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1. Introduction
The increasing frequency of multidrug-resistant 
Pseudomonas aeruginosa (MDRPA) strains is concerning, 
as efficacious antimicrobial options are severely limited. 
Risk factors for MDRPA infection include prolonged 
hospitalization, exposure to antimicrobial therapy, 
and immunocompromised states such as human 
immunodeficiency virus infection. The emergence of 
MDRPA isolates during therapy was reported in 27%–
72% of patients with initially susceptible P. aeruginosa 
isolates. Patients with severe MDRPA infections should 
be treated with combination therapy, consisting of an 
antipseudomonal β-lactam with an aminoglycoside 
or fluoroquinolone, rather than aminoglycoside and 
fluoroquinolone combinations, to provide adequate 
therapy and improve patient outcomes (1).

P. aeruginosa produces a number of virulence factors, 
which, after colonization, can cause extensive tissue 

damage, bloodstream invasion, and dissemination (2). 
Pathogenesis is based on multiple virulence factors: 
endotoxin, exotoxins, and enzymes. Its endotoxin, 
like that of other gram-negative bacteria, causes the 
symptoms of sepsis and septic shock (3). Most strains 
of P. aeruginosa produce 2 exotoxins, exotoxin A and 
exoenzyme S; a variety of cytotoxic substances including 
phospholipases, pyocyanin, and proteases; and an 
alginate-like exopolysaccharide that is responsible for 
the mucoid phenotype. The importance of these putative 
virulence factors depends upon the site and nature of 
infection. Proteases play a key role in corneal ulceration, 
are important in burn infection, and are associated with 
chronic pulmonary colonization (4). Chitinase produced 
by P. aeruginosa has been investigated as a virulence factor 
associated with plant diseases (5). Folders et al. (6) reported 
that ChiC chitinase was produced by clinical isolates of 
P. aeruginosa. These virulence factors help the bacteria 
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adhere to and invade their host by damaging the host’s 
immune responses and forming a barrier to antibiotics. 
Cell-associated and secreted virulence factors are encoded 
on plasmids or chromosomal genes (7).

The present study is concerned with molecular analysis 
of the virulence factors and antimicrobial resistance 
profiles of MDRPA. Polymerase chain reaction (PCR) 
approaches were applied to plasmid DNA to identify 
genes implicated in antimicrobial resistance or virulence 
factors of the selected isolates. Finally, the obtained data 
were subjected to statistical analysis in order to study the 
correlation between antimicrobial resistance and virulence 
factors exhibited by the tested isolates. 

2. Material and methods
2.1. Bacterial isolates
A total of 104 antibiotic-resistant Pseudomonas aeruginosa 
clinical isolates were recovered and identified as previously 
explained by Khalil et al. (8). In brief, these isolates were 
screened for their susceptibility to 25 antimicrobial agents 
using the disk agar diffusion method (a modified Kirby–
Bauer method) on Mueller-Hinton agar media following 
the zone diameter criteria recommended by the Clinical 
Laboratory Standards Institute (CLSI) (9). MDRPA 
isolates were selected on the basis described by Rossolini 
and Mantengoli (10), who defined MDRPA as resistance 
of the isolates to at least 3 of 6 drugs, including amikacin, 
gentamycin, ciprofloxacin, piperacillin, ceftazidime, and 
imipenem. 

2.2. Isolation of plasmid DNA 
The selected MDRPA isolates were subjected to the 
alkaline lyses method described by Sambrook et al. (11) for 
total plasmid DNA isolation. The collected plasmid DNA 
pellets were subjected to gel electrophoresis. O’GeneRuler 
DNA Ladder Mix (100 bp or 1 kbp) was also applied, and 
the gel was run at 80 V for 30 min and then photographed. 
2.3. PCR detection of antibiotic resistance-associated 
genes
The PCR technique was applied to plasmid DNA extract 
of the tested MDRPA isolates in order to identify the genes 
implicated in their antimicrobial resistance mechanisms. 
The tested genes were encoded multidrug-resistance 
(pstS), β-lactamase (IMP7, IMP10, IMP13, and IMP25) 
and extended spectrum β-lactamase (blaOXA50 and 
blaOXA2) genes. Genes were amplified using the specific 
primers listed in Table 1 (12). DNA was amplified with the 
following protocol: initial denaturation at 94 °C for 4 min, 
followed by 30 cycles of 1 min each at 94 °C, 1 min at 55–
60 °C, and 1 min at 72 °C, with a final extension step at 72 
°C for 10 min. PCR products were subjected to agarose gel 
electrophoresis in the presence of the O’GeneRuler DNA 
Ladder. 
2.4. PCR analysis of the virulence genes of tested MDRPA 
isolates 
The presence of several virulence-associated genes 
encoding GDP mannose 6-dehydrogenase (alginate) 
(algD) (13), type IV fimbrial biogenesis protein PilB (pilB) 
(14), neuraminidase (nan1) (14), elastase LasB (LasB) 
(13), hemolytic phospholipase C precursor (plcH) (13), 

Table 1. Primers used for amplification of resistance-associated genes. 

Target gene Nucleotide sequence of primers Amplicon size (bp)

IMP7 3′-AAGGCAGTATCTCCTCTCATTTTC-5′
5′-ACTCTATGTTCAGGTAGCCAAACC-3′ 243

IMP10 3′-AATGCTGAGGCTTACCTAATTGAC-5′
5′-CCAAGCTTCTATATTTGCGTCAC-3′ 388

IMP13 3′-AGACGCCTATCTAATTGACACTCC-5′
5′-CCACTAGGTTATCTTGAGTGTGACC-3′ 311

IMP25 3′-GCAGTATTTCCTCACATTTCCATAG-5′
5′-TCACCCAAATTACCTAGACCGTAG-3′ 295

pstS 3′-CTTGAAGGGACTCGACAAGG-5′
5′-TTCAGGTCCGCGTAGTGAAT-3′ 606

blaOXA50 3′-GAAAGGCACCTTCGTCCTCTAC-5′
5′-CAGAAAGTGGGTCTGTTCCATC-3′ 400

blaOXA2 3′-ATACACTTTTTGCACTTGATGCAG-5′
5′-TGAAAAGATCATCCATTCTGTTTG-3′ 510
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nonhemolytic phospholipase C precursor (plcN) (15), 
exoenzyme S (exoS) (13), exoenzyme U (exoU) (14), and 
exotoxin A (toxA) (15) in tested MDRPA isolates was 
assessed by PCR amplification. The virulence genes were 
amplified using plasmid DNA extract with the specific 
primers listed in Table 2.

The DNA was amplified using the following protocol: 
initial denaturation (94 °C for 5 min), followed by 25–30 
cycles of denaturation (94 °C for 35–45 s), annealing (53–
62 °C from 45 s to 1 min), and extension (72 °C from 45 s to 
1 min), with a single final extension of 7 min at 72 °C. PCR 
products were subjected to agarose gel electrophoresis in 
the presence of the O’GeneRuler DNA Ladder. Amplified 
genes were identified on the basis of fragment sizes shown 
in Table 2.
2.5. Statistical analysis
Statistical presentation and analysis of the present study, 
including linear correlation coefficients and analysis of 
variance (ANOVA) tests, was conducted by SPSS 17. In all 
cases, a P-value was considered indicative of significance 
if it was equal to or less than 0.05. The obtained data were 
statistically presented as mean ± standard deviation.

3. Results
Out of 44 MDRPA isolates, 12 isolates representing 
different resistance profiles and sources of samples were 
selected for further molecular studies. Plasmid DNA 
analysis showed that all tested isolates harbored 2 plasmids 
of molecular sizes 10 and 15 kbp. Table 3 shows the 
antimicrobial resistance patterns and plasmids profiles of 
the selected MDRPA isolates.
3.1. PCR detection of some antibiotic resistance genes in 
tested MDRPA isolates 
As observed in Figures 1a–1d, gel electropherograms of the 
PCR products of all tested MDRPA isolates were positive 
for IMP genes. This PCR amplification gave an amplicon 
size of 243 bp, 388 bp, 311 bp, and 295 bp corresponding 
to the IMP7, IMP10, IMP13, and IMP25 resistance genes, 
respectively. PCR amplification to detect the presence of 
blaOXA50 and blaOXA2 genes using a set of OXA50 and 
OXA2 primers gave amplicon sizes of 400 bp and 510 bp, 
respectively (Figures 1e and 1f). Detected DNA bands 
indicated that all isolates were positive for the OXA50 
gene. However, only 4 of the 12 MDRPA isolates were 
positive for the presence of the OXA2 gene. Interestingly, 
an amplicon of molecular size 606 bp, corresponding to 

Table 2. Primers used for amplification of virulence-associated genes.

Target gene Nucleotide sequence of primers Amplicon size (bp)

algD 3′-ATGCGAATCAGCATCTTTGGT-5′
5′-CTACCAGCAGATGCCCTCGGC-3′ 1310

pilB 3′-ATGAACGACAGCATCCAACT-5′
5′-GGGTGTTGACGCGAAAGTCGAT-3′ 826

nan1 3′-ATGAATACTTATTTTGATAT-5′
5′-CTAAATCCATGCTCTGACCC-3′ 1317

lasB 3′-GGAATGAACGAGGCGTTCTC-5′
GGTCCAGTAGTAGCGGTTGG-3′ 300

exoS 3′-CTTGAAGGGACTCGACAAGG-5′
5′-TTCAGGTCCGCGTAGTGAAT-3′ 504

exoU 3′-GGGAATACTTTCCGGGAAGTT-5′
5′-CGATCTCGCTGCTAATGTGTT-3′ 428

toxA 3′-CTGCGCGGGTCTATGTGCC-5′
5′-GATGCTGGACGGGTCGAG-3′ 270

plcN 3′-TCCGTTATCGCAACCAGCCCTACG-5′
5′-TCGCTGTCGAGCAGGTCGAAC-3′ 481

plcHI 3′-GAAGCCATGGGCTACTTCAA-5′
5′-AGAGTGACGAGGAGCGGTAG-3′ 307

plcHII 3′-GCACGTGGTCATCCTGATGC-5′
5′-TCCGTAGGCGTCGACGTAC-3′ 608
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pstS (multidrug-resistance gene), was also detected in all 
12 representative MDRPA isolates, as shown in Figure 1g.
3.2. Detection of some virulence genes in the selected 
MDRPA isolates using PCR
Figures 2a–2i illustrate the profiling of the amplification 
products of different virulence genes in each of the 12 
tested MDRPA isolates. 

As shown in Figure 2b, plcH II was detected in all PCR 
products of the tested MDRPA isolates, while the toxA 
virulence gene was absent. Other virulence genes, namely 
pilB, plcH, plcN, and algD, were detected in 11 of 12 MDRPA 
isolates (Figures 2a, 2c, 2h, and 2i, respectively). The LasB 
virulence gene was detected in the amplicons of 9 out of 
12 MDRPA isolates (Figure 2e). On the other hand, PCR 
amplification of the nan1 gene in the DNA of 12 MDRPA 
isolates was positive in only 4 isolates: PA4, PA6, PA60, 
and PA63 (Figure 2d). Another 2 virulence genes, exoS and 
exoU, responsible for the production of exoenzymes S and 
U, respectively, were detected in 10 of the screened MDRPA 
isolates as shown in Figures 2f and 2g.
3.3. Correlation between virulence factors and 
antimicrobial resistance marker profiles of the tested 
MDRPA isolates  
Table 4 summarizes the virulence factors and antimicrobial 
resistance markers of 12 MDRPA isolates. Statistical 
analysis using Pearson’s correlation coefficient between 

virulence factors and antimicrobial resistance markers was 
performed. A positive significant correlation was found 
between virulence factor production and resistance to 
antimicrobial agents (r = 0.779, P = 0.002), as shown in 
Figure 3.

4. Discussion
The development of multidrug-resistance by P. aeruginosa 
isolates requires several different genetic events, including 
the acquisition of different mutations and/or horizontal 
transfer of antibiotic resistance genes (12). The implication 
of plasmids in antibiotic resistance has been previously 
reported by several studies (16,17). In our study, the 
PCR technique was applied to plasmid DNA of the tested 
MDRPA isolates in order to identify the genes implicated 
in their expressed antimicrobial resistance phenotypes. 

β-Lactamases are the most common and most important 
mechanism of resistance to β-lactam antibiotics as they 
are capable of hydrolyzing the 4 members of the β-lactam 
class of antibiotics including penicillins, cephalosporins, 
monobactams, and carbapenems. These β-lactamases may 
be plasmid-mediated or chromosomally mediated (18). 
β-Lactamases can be divided into 4 classes (A, B, C, and 
D) according to their sequence similarities (19). On the 
basis of their catalytic mechanisms, 2 groups have been 
established; the class B enzymes are metallo-β-lactamases 

Table 3. Resistance patterns and plasmid contents of MDRPA isolates.

Isolate code Resistance patterns*

PA1 AMP, AX, FEP, K, AMC, TIM, ZOX, C, N, PRL, CAZ, CTX, CRO, CFP, ATM, SXT, TE, CN, AK, S, CT

PA4 AMP, AX, FEP, K, AMC, TIM, ZOX, C, N, PRL, CAZ, CTX, CRO, CFP, IPM, MEM, ATM, CIP, SXT, TE, CN, S, TOB, CT

PA6 AMP, AX, FEP, K, AMC, TIM, ZOX, C, N, PRL, CAZ, CTX, CRO, CFP, IPM, ATM, SXT, TE, AK, S, CT

PA17 AMP, AX, FEP, K, AMC, TIM, ZOX, C, N, PRL, CAZ, CTX, CRO, CFP, IPM, MEM, ATM, CIP, TE, CN, AK, TOB

PA18 AMP, AX, FEP, K, AMC, TIM, ZOX, C, N, PRL, CAZ, CTX, CRO, CFP, IPM, MEM, ATM, CIP, SXT, TE, CN, AK, S, TOB, CT

PA27 AMP, AX, FEP, K, AMC, TIM, ZOX, C, N, PRL, CAZ, CTX, CRO, CFP, IPM, MEM, ATM, SXT, TE, S, TOB, CT

PA34 AMP, AX, FEP, K, AMC, TIM, ZOX, C, N, CAZ, CTX, CRO, CFP, IPM, MEM, ATM, SXT, TE, CN, S, CT

PA55 AMP, AX, FEP, K, AMC, TIM, ZOX, C, N, CAZ, CTX, CRO, CFP, MEM, ATM, SXT, TE, CN, AK, S

PA60 AMP, AX, FEP, K, AMC, TIM, ZOX, C, N, CTX, CRO, CFP, IPM, SXT, TE, CN, AK, S

PA63 AMP, AX, FEP, K, AMC, TIM, ZOX, C, N, PRL, CAZ, CTX, CRO, CFP, IPM, ATM, CIP, SXT, TE, CN, S, TOB

PA66 AMP, AX, FEP, K, AMC, TIM, ZOX, C, N, PRL, CAZ, CTX, CRO, CFP, IPM, MEM, ATM, CIP, SXT, TE, CN, S, CT

PA102 AMP, AX, FEP, K, AMC, TIM, ZOX, C, N, CAZ, CTX, CRO, CFP, IPM, ATM, SXT, TE, S, CT

*AMP, ampicillin; AX, amoxicillin; PRL, piperacillin; AMC, amoxicillin/clavulanic acid; TIM, ticarcillin/clavulanic acid; CAZ, ceftazidime; FEP, 
cefepime; CTX, cefotaxime; CRO, ceftriaxone; ZOX, ceftizoxime; CFP, cefoperazone; IPM, imipenem; MEM, meropenem; ATM, aztreonam; 
CIP, ciprofloxacin; SXT, co-trimoxazole; TE, tetracycline; C, chloramphenicol; CN, gentamicin; AK, amikacin; N, neomycin; S, streptomycin; 
TOB, tobramycin; K, kanamycin; CT, colistin sulfate.
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Figure 1. PCR detection of antibiotic-resistant genes of 12 MDRPA isolates: a) IMP7, b) IMP10, c) IMP13, d) IMP25, e) blaOXA50, f) 
blaOXA2, g) pstS. M: Molecular size marker (100 bp DNA ladder). PA: Pseudomonas aeruginosa isolate code. 
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Figure 2. PCR detection of virulence genes of 12 MDRPA isolates: a) pilB, b) plcHII, c) plcHI, d) nan1, e) LasB, f) exoS, g) exoU, h) plcN, 
i) algD. M: Molecular size marker (100 bp DNA ladder). PA: Pseudomonas aeruginosa isolate code. 
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that require zinc for their activity, and the class A, C, and 
D β-lactamases contain serine groups in their active site 
(20). Oxacillinases are Ambler class D β-lactamases with 
hydrolytic activity against penicillins, extended-spectrum 
cephalosporins, methicillin, and aztreonam (21). In this 
study, β-lactamases from class B and class D enzymes, 
such as IMP and OXA genes, respectively, were identified.

In the present study, all the carbapenem-resistant P. 
aeruginosa isolates were found to harbor the blaOXA50 
gene. In addition, the blaOXA2 gene was present in 4 
isolates. On the other hand, the blaOXA2 gene was absent 
in others, probably due to the presence of another type of 
carbapenem-hydrolyzing enzyme. These genes were found 
mainly in P. aeruginosa isolates from Turkey (22) and 
France (23). This aspect is important in order to identify 
and track the spread of MDRPA clones since blaOXA50 
may be a potential clonality marker for P. aeruginosa (24). 

The other enzyme that encodes the carbapenemases 
besides oxacillinase is the metallo-β-lactamase (MβL) 
from class B. Since the first report of acquired MβL in 
Japan in 1994 (25), genes encoding IMP-type enzymes 
have spread rapidly among Pseudomonas species (26). 

Table 4. Virulence factors and resistance patterns of 12 MDRPA isolates.
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Figure 3. Correlation between antimicrobial resistance and 
virulence factors production among 12 MDRPA isolates. 
N: Number of antimicrobial agents. r: Pearson’s correlation 
coefficient.
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MβLs are mostly encoded by integron-borne genes and 
confer resistance against all β-lactams, except for the 
monobactams (27). The prevalence of MβL-producing 
gram-negative bacilli has increased in some hospitals, 
particularly among clinical isolates of P. aeruginosa (28). 
Since MβL production may confer phenotypic resistance 
to virtually all clinically available β-lactams, the continued 
spread of MβL is of major clinical concern (29). 

In the present study, PCR amplification of the blaIMP 
gene (IMP7, IMP10, IMP13, and IMP25) among the 
tested carbapenem-resistant isolates using the previously 
published primers of Crăciunaş et al. (12) was positive in 
almost all of the tested isolates. The plasmids’ location of 
the MβL genes explains their spread among P. aeruginosa 
strains in specific regions such as Italy and Korea (30). 
It was determined that the carbapenem resistance in P. 
aeruginosa was due to IMP7 in Canada (31).

The increasing trend of carbapenem resistance in P. 
aeruginosa worldwide is a concern since it limits drastically 
the range of therapeutic alternatives. Metallo-β-lactamase, 
namely IMP, has been reported worldwide, especially 
in Asia and West Europe, and it confers resistance to all 
β-lactams. Precautionary monitoring of blaOXA2 in 
clinical isolates of P. aeruginosa should be carried out. 
Hence, an understanding of carbapenem resistance 
mechanisms might be crucial for the development of novel 
therapeutic strategies.

Interestingly, the pstS gene was detected in all tested 
isolates; this gene plays an important role in multidrug-
resistance. pstS proteins are the cell-bound phosphate-
binding elements of the ubiquitous bacterial ABC 
phosphate uptake mechanisms. Primary and tertiary 
structures, characteristic of pstS proteins, are conserved 
in proteins, which are expressed in secretory operons 
and induced by phosphate deprivation, in Pseudomonas 
species (32). The presence of this periplasmic phosphate 
binding protein (pstS) confers a highly virulent phenotype 
of MDR isolates of P. aeruginosa (33). 

In the present study, the selected isolates were shown 
to possess genes encoding virulence factors including 
GDP mannose 6-dehydrogenase (alginate) (algD), 
neuraminidase (nan1), elastase LasB (LasB), type IV 
fimbrial biogenesis protein pilB (pilB), exoenzyme 

S (exoS), exoenzyme U (exoU), exotoxin A (toxA), 
nonhemolytic phospholipase C (plcN), and hemolytic 
phospholipase C (plcH). Surprisingly, none of our isolates 
was positive for the toxA gene. The expression of virulence 
genes in a given infection is of primary importance in the 
capacity of an individual P. aeruginosa isolate to establish 
and maintain infection (34). Mitov et al. (35) reported that 
the frequencies of pilB, exoU, and nan1 were significantly 
higher in MDRPA strains than in non-MDRPA strains. 
The spread of nan1 in cystic fibrosis P. aeruginosa isolates 
increases when the clinical state of patients worsens, 
suggesting the possible role of neuraminidase in cystic 
fibrosis pulmonary disease evolution (14). Secretion of 
exoU is a marker for highly virulent P. aeruginosa isolates 
obtained from patients with hospital-acquired pneumonia 
(36).

From the view point of presence or absence of plasmids 
in MDRPA isolates, Woodford et al. (37) reported 
that since many plasmids carry antibiotic resistance 
determinants contained within mobile genetic elements 
(transposons) that can be readily acquired or deleted, 
the DNA compositions of plasmids can change rapidly. 
Furthermore, the strong selective pressure for organisms 
to express antibiotic resistance may cause such plasmids 
to spread rapidly among strains, and even among different 
species, and persist for prolonged periods within an 
institution (38).   

When strains have multiple antibiotic resistances, the 
choice of therapy is limited and difficult. The tremendous 
therapeutic advantages afforded by the introduction of 
new antimicrobial agents will always be threatened by the 
emergence of increasingly resistant bacteria pathogens 
(39).

In conclusion, the data of this study showed a high 
incidence of antibiotic resistance and virulence properties 
in Pseudomonas aeruginosa isolates, whereas the statistical 
analysis revealed a significantly positive correlation 
(r = 0.779, P = 0.002) between virulence factors and 
antimicrobial resistance marker profiles of the tested 
MDRPA isolates. To combat this problem, routine drug 
susceptibility testing and molecular fingerprinting are 
recommended monitoring routes of infection and changes 
in drug resistance patterns.
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