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 Analyzing dependence structure of thyroid hormones:

a copula approach

Burcu ÜÇER

Aim: To model the level and structure of the dependence between thyroid hormones by using the copula approach. 

Materials and methods: Dependence models were constructed with the help of copula functions explaining the 

relationships between thyroid hormones for the data supplied by Dokuz Eylül University’s Faculty of Medicine’s 

endocrine laboratory. For this purpose, 684 patients aged 0-85 were examined.  

Results: Results indicated that none of the pairs of thyroid hormones exhibited a tail dependence structure; however, 

valid models exhibited a symmetric dependence structure. Th e fi ndings implied that both the T3 and T4 levels had a 

signifi cant dependence structure with TSH levels. Furthermore, Gaussian and t-copula structures were appropriate for 

the pairs.

Conclusion: Findings were compared with the results of conventional scalar measures to establish the importance of 

using copula models in analyzing thyroid hormone levels. Findings showed that the copula models revealed better 

indicators for health scientists for more accurate dependence modeling.

Key words: Th yroid hormones, copula, IFM, correlation, dependence

 

Tiroid hormonlarının bağımlılık yapısının analizi: bir copula yaklaşımı

Amaç: Bu çalışmada, copula yaklaşımı ile tiroid hormonları arasındaki bağımlılığın derecesini ve yapısını modellemek 

amaçlanmıştır. 

Yöntem ve gereç: DEÜ, Tıp Fakültesi, endokrin laboratuarından alınan veriler için, tiroid hormonları arasında ilişkiyi 

açıklayan copula fonksiyonları yardımıyla bağımlılık modelleri oluşturulmuştur. Bu amaçla 0-85 yaşları arasında 684 

hasta incelenmiştir. 

Bulgular: Sonuçlar, bu hormonlar arasındaki bağımlılık yapısında kuyruk bağımlılığı olmadığını, bununla birlikte 

geçerli modellerin simetrik bir bağımlılık yapısına sahip olduğunu göstermektedir. Aynı zamanda,  bulgular TSH düzeyi 

ile T3 ve T4 düzeyleri arasında anlamlı bir bağımlılık yapısı olduğunu göstermektedir. Ayrıca, Gaussian ve t-copula 

yapısının bu değişken çift leri arasındaki bağımlılık yapısı için uygun olduğu saptanmıştır. 

Sonuç: Bulgular, daha sonra klasik yöntemlerle karşılaştırılmış, tiroid hormon düzeylerinin analizinde copula 

yaklaşımının önemi vurgulanmıştır. Sağlık bilimciler için çalışmadaki bulgular, copula modelinin bağımlılık yapısını 

doğru modellemede daha iyi göstergeler sunduğunu ortaya çıkarmıştır.
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Introduction

Th yroid hormones, produced by the thyroid 

gland, which rests in the middle of the lower 

neck, are essential hormones as they help control 

the metabolism of the body. Two active thyroid 

hormones, thyroxine (T4) and triiodothyronine 

(T3), are produced by the thyroid gland. Th ese 

hormones play an important role in the production 

of proteins, in the regulation of body temperature, 

and in overall energy production and regulation (1). 

Th yroid hormones directly aff ect most of the organs 

in the body. If the thyroid is not operating properly, 

problems will occur in other parts of the body. 

Iodine, which is a chemical element, helps the 

thyroid do its job. Th e body absorbs iodine from food 

and water. Th e body contains about 50 mg of iodine, 

and about one-fi ft h to one-third of this is stored in 

the thyroid. Th e iodine is combined with tyrosine to 

make important hormones.

When the thyroid functions properly, it will ensure 

the right amount of hormones to keep metabolism at 

a satisfactory rate. Th e pituitary gland controls the 

quantity of thyroid hormones in the bloodstream. 

When the pituitary gland senses that the thyroid 

hormone levels are too low or too high, it produces 

thyroid-stimulating hormone (TSH) and sends it to 

the thyroid to tell it what to do. Th e relation between 

the thyroid and thyrotropes is like a negative feedback 

loop. When the T4 level increases, TSH production 

is suppressed, and vice versa. Th e hypothalamus 

produces thyrotropin-releasing hormone (TRH), 

which is used to modulate TSH production. Th is 

production is blunted by somatostatin (SRIH), rising 

levels of glucocorticoids and sex hormones (estrogen 

and testosterone), and excessively high blood iodide 

concentrations. 

When the thyroid gland does not work well, 

thyroid disease occurs. For example, when the 

thyroid is overactive,  hyperthyroidism is the result, 

which means that the thyroid releases higher le vels of 

thyroid hormone. In the case of hyperthyroidism, the 

body uses up energy more quickly. When lower levels 

of thyroid hormone are produced by the thyroid, 

hypothyroidism occurs. In this case, the body uses 

up energy more slowly. Both of these levels aff ect the 

metabolism of the body in inappropriate ways.

To understand the relationships between TSH 
and T3, and TSH and T4, many scalar measures can 
be used. Unfortunately, modeling the dependent 
variable has oft en been based on a set of simplifi ed 
assumptions. Dependence structures are usually 
too complex for these types of dependence criteria 
to identify. To this end, copula models have started 
to be used in recent empirical health literature. A 
convenient way to express joint distribution and 
dependence structures of 2 or more random variables 
is provided by copulas. 

Copulas have become very important tools for 
describing the dependence structures between 
random variables, with diff erent copulas representing 
diff erent dependencies. Th e dependence concept 
is critically important, especially in biostatistics, 
in order to carry out accurate analyses. Because of 
this fact, understanding and applying results from 
copulas can be very benefi cial.

Copula models, diff erent from the conventional 
methods, consider the excess comovements in 
diff erent type of hormones, and hence provide 
information about both the level and the structure of 
the dependence.

Th is study provides evidence that the copula 
models reveal more comprehensive information 
than the conventional methods for analyzing and 
comparing the dependence level and structure of 
thyroid hormones. It is hoped that these results will 
provide valuable and extra information for health 
scientists and researchers about the benefi ts of 
copulas.

Th e rest of the study is organized as follows: 
methodological issues are provided in Section 2, data 
and numerical results are given in Section 3, and 
Section 4 is devoted to conclusions.

Materials and methods

A copula is a function that models the dependence 
structure between random variables. Th e concept of a 
copula was fi rst introduced by Sklar in 1959, gaining 
practical use in statistics in the late 1980s. Th e 
application of copulas in health sciences is, however, 
a relatively recent phenomenon. In this section, we 
fi rst give some basic properties of copulas and then 
introduce our model.
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Defi nition

A copula can be defi ned as a function that relates 
one-dimensional, uniformly distributed marginal 
distribution functions to their joint distribution 
functions (2). According to Sklar’s theorem, when F 
is a joint distribution function of continuous random 
variables (X,Y) on R2 with marginal distribution 
functions F and G, there exists a bivariate copula C 
such that:

F(x,y) = C(F
X
(x), F

Y
(y)). (1)

By using a copula, the dependence structure 
between the random variables can be constructed 
through the cumulative distribution functions 
instead of actual observed values. 

Th ere are many copula functions (3). In this 
paper, those most preferred in the health sciences 
were used: the Gaussian copula, the t-copula, the 
Gumbel copula, the Frank copula, and the Clayton 
copula. Th e Gaussian copula enables us to establish 
a normality assumption. However, the marginal 
distributions and/or the dependence structure 
between the random variables may not be normal. 
Tail dependence may dominate the relationship 
between the random variables under consideration. 
We used the Gumbel and Clayton survival copulas 
to consider this possibility. Th e dependence structure 
may also exhibit a symmetric shape, in which case we 
used the Frank copula or the t-copula.

In this study, we investigated the dependence 
structure between 2 random variables, X and Y, which 
are hormone levels. Aft er the cumulative distribution 
function transformation with U = F(X) and V = F(Y), 
the density of the bivariate copula C(u,ν) is defi ned 
as:

( , )
c(u, )

u

C u2
o
o

=o
2 2

 (2)

Th e density of the bivariate distribution F(x,y) can 
then be obtained by using marginal densities ƒ

X
(x)  

and ƒ
Y
(y) as follows:

ƒ(x,y) = c(F
X
(x), F

Y
(y))ƒ

X
(x)ƒ

Y
(y). (3)

Schweizer and Wolff  combined copulas with 
measures of dependence (4). Th ey showed that 
Kendall’s tau and Spearman’s rho can be written in 
terms of copulas.

Model

Th e choice of copula is crucial in analyzing 
dependence across random variables. However, there 
may not be a unique copula that fi ts all situations. Th e 
most commonly used copula models in the health 
sciences are given in Table 1.

For the Gaussian copula, higher values of the 
dependence parameter, θ, indicate a stronger 
dependence between 2 random variables. Here, we 
see that a Gaussian copula is the dependence function 
of a joint Gaussian distribution. Th e Gaussian copula 
is symmetric, and for the hormone data, it implies 
that hormone levels are equally likely to increase or 
decrease together. 

Th e t-copula is symmetric and exhibits tail 
dependence. With a t-copula, 2 random variables can 
be asymptotically tail-dependent even in the extreme 
case in which they are uncorrelated.

For the Gumbel copula, α =  1 indicates 
independence, and the limit of the Gumbel 
distribution for α → 0 + shows perfect dependence. 
Th e Gumbel copula is asymmetric and indicates 
positive right-tail dependence. For the hormone data, 
it implies that 2 kinds of hormone are more likely to 
increase together than decrease together, indicating 
stronger dependence. 

Th e Clayton copula is asymmetric and indicates 
negative left -tail dependence. For the hormone data, 
negative left -tail dependence implies that 2 kinds of 
hormones are more likely to decrease together than 
increase together. 

Th e Frank copula is characterized by upper and 
lower tail independence. It is symmetric, assigning 
zero probability to events that are deep in the tails. 

Th e association parameters provide the degree of 
dependence between the hormone levels. Th e fi rst 
step, in order to calibrate the copula, is to transform 
the data using the probability integral transform. We 
fi nd a parametric distribution that fi ts the univariate 
marginal data. Th is method requires an appropriate 
distribution for each margin. As a general approach, 
we estimate the parameters of margins by the 
maximum likelihood (ML) method for the sample. 
Th e log-likelihood function for {X

i
}

N

i = 1 
is:

( ; )L x
i

N

1

a =
=

/ ln ƒ(x
i
;α).
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Th e maximum likelihood estimator (MLE) is then 
the value of α ∈ θ, maximizing L(α;x): 

( ; ) .argmaxL xMLa a=t t

Correct selection of the marginals is as important 
as a correct selection of the copula. Once the margins 
have been transformed, they are embedded into the 
copula in order to estimate the copula parameters. 
Given a random sample X, we calibrate the copula 
parameters by the ML method. Assuming known 
margins, the maximization of the function is:

( ) ( ( , ), ( , ); ),lnL c F x F y
i

N

X Y

1

1 2ai a i=
=

t t/

where c(u,ν) is the copula density, which can be 
obtained from Eq. (2).

Th e 2-step procedure explained above is called 
an inference function for the margins (IFM). Th is 
method separates the margins and the dependence 
structure (5). Some other estimation methods for 
copula models have also been given (6,7).

Once the model is estimated, we need to verify its 
goodness of fi t to explain the dependence structure 

between the random variables. Graphical methods 

off er many possibilities. Th e easiest and natural way 

of checking the adequacy of a copula model is to plot 

empirical copula C
n
 and compare it with an artifi cial 

data set of the same size generated from C
θ
. 

Data and numerical results

Th e aim of this study was to fi nd the degree and 

the structure of the dependence between thyroid 

hormones. For this, laboratory values of free T3 

(FT3), free T4 (FT4), and TSH were taken into 

account. Dependence models were constructed 

with the help of copula functions to explain the 

relationship between these hormones for the data 

supplied by Dokuz Eylül University’s Faculty of 

Medicine’s endocrine laboratory, and 684 patients 

aged 0-85 were examined. Th ese data were used 

before in another study (8), in which the dependence 

relation was investigated with a diff erent approach. 

Computational results were obtained with MATLAB 

(9).

Table 1. Some copula functions.

Name Model
Dependence 

parameter θ

Gaussian
( ) ( )

(
C(u,v; ) 1 exp

s st t
dsdt

2 1 2 1

2
( ) ( )

/

u

2 1 2 2

2 2
1 1

=
r i i

i
i

- -

- - +

3 3

z z o

- -

- -

c m# # –1<θ<1

t
( )

(
( )

C(u,v; ) 1 exp s st t dsdt
2 1

1
1
2

( ) ( )

/

t u

2 1 2 2

2 2

1 1

i =
r i i

i
o-

- +
-

- +

3 3

z o

- -

oo
- -

c m# # –1<θ<1

ν>2

Gumbel [( ) ]( )C (u,v; ) exp log logu v1/ /
gu

1i = - - + -i i i
" , 0<θ≤1

Clayton { 1}C(u,v; ) u 1/i = o+ -i i i- - - θ≥1

Frank 1
( ( ) 1)

( ( ) 1)( ( ) 1)
C(u,v; ) ln

exp

exp expu1i =
i i

i io
- +

- -

- - - -
c m θ ∈ IR\{0} 
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Th e testing methodology can be summarized as 
follows:

1. Fitting the univariate marginal distribution 
of each series of hormone data by maximum 
likelihood estimation. Among the diff erent 
distributions, we select the one that best fi ts 
the data. Th e selection criterion is the higher 
log-likelihood value. 

2. Transforming each data vector into uniform 
variates using the probability integral 
transform.

3. Plugging the data into copula functions for 
each pair of transformed data vectors and 
estimating the copula parameters by the ML 
method.

4. Applying graphical techniques for choosing 
the appropriate copula model.

In Table 2, Spearman’s rho and Kendall’s tau 
between the variables are given. Th ese values explain 
only the degrees of relations between the variables, 

which are both negative, but not so strong. However, 
these measures do not contain any information about 
the shape of the dependence structure between the 
variables.

In Tables 3, 4, and 5, univariate marginal fi ttings 
are given for TSH, FT3, and FT4, respectively. Th e 
log-likelihood values are compared to select the best 
fi tting marginal distribution. Th e selection criterion 
between the distributions is the minimum of the 
negative log-likelihood values. Th e selected marginal 
distributions for the copula models, which are 
indicated in bold, are the generalized extreme value 

Table 2. Spearman’s rho and Kendall’s tau for the hormone data.

 

Spearman’s rho Kendall’s tau

TSH and FT3 –0.032 (0.411*) –0.020 (0.429*)

TSH and FT4 –0.269 (0.000*) –0.186 (0.000*)

 

(*P-value in parentheses)

Table 3. Negative log-likelihood values of the marginal distributions of TSH.

Distribution Parameter 1 Parameter 2 Parameter 3 Likelihood

Lognormal 0.0703 1.3732 1.2332e + 003

Gamma 0.7783 2.9635 1.2382e + 003

Exponential 2.3063 1.2538e + 003

Weibull 2.0084 0.8157 1.2195e + 003

GEV 0.5556 0.8676 0.8496 1.1955e + 003

Normal 2.3063 4.9394 2.0594e + 003

Table 4. Negative log-likelihood values of the marginal distributions of FT3.

Distribution Parameter 1 Parameter 2 Parameter 3 Likelihood

Lognormal 0.8754 0.2830 704.4294

Gamma 12.7150 0.1964 707.6011

Exponential 2.4973 1.3081e + 003

Weibull 2.7599 3.3186 778.5479

GEV –0.0446 0.6040 2.1834 705.4278

Normal 2.4973 0.7285 752.2889
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distribution for TSH, the lognormal distribution for 

FT3, and the gamma distribution for FT4.  

Aft er the selection of the most convenient 

marginal distributions, each pair was fi tted with all of 

the copula models given in Tables 6 and 7, in which 

estimated parameter values are shown.

In the last step, we determined which copula model 

was appropriate for the data. Graphical techniques 

were applied to all copula models and the best-fi tting 

copula model was chosen visually (Figures 1 and 2). 

Th e distance between the theoretical and empirical 

copula was the decision criterion. Th e lower the 

distance, the better the model. Th e overall results 

suggested that the Gaussian copula off ers good 

accuracy for the bivariate case for TSH and FT3 data, 

and the t-copula gives good accuracy for the bivariate 

case for TSH and FT4 data. Since both of the copula 

models are symmetric, the dependence structures 

are also symmetric for both pairs. Th is result implies 

that the hormone levels are equally likely to have 

negative relationships. TSH and FT4 exhibited tail 

dependence. With the t-copula, the dependence can 

be asymptotically tail-dependent in extreme cases. 

Th e Gaussian and t-copula models with estimated 

parameters for TSH and FT3, and TSH and FT4, are 

also given in Figures 3 and 4. Th ese Figures help to 

understand the shape of the dependence structure. It 

is seen that the Gaussian copula type of dependence 

is symmetric, while the t-copula type of dependence 

is symmetric but also has some dependence in the 

tails.

Table 5. Negative log-likelihood values of marginal distributions of FT4.

Distribution Parameter 1 Parameter 2 Parameter 3 Likelihood

Lognormal 0.3855 0.1750 41.5332

Gamma 33.3606 0.0447 38.0417

Exponential 1.4926 956.5510

Weibull 1.6016 5.0509 135.2436

GEV –0.1001 0.2482 1.3883 52.9701

Normal 1.4926 0.2621 54.0282

Table 6. MLE estimates for copula models for TSH and FT3. 

Copula Parameter

Gaussian –0.0627

t –0.0472, (2.1)

Gumbel 1.001

Frank –0.1940

Clayton 1.4509e – 006

Table 7. MLE estimates for copula models for TSH and FT4.

Copula Parameter

Gaussian –0.3508

t –0.3382

Gumbel 1.00001

Frank –2.01310

Clayton 1.4509e – 006
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Figure 1. Empirical and theoretical comparison of copula models for TSH and FT3.
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Figure 2. Empirical and theoretical comparison of copula models for TSH and FT4. 
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Conclusions

Simple dependence measures such as Pearson’s 

correlation coeffi  cient, Kendall’s tau, and Spearman’s 

rho can be an essential part of medical science studies. 

Unfortunately, these measures are not adequate 

for summarizing complex dependence structures. 

Th e dependences between pairs of variates can be 

various. For bivariate data sets, in understanding the 

relationship between the variables, not only the level 

of dependence but also the structure of dependence 

is important.

By using the copula approach, it is easy to see the 

model of the dependence between variables visually, 

whereas some scalar measures like Kendall’s tau and 

Spearman’s rho only explain the level of dependence.

Th e analysis suggests that the Gaussian copula 

gives good accuracy for the bivariate case of TSH and 

FT3 data, and the t-copula gives good accuracy for 

the bivariate case of TSH and FT4 data. A symmetric 

dependence structure is convenient for both of the 

pairs. Clinically, this means that hormone levels 

are equally likely to have a negative relationship. 

For example, when the TSH level is decreasing (or 

increasing), the FT3 level is increasing (or decreasing) 

at a similar rate, and vice versa. Th is interpretation 

is also valid for the relationship of TSH and FT4. 

However, the diff erence with TSH and FT4 is that 

their relation exhibits tail dependency. With the 

t-copula, the dependence can be asymptotically tail-

dependent in the extreme case. In other words, for 

very high or very low levels of TSH or FT4, there is 

some some negative dependency, which the Gaussian 

type of dependence of TSH and FT3 lacks.
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