benefi cial eff ects of ginkgo biloba 
have been ascribed to its antioxidant and free 
radical scavenging activities (20), as well as its 
antiinfl ammatory (21), vasodilatory (22), and 
rheological (23) properties. Moreover, ginkgolides, 
especially ginkgolides B and C, are potent platelet-
activating factor antagonists (24). 

Apart from being used to improve cognitive 
functions in the elderly and in diff erent disease 
processes, the aforementioned nootropic drugs 
might also aff ect motor circuits in the brain and could 
therefore be used in the treatment of movement 
disorders or with conditions that have adverse 
motor infl uences. For example, piracetam has been 
used in the cortical myoclonus, where it resulted in 
a signifi cant improvement in motor performance 
(25). It improved gait in patients with cerebellar 
ataxia (9) and appeared to be eff ective in reducing 
the symptoms of tardive dyskinesia in schizophrenic 
patients on antipsychotic treatment (26). Vinpocetine 
is a blocker of voltage-gated sodium channels. 
Such channels are responsible for action potential 
generation and propagation, and an increased activity 
of these channels accompanies disease states such as 
epilepsy, chronic pain, neurodegenerative diseases, 
and spasticity (27). Vinpocetine has been reported to 
decrease spontaneous locomotor activity in rats (28). 
Ginkgo biloba delayed the deterioration of motor 

functions in rats with chronic cerebral insuffi  ciency 
(29). Furthermore, these drugs also displayed a 
capacity for altering neurotransmitter levels in the 
brain and dopamine activity in the striatum (30-33), 
which is relevant to the cataleptic state. 

Th e aim of this study was therefore to investigate 
the eff ect of the memory-enhancing drugs piracetam, 
vinpocetine, and ginkgo biloba on motor symptoms in 
an animal model of haloperidol-induced Parkinson’s 
disease.

Materials and methods
Animals
Swiss male albino mice with a body weight of 

20-22 g were used in this study. Standard laboratory 
food and water were provided ad libitum. Animal 
procedures were performed in accordance with the 
Ethics Committee of the National Research Centre 
and followed the recommendations of the National 
Institute of Health’s Guide for Care and Use of 
Laboratory Animals (34). Equal groups were used 
in all experiments, with 6 mice in each group. All 
drug dosages used in the study were based upon 
the human dose converted to meet the physical 
parameters of the rats, as detailed in the Paget and 
Barnes conversion tables (35).

Haloperidol-induced catalepsy
Catalepsy, defi ned as a reduced ability to initiate 

movement and a failure to achieve correct posture, 
was measured by the bar test. Mice were positioned 
so that their hindquarters were on the bench and 
their forelimbs rested on a 1-cm diameter horizontal 
bar that was 4 cm above the bench. Mice were judged 
to be cataleptic if they maintained this position 
for 30 s or more. Th e length of time for which the 
mouse maintained this position was recorded with 
a stopwatch with a maximum duration of 180 s. 
Th is procedure was performed 30 min aft er the 
administration of haloperidol (2 mg/kg, IP). Th e test 
drugs, i.e. piracetam (100, 150, or 300 mg/kg, IP.), 
vinpocetine (1, 2, or 4 mg/kg), and ginkgo biloba 
(25, 50, or 150 mg/kg), were given either at the time 
of the haloperidol administration or 30 min prior 
to the haloperidol administration. Control animals 
received 0.9% saline (the vehicle). 
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Statistical analyses
Data were expressed as mean ± SE. Diff erences 

between treatment groups were determined using 
one-way ANOVA tests followed by multiple 
comparison by Duncan’s multiple range test. A 
probability value less than 0.05 was considered 
statistically signifi cant. 

Results
At a dosage of 2 mg/kg, the IP administration of 

haloperidol produced a signifi cant cataleptic response. 
Th e duration of haloperidol-induced catalepsy 
was signifi cantly reduced by the simultaneous 
administration of 50, 100, and 300 mg/kg dosages of 
piracetam, with the reduction fi gures being 24.4%, 
32.3%, and 48.2% (P < 0.05), respectively. Piracetam 
given 30 min prior to haloperidol further reduced 
the duration of catalepsy by 59.5%, 72.3%, and 78.2% 
(P < 0.05), respectively (Figure 1). Findings showed 
that the duration of catalepsy was signifi cantly 
shorter when piracetam was given 30 min prior to 

the administration of haloperidol than when the 
same dosages were given to the mice at the time of 
haloperidol administration (P < 0.05). Vinpocetine 
(in doses of 1, 2, or 4 mg/kg) had no signifi cant eff ect 
on haloperidol catalepsy when given at the same time 
as the injection of haloperidol. In contrast, the same 
dosages of vinpocetine administered 30 min before 
the haloperidol injection signifi cantly increased the 
duration of catalepsy, by 53.5%, 53.6%, and 65.1% 
(P < 0.05), respectively (Figure 2). Th e duration of 
catalepsy was signifi cantly higher when vinpocetine 
was given 30 min before haloperidol as compared 
with the results seen in mice given vinpocetine at 
the same time as the haloperidol administration (P < 
0.05). Th e administration of 25, 50, or 150 mg/kg of 
ginkgo biloba at the time of the haloperidol injection 
increased catalepsy duration by only 13.6%-17.1% 
(P > 0.05). In contrast, ginkgo biloba given 30 min 
prior to haloperidol resulted in a signifi cant increase 
in the duration of the catalepsy response, with data 
indicating an increase of 29.1%, 35.1%, and 37.2% 
(P < 0.0 5), respectively (Figure 3). Th e duration of 
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Figure 1. Eff ect of piracetam on haloperidol-induced (2 mg/kg, 
IP) catalepsy in mice. Piracetam was given IP either at 
the time of the haloperidol administration or 30 min 
prior to that injection. Data represent mean values 
± SE of 6 mice per group and the percentage change 
(%) in comparison with the control animals. Statistical 
diff erences between the test groups and the control 
group are indicated by asterisks (*). Th e plus sign (+) 
indicates a signifi cant change from the corresponding 
treatment group given piracetam at the time of the 
haloperidol administration.

Figure 2. Eff ect of vinpocetine on haloperidol-induced (2 mg/
kg, IP) catalepsy in mice. Vinpocetine was given IP 
either at the time of the haloperidol administration 
or 30 min prior to that injection. Data represent mean 
values ± SE of 6 mice per group and the percentage 
change (%) in comparison with the control animals. 
Statistical diff erences between the test groups and 
the control group are indicated by asterisks (*). Th e 
plus sign (+) indicates a signifi cant change from the 
corresponding treatment group given vinpocetine at 
the time of the haloperidol administration.
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catalepsy was signifi cantly higher when ginkgo biloba 
was given 30 min before haloperidol, as compared 
with mice given ginkgo biloba at the same time as the 
administration of haloperidol (P < 0.05).  

Discussion
Th e present study provided evidence that catalepsy 

induced by the antipsychotic drug haloperidol is 
reduced by the administration of the nootropic drug 
piracetam and increased by vinpocetine and ginkgo 
biloba. Typical antipsychotics such as haloperidol, 
a dopamine D2 receptor antagonist, produce 
extrapyramidal side eff ects, which are attributed to a 
blockade of D2 in the striatum (1). Rats treated with 
haloperidol show akinesia and rigidity (i.e. catalepsy), 
eff ects that are mediated by a blockade of striatal D2 
receptors (2). Akinetic catalepsy induced in rats by 
haloperidol can model human Parkinson’s disease. 
Haloperidol remains eff ective in inducing catalepsy 
and striatal Fos/Jun expression in the D1 mutants, 
and these behavioral and neural eff ects can be blocked 

by D2 dopamine receptor agonists (36). Catalepsy 
occurs when more than 80% of D2 receptors are 
occupied by the drug (37). Catalepsy is also driven 
by the excitatory adenosine and glutamatergic inputs 
acting on adenosine A2A and N-methyl-D-aspartate 
(NMDA) receptors in the striatum. Th is is because 
NMDA receptor antagonists (38), the nonselective 
adenosine receptor antagonist caff eine, selective A1, 
and selective A2A antagonists decreased haloperidol-
induced catalepsy in rats (38,39). Catalepsy is also 
reduced by alpha2 receptor antagonists (alpha2C or 
alpha2A) (40) or 5-HT1A agonists (41), as well as 
by metabotropic glutamate receptor 4 agonists (42). 
Despite having a striatal D2 receptor occupancy 
similar to classical agents, atypical antipsychotics are 
less likely to cause extrapyramidal side eff ects because 
of their ability to activate 5-HT1A receptors (43).

Piracetam is a drug used to enhance memory 
and cognitive performance in the elderly or aft er 
cerebrovascular accidents (6) by increasing blood 
fl ow and aff ecting membrane fl uidity (44) and 
glucose transport into the cells (45). Piracetam, 
however, is not without eff ects on intracortical 
neurotransmitters. Piracetam restored the number 
of active GABA-A receptors in rats made anxiolytic 
and depressed by prolonged hypokinesia (46). It 
also inhibited the eff ect of fl umazenil and therefore 
may be shown to act on the benzodiazepine site of 
the GABA-benzodiazepine receptor complex (47). 
Drug-inhibited monoamine uptake (dopamine, 
noradrenaline, serotonin) in cortical and striatal 
synaptosomes (30) increased K+-induced dopamine 
release from rat striatum in aged rats (31). Th us, 
piracetam is capable of modifying the dopaminergic 
activity of the rat striatum, thereby stimulating the 
neuromediator release (31). Studies also suggested 
the involvement of the dopaminergic system in the 
excitatory eff ects of piracetam (100 mg/kg) on foot 
shock-induced aggressive behavior in mice, which 
was blocked by treatment with haloperidol (48). Th e 
eff ect of piracetam on dopaminergic transmission 
might be of particular relevance to the inhibition 
of haloperidol-induced catalepsy observed in the 
present study. Because catalepsy is thought to be 
a good predictor of extrapyramidal symptoms in 
humans, treatment with piracetam might decrease the 
occurrence or severity of extrapyramidal symptoms 
induced in humans by the use of antipsychotics. Other 

Halo
peri

do
l co

n tro
l

+ G
inkgo

 25
 m

g/k
g

+ G
inkgo

 50
 m

g/k
g

+ G
ink

go 15
0 m

g/k
g

+ G
inkgo

 25
 m

g/k
g

+ G
inkgo

 50
 m

g/k
g

+ G
ink

go 15
0 m

g/k
g

0

100

200

16.1%13.6%
*29.1%

35.1% 37.2%At time of haloperidol

Before haloperidol

*
17.1%

D
ur

at
io

n 
of

 ca
ta

le
ps

y 
(s

ec
) +++*

Figure 3. Eff ect of ginkgo biloba on haloperidol-induced (2 mg/
kg, IP) catalepsy in mice. Ginkgo biloba was given IP 
either at the time of the haloperidol administration or 
30 min prior to that injection. Data represent mean 
values ± SE of 6 mice per group and the percentage 
change (%) in comparison with the control animals. 
Statistical diff erences between the test groups and 
the control group are indicated by asterisks (*). Th e 
plus sign (+) indicates a signifi cant change from the 
corresponding treatment group given ginkgo biloba at 
the time of the haloperidol administration.
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researchers have reported that piracetam caused an 
increase of haloperidol-induced catalepsy in rats, 
but those fi ndings refl ect studies that tested a dose 
considerably higher than those used in the present 
study (1000 mg/kg) (49); studies that examined a 
piracetam dosage of 500 mg/kg showed markedly 
inhibited haloperidol catalepsy (50).

In the present study, vinpocetine increased 
catalepsy when administered prior to haloperidol. 
Other studies have indicated that vinpocetine 
(5-100 mg/kg PO) did not antagonize reserpine-
induced catalepsy, and it did not impair rotarod 
performance or produce ataxia in mice (28). Th ere 
is limited information on the eff ect of vinpocetine on 
dopaminergic neurotransmission. In striatal slices, 
vinpocetine reduced the effl  ux of dopamine and 
acetylcholine evoked by glutamate, quisqualate, and 
NMDA (51), and it inhibited the release of dopamine 
evoked by veratridine reversal of the dopamine 
transporter (32). Th ese eff ects could explain the 
present study’s observed increase in catalepsy duration 
aft er the introduction of vinpocetine. Other studies 
found no inhibitory activity for vinpocetine and its 
major metabolite, apovincaminic acid, in monoamine 
receptor binding assays or in synaptosomal uptake 
assays performed in vitro (52). Vinpocetine inhibits 
the permeability of voltage-sensitive presynaptic Na+ 
channels, which selectively inhibits the transporter-
mediated release of all neurotransmitters (32). 

Some studies have suggested that, in light of its 
antioxidant properties, ginkgo biloba might prove 
valuable in the treatment of PD. One of its diterpenes, 
ginkgolide B, inhibited apoptosis induced by 
6-hydroxydopamine by decreasing the intracellular 
calcium concentration (53). In a mouse model of 
Parkinson’s disease caused by the administration 

of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP), a compound that 
causes nigrostriatal dopaminergic degeneration, 
ginkgo biloba attenuated the toxin-induced loss of 
striatal dopamine levels and tyrosine hydroxylase 
immunostaining in the striatum and substantia 
nigra pars compacta. Th is neuroprotective eff ect of 
ginkgo biloba was associated with the inhibition of 
lipid peroxidation and the reduction of superoxide 
radical production (54). Extracts of ginkgo biloba 
leaves have been found to infl uence dopaminergic 
neurotransmission in the brain. Ginkgo biloba 
increased the extracellular concentration of 
dopamine in the prefrontal cortex of rats and 
upregulated the subgroup of dopamine receptors in 
the frontal cortex (55). Th e extract also increased the 
level of serotonin (5-HT) in the hippocampus and 
5-HIAA (5-HT metabolite) in the prefrontal cortex 
(56). In other studies, norepinephrine, serotonin, 
and dopamine uptake transporters and MAO activity 
were inhibited by ginkgo biloba in vitro (33). Ginkgo 
biloba inhibited NMDA-evoked currents and Na+ 
channels in cultured cortical cells (57). In the present 
study, however, haloperidol-induced catalepsy was 
increased by the administration of ginkgo biloba 
(25, 50, and 150 mg/kg). Other researchers have also 
found that doses of 40 and 80 mg/kg of ginkgo biloba 
extract signifi cantly enhanced haloperidol- and 
L-nitroarginine-induced catalepsy in mice (58). Th e 
mechanism(s) behind this eff ect of ginkgo is or are 
not clear and this issue awaits further studies. 

In conclusion, the present paper provides evidence 
that piracetam is able to improve haloperidol-induced 
catalepsy in mice. In contrast, the administration of 
vinpocetine or ginkgo biloba was associated with a 
worsening of catalepsy. 
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