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1. Introduction
Epidemiological studies have shown an increased 
comorbidity with glaucoma and Alzheimer disease (1,2). 
As the pathophysiology of these two neurodegenerative 
diseases is better understood, some authors have described 
glaucoma as ‘ocular Alzheimer disease’ (3) and others 
have called it ‘cerebral glaucoma’ (4). Age-related macular 
degeneration (AMD) is another ocular pathology that shares 
many similarities with Alzheimer disease. Degenerative 
diseases share common immune mechanisms (5). Similar 
to Alzheimer disease, AMD is a neurodegenerative disease. 
The two share common risk factors, such as aging, obesity, 
atherosclerosis, hypertension, and smoking, which induce 
cellular aging (6). They also share common histologic and 
molecular features and pathogenic pathways; therefore, 
some authors have called AMD ‘Alzheimer disease in the 
eye’ (7). Because the world population has aged significantly 
over the last century, the importance of both diseases has 
increased. Understanding the common mechanisms may 
provide new insights into Alzheimer disease and AMD 
pathogenesis and treatment. In this review, we aimed 
to highlight the common histologic, immunologic, and 
pathogenetic features of both diseases and to evaluate risk 
factors, such as aging, from this point of view.

2. Histologic and immunologic similarities
Drusen are yellow or white extracellular deposits beneath 
the retinal pigment epithelium. The size and number of the 
drusen and the degree of their confluence are significant 
risk factors for AMD (8). Drusen are characteristic of 
AMD but not uniquely associated with it.

Alzheimer disease, on the other hand, is 
histopathologically characterized by amyloid-β-containing 
senile plaques and amyloid-induced tau-containing 
neurofibrillary tangles (9).

Both diseases share common molecular constituents, 
such as amyloid-β, vitronectin, apolipoprotein E, 
complement components, and inflammatory mediators, 
in their specific histologic hallmarks of drusen and senile 
plaques (10).
2.1. Amyloid-β
The amyloid-β precursor protein is a glycoprotein in 
the membrane of neuronal cells. It has an extracellular 
N-terminal and an intracellular C-terminal domain. 
Both domains play important roles in neuronal 
growth and regeneration. In processing, the amyloid-β 
precursor protein is cleaved with either α-secretase 
(the nonamyloidogenic pathway) or β-secretase (the 
amyloidogenic pathway). When amyloid-β precursor 
protein is cleaved first by β-secretase and then by 
γ-secretase, a soluble amyloid-β results.

Soluble amyloid-β circulates in plasma and 
cerebrospinal fluid mainly as the amyloid-β 40 variant 
(11). The soluble concentrations of the main two variants 
of amyloid-β 40 and 42 are predictors of Alzheimer 
disease (12). For both variants, rapid endocytosis occurs 
with retention in the lysosomes, where the accumulation 
may lead to aggregation and amyloid formation (13). 
Under normal conditions, amyloid-β is immediately 
degraded by peptidases (14). In senile plaques, amyloid-β 
40 and 42 accumulation occurs in the form of insoluble 
amyloid fibrils (15). Amyloid formation is not specific 
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for Alzheimer disease; systemic amyloidosis, maturity 
onset diabetes, Lewy bodies of Parkinson disease, and 
transmissible spongiform encephalopathy are examples 
of other diseases where depositions of normally soluble 
proteins accumulate as insoluble amyloid fibrils (16). 
How the amyloid fibrils form from soluble amyloid-β is 
not known, and the field of structural studies on this issue 
is highly complex (17). Briefly, the process is a molecular 
multistep misfolding cascade where monomeric oligomers 
build up the β sheet structures, which eventually convert 
to amyloid fibrils (18,19) (Figure). Amyloid fibrils are 
longitudinal structures 6–15 nm wide (20). They are 
stained with thioflavin T and Congo red.

Amyloid-β is also accumulated in the drusen, but 
histologically is not longitudinally arranged in fibrils, 
which is characteristic of senile plaques (21). Because the 
drusen do not contain the fibrillar amyloidosis, AMD 
is not generally considered an amyloid-deposit disease 
(10). Luibl et al. immunologically showed that the drusen 
contain mainly the nonfibrillar amyloidogenic oligomers 
(22). Nonfibrillar oligomers are the common link in 

amyloid diseases and play a role in the initial stage of 
amyloid fibril deposition (23). WO antibodies, which are 
specifically reactive in mature amyloid fibrils, are also 
reactive in vesicular drusen; even fibril formation was 
visualized in small amounts with electron microscopy (10). 
Amyloid-β accumulation is most common at the edge of 
geographic atrophies in AMD, where further degeneration 
mostly occurs (24).

The blood–retinal barrier is a barrier located at two 
levels: the inner barrier is the nonfenestrated capillaries of 
the retinal vessels, and the outer barrier is the tight junctions 
of the retinal pigment epithelium. It plays an important 
role in the pathogenesis of AMD (25). Amyloid-β 42 
oligomers that have accumulated with age cause chronic 
inflammation and are speculated as the primary cause of 
blood–retinal barrier dysfunction (26). Retinal pigment 
epithelium cells express the amyloid precursor protein 
and α- and β-secretase. They also react to amyloid-β with 
increased vascular endothelial growth factor and pigment 
epithelium-derived factor secretion, which are important 
in the angiogenic mechanisms of AMD (27).
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Figure. The schematization of amyloid-β fibril formation in the brain in Alzheimer disease and the mechanisms of amyloid-β 
inducing age-related macular degeneration. IL, Interleukin; MMP-9, matrix metallopeptidase-9 (also known as type IV collagenase); 
VEGF, vascular endothelial growth factor; ROS, reactive oxygen species; NK cells; natural killer cells.
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2.2. Oxidative stress
The fundamental mechanism of aging is oxidative stress 
(28). Oxidative stress is hypothesized to occur due to 
unstable free radicals called reactive oxygen species. The 
main effect of reactive oxygen species is damage.

In the pathogenesis of both AMD and Alzheimer 
disease, oxidative stress and the immunologic mechanisms 
triggered by it are causative (29–31).

One of the mechanisms that lead to oxidative stress is 
hypoxia. The organs with increased oxygen demand are 
more prone to hypoxia and, therefore, oxidative stress. The 
brain and retinas are the most energy-consuming organs 
(32).

Choroidal blood flow is decreased in AMD (33). 
Similarly, cerebral blood flow is 20% lower in patients 
with Alzheimer disease than in age-matched controls 
(34). Cerebral atherosclerosis is correlated with Alzheimer 
disease (35).

Reactive oxygen species oxidize the lipids in the 
membranes of intracellular Ca+-signaling pathways. 
Oxidative stress reduces the α-amylase pathway, which 
is also the nonamyloid pathway, thereby increasing 
the β-amyloidase pathway and resulting in increased 
amyloid-β production (36).

Earlier studies showed that protein oxidation products, 
such as carbonyls and 3-nitrotyrosine, and oxidative 
damage markers are increased in Alzheimer disease. 
Recent reviews claimed that accumulating evidence shows 
that the key factor in Alzheimer disease is oxidative stress 
(30,37).

With aging, mitochondrial damage occurs due to 
prolonged oxidative stress, which activates nitric oxide 
synthase and the formation of reactive oxygen species. 
This contributes to disruption of the blood–brain barrier 
(37,38).

Superoxide dismutase is one of the major antioxidant 
metalloenzymes. Superoxide dismutase 1 (copper-zinc-
superoxide dismutase) is found in the cytosol, nucleus, 
and mitochondrial intermembrane, whereas superoxide 
dismutase 2 is in the mitochondrial matrix and superoxide 
dismutase 3 is in the extracellular matrix. Mice deficient 
in superoxide dismutase 1 are more prone to develop 
Alzheimer disease, and patients with Alzheimer disease 
have lower levels of superoxide dismutase 1 (39). It is 
thought that superoxide dismutase 1 deficiency leads 
to increased cytoplasmic superoxide radicals, which, in 
turn, change the conformation of amyloid-β oligomers to 
facilitate the formation of amyloid fibrils.

Similar to Alzheimer disease, oxidative damage is 
responsible for the pathogenesis of AMD, and superoxide 
dismutase 1 also plays a major role (31,40).

 Superoxide dismutase 1 is also a significant contributor 
in the pathogenesis of AMD. Plasma malondialdehyde 
and nitric oxide levels are increased in AMD, which is 
indicative of oxidative damage (41). Mice deficient in 
superoxide dismutase 1 develop the typical pathology of 
AMD when they age and are exposed to light, therefore 
serving as valuable models for AMD (42).
2.3. Vitronectin
Vitronectin is an acute phase reactant and a plasma protein 
that is toxic to neuroblastoma cells and the retinal pigment 
epithelium. It is found abundantly in drusen (43). The 
binding of vitronectin to the Bruch membrane blocks the 
transmission of metabolites between the choriocapillaris 
and retinal pigment epithelium, which eventually leads to 
degeneration of retinal pigment epithelium (44).

Vitronectin is also deposited in other age-related 
diseases, such as dense deposit disease (45), amyloidosis 
(46), and Alzheimer disease (47). Previously, it was 
shown that an antibody to vitronectin strongly stained 
the Alzheimer brain, whereas it weakly stained the 
control brain. However, the senile plaques in Alzheimer 
disease have microglia with strongly positive receptors for 
vitronectin (48). Recent studies show that it may contribute 
to the formation of amyloid oligomers and fibrils (43).
2.4. Apolipoproteins and lipid metabolism
Apolipoproteins are proteins that bind and help transport 
lipids in the blood. The products of this process of 
binding to lipids are called lipoproteins. Cholesterol is an 
essential fat that provides support for cell membranes. In 
blood, it is transported mainly as low-density lipoprotein 
(LDL). Apolipoprotein E and apolipoprotein B are the 
apolipoproteins that bind to LDL and serve in the body 
as ligands for the receptor-mediated endocytosis of LDL. 
Esterified cholesterol is the main component of the lipid-
containing part of drusen, which occupies 37%–44% of 
the druse volume (49). Apolipoprotein B has a central role 
in atherosclerosis (50). Accumulating evidence suggests 
that pathological lipid profiles are a significant factor 
in late-onset Alzheimer disease; hypercholesterolemia, 
increased LDL, and overexpression of apolipoprotein B 
are independent risk factors for Alzheimer disease (51). 
The ApoE gene is polymorphic with three major isoforms: 
apolipoprotein E2, E3, and E4 (52). The strongest genetic 
risk factor for Alzheimer disease is the E4 variant of 
apolipoprotein E (53). Immunologic stainings reveal 
apolipoprotein E, B, and cholesterol accumulation in the 
Bruch membrane, the drusen, and basal deposits at the 
retinal pigment epithelium (54).

Aged mice of the transgenic mouse model that expresses 
human apolipoprotein E4 are strongly associated with 
Alzheimer disease. When these mice are aged over 1 year 
and fed with a high-fat diet, they develop the pathological 
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features of AMD, and the pathology is attenuated if 
antiamyloid-β antibodies are present (55).
2.5. Complement activation
Complement activation is an important process where 
cellular debris and microorganisms are removed and 
immune complexes are processed. It is known that 
complement activation is overtriggered in Alzheimer 
disease on amyloid-β and neurofibrillary tangles (56). 
Amyloid-β is shown to block C3b from inactivation, so 
that an uncontrolled complement activation results (26).

Complement activation also plays an important 
role in the development of drusen and choroidal 
neovascularization (57). Many complement proteins 
and immune complexes are identified in the drusen 
(58–60). Specifically, C5, C5b9, and C3 fragments are 
observed in the drusen. The finding of the colocalizing 
of amyloid-β with these activated complements at 
the same amyloid vesicles in the drusen point to a 
common immunomodulatory pathway in Alzheimer 
disease and AMD (61). The inadequate activation of 
an alternative pathway in the complement cascade 
system leads to sustained activation of complements 
and continued formation of drusen. The complement 
factor H gene, which is the inhibitor of C3, was found to 
be strongly associated with AMD (62). Taken together, 
the complement system and amyloid-β may lead to 
pathological mechanisms in AMD.

3. Epidemiology
More than 25 million people in the world are affected by 
dementia, and most of them also have Alzheimer disease 
(63). Both diseases share the same common risk factors: 
smoking, obesity, and high dietary glycemic index (64–
66). They also share some common genetic mechanisms 
and other mechanisms that have been highlighted in 
this review (67), but the coexistence of both AMD and 
Alzheimer disease in the same patient is not different from 
what is expected by chance, which points to the importance 
of the common environmental risk factors (68).

4. Conclusion
Because of the increasing age of the population, it has 
become more important to understand the mechanisms 
of aging. Addressing the common mechanisms of aging 
that lead to 2 different diseases might help to identify new 
therapeutic approaches. As an example, the treatment 
modalities that have targeted Alzheimer disease might also 
be applied to AMD. Immunotherapy targeting amyloid-β 
has been proven effective in protecting the retinal pigment 
epithelium (69,70). Apolipoprotein E, which is speculated 
to rapidly degrade amyloid-β and reverse the effects of 
Alzheimer disease, may be targeted for the degradation of 
the drusen in AMD. Nutritional antioxidant supplements 
for both diseases are effective in delaying both diseases. 
Other mechanisms highlighted in this review may be the 
targets of new treatment modalities in the near future.
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