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Can obstructive apnea and hypopnea during sleep be 
diff erentiated by using electroencephalographic frequency 

bands? Statistical analysis of receiver-operator curve 
characteristics

Erdem UÇAR1, Necdet SÜT2, Tevfi k GÜLYAŞAR3, İlhan UMUT1, Levent ÖZTÜRK4

Aim: To investigate whether electroencephalographic (EEG) frequency bands are applicable in distinguishing abnormal 
respiratory events such as obstructive apnea and hypopnea in patients with sleep apnea.
Materials and methods: Th e polysomnographic recordings of 20 patients were examined retrospectively. EEG record 
segments were taken from C4-A1 and C3-A2 channels and were analyzed with soft ware that uses digital signal processing 
methods, developed by the study team. Percentage values of delta, theta, alpha, and beta frequency bands were evaluated 
through discriminant and receiver-operator curve (ROC) analysis to distinguish between apneas and hypopneas. 
Results: For the C4-A1 channel, delta (%) provided the highest discriminative value (AUC = 0.563; P < 0.001); on 
the other hand, alpha (%) gave the lowest discriminative value (AUC = 0.519; P = 0.041). Likewise, whereas for the 
C3-A2 channel delta (%) gave the highest discriminative value (AUC = 0.565; P < 0.001), alpha produced the lowest 
discriminative value (AUC = 0.501; P = 0.943).
Conclusion: As a result of discriminant analysis, the accurate classifi cation rate of hypopneas was 44.8% and the accurate 
classifi cation of obstructive apneas was 63.5%. Of the 4 frequency bands, the most signifi cant was delta. Th e predictive 
values were not at signifi cance level. 
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Obstrüktif apne ve hipopne uyku esnasında elektroensefalografi k frekans bandları 

kullanılarak birbirinden ayırt edilebilir mi? Karakteristik işlem eğrisi (receiver-
operator curve, ROC) analizi

Amaç: Elektroensefalografi k (EEG) frekans bandlarının uyku apneli hastalarda obstrüktif apne ve hipopne gibi anormal 
solunum olaylarını ayırt etmede kullanılıp kullanılamayacağını belirlemek üzere bu çalışmayı planladık. 
Yöntem ve gereç: 20 hastanın polisomnografi k kayıtları retrospektif olarak incelendi. EEG kayıtları C4-A1 ve C3-A2 
kanallarından alınarak dijital sinyal işleme yöntemlerini kullanan ve çalışma ekibi tarafından geliştirilen bir yazılım ile 
incelendi. Delta, teta, alfa ve beta frekans bandlarının yüzde değerleri apne ve hipopneleri ayırt edebilmek amacıyla 
diskriminant ve ROC analizleri kullanılarak değerlendirildi. 
Bulgular: C4-A1 delta (%) frekans düzeyi en yüksek diskriminatif değeri sağladı (AUC = 0,563; P < 0,001), ancak 
C4-A1 alfa (%) düzeyi en düşük diskriminatif değeri verdi (AUC = 0,519; P = 0,041). Benzer şekilde, C4-A2 delta (%) 
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Introduction
Sleep apnea is characterized by frequent breathing 

cessations during sleep. Apneas are identifi ed when 
airfl ow decreases to 10% or less of the baseline fl ow 
for at least 10 s (1,2). Th is syndrome causes severe 
sleep impairment and is oft en responsible for the 
development of other problems such as illusions, 
memory defi cits, diffi  culty in speaking, concentration 
disorders, heart problems, hypertension, and daytime 
fatigue (3,4).

Th ere are diff erent types of respiratory 
abnormalities, namely obstructive apnea, central 
apnea, mixed apnea, and hypopnea.   Distinguishing 
obstructive hypopnea from apnea can be clinically 
important because diff erent types of respiratory 
events may require diff erent treatment approaches (5). 
Furthermore, for research purposes, this distinction 
is important for investigating the pathological 
mechanism of diff erent types of sleep apnea. 
Conventional full-night polysomnography (PSG) 
with recording of chest and abdominal movement 
may overestimate the frequency of hypopnea and thus 
the severity of the disease, leading to inappropriate 
treatment of sleep-disordered breathing.

Electroencephalography (EEG) has long been an 
important clinical tool in the diagnosing, monitoring, 
and managing of neuronal brain activity. EEG signals 
contain a wide range of frequency components. 
However, the range of clinical and physiological 
interest is between 0.5 and 30 Hz. Th is range is 
classifi ed approximately in a number of frequency 
bands, as follows: δ (0.5-4 Hz), θ (4-8 Hz), α (8-13 
Hz), and β (13-30 Hz) (6). Since there is no defi nite 
criterion used by the experts, visual analysis of EEG 
signals in the time domain may be insuffi  cient. Large 
amounts of data are generated by EEG monitoring 
systems for electroencephalographic changes, such 
that their complete visual analysis is not routinely 

possible. Extracted features such as wavelet transform 
(WT) coeffi  cients and discrete Fourier transform 
(DFT) are promising tools in polygraphic sleep 
studies (7).

We hypothesized that electroencephalographic 
frequency band analysis by statistical methods 
could be a useful tool to distinguish accurately 
between hypopnea and apnea in sleep apnea patients. 
Th erefore, we developed computer soft ware to extract 
and prepare relevant EEG segments for statistical 
analysis.

Methods
Data collection
Th is study was performed in a retrospective 

manner. All study data were obtained from the 
routine polysomnography archive of the Sleep 
Laboratory Unit at the Trakya University Education 
and Research Hospital. Th e polysomnographic 
recordings of 20 patients with obstructive sleep 
apnea syndrome (OSAS) were reviewed, and 4849 
obstructive apneas and 1210 obstructive hypopneas 
were analyzed for study purposes (Table 1). 

We used new soft ware, developed by the study 
team, to collect the abnormal respiratory events 
and the corresponding EEG segments. We then 
performed receiver-operator curve characteristic 
analysis in order to determine the sensitivities and 
specifi cities of frequency bands in distinguishing 
apneas from hypopnea.

Polysomnography 
Th e polysomnography (PSG) records analyzed in 

this study were digitized using full PSG techniques 
with a 44-channel polygraph (Compumedics 44E 
Series, Australia). Th e PSG montage included 2 
channels of EEG (C3-A2 and C4-A1), left  and right 

frekans düzeyi en yüksek diskriminatif değeri sağlarken (AUC = 0,565; P < 0,001), C4-A2 alfa (%) düzeyi en düşük 
diskriminatif değeri verdi (AUC = 0,501; P = 0,943).
Sonuç: Diskriminant analiz sonucunda, hipopnelerin doğru sınıfl andırılma oranı % 44,8 ve obstrüktif olguların doğru 
sınıfl andırılma oranı % 63,5 oldu. Dört farklı frekans bandı içinde en anlamlı frekans delta idi. Ancak, prediktif değerler 
anlamlı derecede yüksek değildi.

Anahtar sözcükler: Uyku apnesi, dijital sinyal işleme, elektroensefalografi k, karakteristik işlem eğrisi
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electrooculography (EOG) (LOC-A2 and ROC-A1), 
chin electromyography (EMG), electrocardiography 
(ECG) (2 derivations, ECG1 and ECG2), SpO2 
(blood oxygen saturation), a thermistor (for upper 
respiratory tract signals), thoracic and abdominal 
excursions, snoring (microphone), and body 
position. Th e EEG electrodes were placed according 
to the international 10-20 electrode placement 

system (8), with a sampling rate of 256 Hz and 
high-pass and low-pass fi lters of 0.5 Hz and 30 
Hz, respectively. Th e upper respiratory signals 
we  re digitized with 256 Hz, and pulmonary and 
abdominal respiratory signals were digitized with 
128 Hz. All sleep signals with a duration of nearly 
8 h were stored on a hard disk in the European data 
format (EDF) (Figure 1). 

Table 1. General characteristics of study group.

Patient 
No.

Number of 
Hypopneas

Number of 
Apneas Age Weight 

(kg)
Height 
(cm)

Neck Circumference 
(cm) Sex

1 85 114 51 96 173 43 M

2 49 306 62 84 173 40 M

3 19 91 60 76 167 40 M

4 55 236 40 107 174 47 M

5 28 132 33 96 180 41 M

6 10 65 41 85 175 41 M

7 2 506 67 110 164 39 F

8 34 250 51 106 174 50 M

9 123 278 68 110 166 47 F

10 102 120 55 80 168 43 M

11 52 205 33 88 177 44 M

12 112 120 42 105 166 43 M

13 79 148 38 85 165 37 F

14 69 127 38 122 192 45 M

15 37 8 47 134 168 39 F

16 127 206 63 125 169 41 F

17 9 543 54 116 169 46 M

18 14 675 53 82 168 36 F

19 125 619 58 120 165 46 M

20 76 100 53 102 176 41 M

Total 1207 4849

*M: male, F: female
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Respiratory events were scored manually by 
the same investigator (L.Ö.) using the standard 
criteria proposed by the AASM (1,2). In OSAS 
patients, obstructive apneas were identifi ed when 
airfl ow decreased to 10% or less of the baseline fl ow 
amplitude for at least 10 s; obstructive hypopneas 
were identifi ed when airfl ow decreased to 50% 
with a 3% oxyhemoglobin desaturation or to 30% 
with a 4% oxyhemoglobin desaturation. Each EEG 
signal was annotated with respect to sleep stages (9). 
Sleep staging was performed by using 30-s intervals 
according to the criteria of Rechtschaff en and Kales, 
with 6 discrete levels of sta  ge 1, 2, 3, and 4 non-REM 
sleep, rapid eye movement (REM), and wake. All 
annotations were stored on a hard disk in Extensible 
Markup Language (XML) and text (TXT) fi les.

Data processing
In this study, a special program, written using the 

Delphi programming language, was developed for 
EEG data processing by the study team (Figure 2).

Sleep stage, event type, and desaturation 
information of abnormal respiratory events of each 
patient were taken from the fi le formatted in TXT. 
Time information (starting time and duration) of 
abnormal respiratory events of each patient was 
taken in order from the fi le formatted in XML. EEG 
data from the same time of these events in C4-A1 and 
C3-A2 channels were taken out of the fi le in the EDF 
format. Th e digital data, with a sampling rate of 256, 
was fi ltered between 0.5 and 30 Hz.

ECG fi ltering in EEG
In general, EEG data contains many artifacts, 

such as ECG, muscle artifacts, and eye movements. 
Practical use of EEG is extremely limited due to 
such inevitable contamination by large amplitude 
ECG, which brings on erroneous interpretations of 
the normal records. Th erefore, we removed the ECG 
artifact from the EEG and used this fi ltered EEG 
in the Teager energy operator (TEO) (10) for sleep 
EEG artifact detection. To do this, we subtracted the 

Figure 1. A representative sample of patient polygraphic recordings. Obstructive apneas were marked and corresponding 
electroencephalographic segments were collected for further analysis.
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predetermined averaged ECG from the subsequent 
ECG-contaminated EEG c  hannel (11-13).

(t) z (t) x  (t)y +=

Equation 1. Th e raw EEG data (y), real EEG (x), 
and ECG artifacts (z). 

Th e TEO is an energy operator that depends on 
the derivative  of the i  nput signal. It amplifi es sudden 
amplitude changes of the signal. When the Teager 
operator is applied to a signal, the peak points in 
the signal become stronger (14). Th e peak of the 
ECG is determined from the ECG channel in the 
polysomnography data by the TEO (13). We calculate 
the diff erence of the maximum and minimum value 
of the ECG and the EEG, respectively, 60 ms before 
and aft er the peak poi  nt. Th e ECG channel of the 
polysomnography data is divided by the mean 
diff erence and rescaled to the EEG. By subtracting 
the estimate of the artifacts, zest(t), from the raw 
EEG, y(t), the processed EEG data is obtained as in 
Equation 2.

)(= tz- (t)y   (t)x estest

Equation 2. Th e processed E   EG (xest), the raw EEG 
data (y), and the estimate of the ECG   artifacts (zest).

ψTs(n) = ψ2
s(n)–ψs(n–1)ψs(n+1)

Equation 3. ψTs (Teager energy operator of data), 
ψs (original data).

Spectral analysis
In the literature, there are many classifi cations of 

EEG signals as noise, quasi-periodic, and even fractal 
or chaotic signals. Nowadays, the most commonly 
used methods for signal processing of quasi-periodic 
signals include techniques like Fourier and wavelet 
analysis (7). Whereas the Fourier transform provides 
information about the dominant frequencies, wavelet 
analysis has the added value of providing time 
localization of the various frequency components.

Th e discrete wavelet transform (DWT) is used to 
decompose a signal into wavelets, small oscillations 
that are well localized in time. As far as the Fourier 
transform decomposes a signal into infi nite-
length sines and cosines, eff ectively losing all time-
localization information, the DWT basic functions 
are scaled and shift ed versions of the time-localized 
mother wavelet. Th e DWT is used to construct a 
time-frequency representation of a signal that off ers 
very good time and frequency localization.

Th e EEG data, aft er being fi ltered, purifi ed 
of artifacts, and categorized for each abnormal 
respiratory event, were divided into delta, theta, 
alpha, and beta frequency bands using the Haar 
wavelet conversion (15-17) (Figure 3).

Figure 2. Program interface.
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Equation 4. Th e Haar wavelet’s mother wavelet 
function, ψ(t).

Equation 5. Th e Haar wavelet’s scaling function, 
φ(t).

ψ(t) = 2s/2ψ(2st–k)dt

Equation 6. Discrete wavelet transform, choosing 
subsets of the scales ‘k’ and positions ‘s’ of the mother 
wavelet.

Th e data divided into frequency bands were put 
into windows using the Hamming window technique 
(18).

Equation 7. Hamming window.
Th e data in the Hamming window were processed 

using the discrete Fourier transform   (19). Frequency 

spectrum values of the EEG data were calculated. 
Percentage distributions of delta, theta, alpha, 
and beta frequency bands of the calculated values 
were determined. Th ese fi nal data were stored in a 
Structured Query Language (SQL) database until 
statistical analysis.

Equation 8. Discrete Fourier transform (the 
sequence of N complex numbers x0, ..., xN−1 is 
transformed into the sequence of N complex numbers 
X0, ..., XN−1 by the DFT) (20).

Statistical analysis
Th e receiver-operating curves (ROC) were used 

to distinguish obstructive apnea and obstructive 
hypopnea based on electroencephalographic 
  frequency band percentages; areas under the 
curves (AUCs) were computed, and then the AUCs 
were compared using z statistics. Th e AUC is a 
measure of the overall discriminatory power of the 
prognostic variable. A value of 1.0 indicates perfect 
discrimination, a value of 0.5 random prediction, 
and a value lower than 0.5 no discriminative power. 
Sensitivity refers to the fraction of all cases of apnea 
with positive test results. It measures how well the 
test identifi es those with apneas. Specifi city is the 
fraction of those without apnea that have negative 
test results. It measures how well the test excludes 
patients who do not have apnea. To build a predictive 
model of group membership based on the observed 
characteristics of each case, a discriminant analysis 
was performed.

Results
Electroencephalographic segments corresponding 

to 4849 obstructive apneas and 1207 obstructive 
hypopneas recorded from 20 patients were used for 
the fi nal statistical analysis. 

Th e cut-off  point, sensitivity, specifi city, AUC, and 
P-values of C3-A2 and C4-A1 alpha, beta, delta, and 
theta values are shown in Table 2. In comparing the 
percentages of the frequency bands, C4-A1 delta (%) 
gave the highest discriminative value (AUC = 0.563; P 
< 0.001); on the other hand, C4-A1 alpha (%) gave the 
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Figure 3. Wavelet decomposition tree. 
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lowest discriminative value (AUC = 0.519; P = 0.041). 
Likewise, whereas C3-A2 delta (%) gave the highest 
discriminative value (AUC = 0.565; P < 0.001), C3-
A2 alpha produced the lowest discriminative value 
(AUC = 0.501; P = 0.943). Th e ROC curves of the C3-
A2 and C4-A1 bands are shown in Figures 4 and 5.

P-values of pairwise comparisons of the AUCs 
of C3-A2 alpha, beta, delta, and theta values 

are shown in Table 3. Classifi cation results of 
discriminant analysis for C3-A2 alpha, beta, delta, 
and theta values are shown in Table 4. As a result 
of discriminant analysis, the accurate classifi cation 
rate of hypopneas was 44.8% and the accurate 
classifi cation of obstructive cases was 63.1%. Overall, 
59.4% of the original grouped cases were correctly 
classifi ed by using discriminant analysis. P-values of 

Table 2. Cut-off  point, sensitivity, specifi city, AUC and P-values of C3-A2 and C4-A1 alpha, beta, delta, 
and theta values.

Cut-off Sensitivity Specifi city AUC P

C3-A2 alpha >27.15 87.96 18.56 0.501 0.943

C3-A2 beta >51.47 91.92 16.82 0.524 0.010

C3-A2 delta >1.32 82.45 29.16 0.565 <0.001

C3-A2 theta >16.08 90.31 19.47 0.540 <0.001

C4-A1 alpha >28.32 86.06 22.62 0.519 0.041

C4-A1 beta >37.93 89.46 20.38 0.542 <0.001

C4-A1 delta >2.3 74.68 36.54 0.563 <0.001

C4-A1 theta >22.66 85.61 24.86 0.548 <0.001
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Figure 4. Receiver-operator characteristic curves (ROC) of C4-
A1 EEG channels.

Figure 5. Receiver-operator characteristic curves (ROC) of C3-
A2 EEG channels.
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pairwise comparisons of the AUCs of C4-A1 alpha, 
beta, delta, and theta values are shown in Table 5. 
Classifi cation results of discriminant analysis for 
C4-A1 alpha, beta, delta, and theta values are shown 
in Table 6. As a result of discriminant analysis, the 

accurate classifi cation rate of hypopneas was 31.5%, 
and the accurate classifi cation of obstructive cases 
was 76.8%. Overall, 67.7% of the original grouped 
cases were correctly classifi ed by using discriminant 
analysis.

Table 3. P-values of pairwise comparisons of AUCs of C3-A2 alpha, beta, delta, and theta values.

C3-A2 beta C3-A2 delta C3-A2 theta

C3-A2 alpha 0.043 <0.001 0.006

C3-A2 beta - <0.001 0.008

C3-A2 delta - - 0.002

Table 4. Classifi cation results of discriminant analysis for C3-A2 alpha, beta, delta, and theta 
values.

 
 
 

Predicted Group Membership
Total

Hypopnea Obstructive Apnea

Original
 

Hypopnea 541 (44.8) 666 (55.2) 1207

Obstructive Apnea 1791 (36.9) 3058 (63.1) 4849

n (%)

Table 5. P-values of pairwise comparisons of AUCs of C4-A1 alpha, beta, delta, and 
theta values.

C4-A1 beta C4-A1 delta C4-A1 theta

C4-A1 alpha 0.056 0.003 0.035

C4-A1 beta - 0.017 0.247

C4-A1 delta - - 0.102

Table 6. Classifi cation results of discriminant analysis for C4-A1 alpha, beta, delta, and theta values.

Predicted Group Membership
Total

Hypopnea Obstructive Apnea

Original
 

Hypopnea 380 (31.5) 827 (68.5) 1207

Obstructive Apnea 1127 (23.2) 3722 (76.8) 4849
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Th e main fi ndings of this study were that the rates 
in EEG frequency bands could diff er according to 
the type of related abnormal respiration event and 
that the obstructive apneas could particularly be 
determined by following the changes in these bands. 
Of the 4 frequency bands, the most meaningful was 
delta, although the predictive value was not as high 
as was expected.  

Discussion
Using electroencephalographic frequency bands 

to determine the presence of obstructive apneas or 
hypopneas is a promising area of research in the sleep 
fi eld. Th e main fi nding of this study was that the rate 
of accurate classifi cation of hypopneas or apneas 
was not signifi cantly high in obstructive sleep apnea 
patients. Th e most useful frequency band was delta in 
distinguishing obstructive apneas from hypopneas.

Th ere are several important characteristics of 
the study. First, for the purpose of this study, we 
developed new computer soft ware to extract relevant 
electrophysiological signal segments. Th is soft ware 
enabled us to collect signal trace data in EDF format. 
Most of the digital computerized polysomnography 
systems provide and/or transform signal data into 
the EDF format. Th us, this soft ware can be used in 
compliance with these polysomnography systems to 
process biosignals. In this study, we examined more 
than 6056 abnormal respiratory events, of which 4849 
were obstructive apneas and 1207 were hypopneas.

Th e program that was written was designed in a 
modular structure so that it can be used in similar 
studies, and it can also shorten the duration of 
analysis on a large scale. One of the most important 
limitations of the program was that the analyses 
were performed on raw data, and therefore this 
caused a labor-intensive study, the occupation of 
computer system resources, and wasted time. Th is 
limitation was later overcome by inserting a module 
that allowed the data to be read in EDF and XML 
formats. Furthermore, the program had initially been 
designed as a closed system for a continuous analysis. 
Later, it was modularized to serve diff erent purposes 
by setting diff erent parameters without depending 

on a single analysis. We also added several other 
fi lters, such as a band-pass fi lter and ECG fi lter, to the 
preexisting high-pass and low-pass fi lters. Th us, with 
this program, besides the data obtained from the 
EEG channel, the data taken from the other channels 
(EMG, ECG, EOG, SpO2, thermistor, thoracic 
and abdominal excursions, microphone, and body 
position) could also be analyzed by entering the 
required information. It was designed to analyze not 
only apneas but also the other events (respiratory, leg 
movements, arousals, pH, SpO2, ECG, etc.). Initially, 
we manually excluded score sheets with artifacts 
from the analysis. Th en, through the artifact module 
that was later inserted, the data were automatically 
processed with an artifact fi lter before analyzing, and 
if a great amount of artifacts were detected, these 
parts were automatically excluded from the analysis. 
Th e artifact module provided important time savings 
and decreased the workload.

Th ere are some limitations of the study that 
deserve comment. First, we did not compare event-
free EEG segments to apnea-related EEG segments in 
terms of frequency bands. Although the hypothesis of 
the study was to distinguish apneas from hypopneas, 
comparison of quiet sleep periods and sleep periods 
with respiratory events would give better evidence 
for the benefi ts of using EEG. Second, coping 
with artifacts is a major concern when studying 
electrophysiological signals. Artifacts resulting from 
gross body movements and sweating might interfere 
with frequency analysis.

Th e method has better results than those reported 
by many previous studies. We believe that the 
proposed system can be an effi  cient tool to assist 
the experts by facilitating the analysis of a patient’s 
information and reducing the time and eff ort required 
to make accurate decisions about their patients.

Acknowledgement
Th e study was presented as a poster presentation 

at the Second National Sleep Disorders Congress, 
which was held in Cyprus 17-21 March 2010, and 
was awarded the 2nd best poster presentation 
award.



Distinguishing apnea and hypopnea by ROC analysis

580

References
1.  American Academy of Sleep Medicine (AASM) Task Force. 

Sleep-related breathing disorders in adults: recommendations 
for syndrome defi nition and measurement techniques in 
clinical research. Sleep 1999; 22: 667-89.

2.  Rechtschaff en A, K  ales AA. A manual of standardized 
terminology, techniques and scoring for sleep stages of human 
subjects. Washington, DC: Government Printing Offi  ce; 1968.

3.  Flamer HE. Sleep problems. Med J 1995; 162: 603-7.

4.  Morrissey M, Duntley S, Anch A, Nonneman R. Active sleep 
and its role in the prevention of apoptosis in the developing 
brain. Med Hypotheses 2004; 62: 876-9.

5.  Luo YM, Tang J, Jolley C, Steier J, Zhong N, Moxham J et 
al. Distinguishing obstructive from central sleep apnea 
events: diaphragm electromyogram and esophageal pressure 
compared. Chest 2009; 135: 1133-1141.

6.  Adrian ED, Yamagiwa K. Th e origin of the Berger rhythm. 
Brain 1935; 58: 323-351.

7  .  Ba-Karait NOS, Shamsuddin SM, Sudirman R. Swarm 
negative selection algorithm for electroencephalogram signal 
classifi cation. J Comput Sci 2009; 5: 998-1005.

8.   Jasper HH. Report of the committee on methods of clinical 
examination in electroencephalography. Electroenceph clin 
Neurophysiol 1958; 10: 370-375.

9.  Goldberger AL, Amaral LAN, Glass L, Hausdor JM, Ivanov 
PCh, Mark RG et al. PhysioBank, PhysioToolkit, and 
Physionet: components of a new research resource for complex 
physiologic signals. Circulation 1999; 101: 215-220.

10.  Kaiser JF. On Teager’s energy algorithm and its generalization 
to continuous signals. IEEE Proc 1990; ICASSP-90.

11.  Nakamura M, Shibasaki H. Elimination of EKG artifacts from 
EEG records: a new method of non-cephalic referential EEG 
recording. Electroenceph clin Neurophysiol 1987; 66: 89-92.

12.  Lee JM, Kim DJ, Kim IY, Park KS, Kim SI. Detrended 
fl uctuation analysis of EEG in sleep apnea using MIT/BIH 
polysomnography data. Comput Biol Med 2002; 32: 37-47.

13.  Duman F, Erdamar A, Erogul O, Telatar Z, Yetkin S. Effi  cient 
sleep spindle detection algorithm with decision tree. Expert 
Systems with Application 2009; 36: 9980-5.

14.  Hamila R, Astola J, Alaya CF, Gabbouj M, Renfors M. Teager 
energy and the ambiguity function. IEEE Trans Signal Process 
1999; 47: 260-262.

15.  Grap A. An introduction to wavelet analysis. 2nd ed. IEEE 
Press Series in Computational Science and Engineering; 1995. 

16.  Percival DB, Walden AT. Wavelet methods for time series 
analysis. 2nd ed. Cambridge: Cambridge University Press; 
2002.

17.  Akay M. Time frequency and wavelets in biomedical signal 
processing. IEEE Press Series in Biomedical Engineering; 1998.

18.  Bergen SWA, Antoniou A. Design of ultraspherical window 
functions with prescribed spectral characteristics. EURASIP 
Journal on Applied Signal Processing 2004; 13: 2053-65.

19.  Harris FJ. On the use of windows for harmonic analysis with 
the discrete Fourier transform. Proceedings of the IEEE 1978; 
66: 51-83.

20.  Smith SW. Th e scientist and engineer’s guide to digital signal 
processing. 2nd ed. San Diego (CA): California Technical 
Publishing; 1996.


