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1. Introduction
Spinocerebellar ataxias (SCAs) are complex 
neurodegenerative diseases that are characterized by 
ophthalmoplegia, loss of vision, dysarthria, dementia, 
and loss of muscle coordination  (1–3). SCAs are mostly 
dominantly inherited  (1). Some types of this complex 
disease are starting to be defined with the discovery of 
different gene loci causing the syndrome  (4). More than 
30 types of SCA have been associated with distinct loci 
with the most common being types 1–3, 6, and 7 (5). So 
far, genes and mutations responsible for 15 of the SCAs 
have been identified by genetic studies and for the others, 
although association studies by linkage analysis have been 
completed, no specific genes and mutations have yet been 
identified (6).

Most of the mutations causing SCAs result from 
abnormal increases in the number of trinucleotide repeats 
(TNRs)  (7). The amount of the increase in TNRs is 
thought to be related to the severity of the symptoms and 
with the age of onset of the disease, although no conclusive 
evidence has been found yet (8). At the moment, there is 

no cure for the disease but correct identification of the type 
of disease is important for early diagnosis of the syndrome 
as it may occur in other family members as well as for the 
improvement of patient life quality. 

The genes related to these types of ataxias normally 
encode a protein called ataxin and the CAG codon encodes 
glutamine amino acid. However, the affected gene with the 
increased CAG repetitions in the encoding region produces 
a mutant protein that contains far more glutamine residues 
than usual; therefore, these types of ataxia are classified as 
polyglutamine diseases  (9). Mutant ataxin protein has a 
toxic function causing neurodegeneration (6).  

Another complex neurodegenerative disease caused by 
trinucleotide expansion mutations that occur in the coding 
regions is Friedrich’s ataxia (FA), which is known to have 
very similar symptoms to those of SCA. FA patients living 
in almost the same geographic area as those of this study 
were previously studied by Yilmaz et al. (10).

The SCA types studied here (1, 2, 3, 6, 7, and 17) are 
caused by CAG repeat expansion mutations in the coding 
regions of the related genes  (6). Thus, in this study it is 
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hoped that obtaining genetic information about the 
mutation ratios and the correlations among the number 
of TNRs, age onset, and severity of symptoms will assist 
early diagnosis, treatment, and genetic counseling for the 
population studied.

2. Materials and methods
2.1. Subjects and DNA isolation
The patients and control groups studied consisted of 
people living in Adana, Mersin, Gaziantep, Hatay, and 
Osmaniye provinces (southern Turkey) who presented 
to the Çukurova University Medical Faculty Hospital 
during 2007–2009; the patient group members presented 
to the Neurology and Pediatric Neurology Departments 
for various neurological complaints and were diagnosed 
as SCA; the control group members came to other 
departments for nonneurological complaints. Each 
patient or control was informed about the study before 
blood sampling and was asked to sign an informed 
consent form approved by the Ethics Committee of the 
Çukurova University Medical Faculty. Of the patient 
group consisting of 159 subjects clinically diagnosed with 
SCA and the control group consisting of 42 healthy people, 
each individual was separately tested for all 6 types of SCA 
genes: ATAXIN1, ATAXIN2, ATAXIN3, CACNA1A, 
ATXN7, and TBP.  A blood sample of 2 mL was taken from 
each patient and control and placed into tubes containing 
EDTA; DNA samples were obtained using the salting out 
method (11). 
2.2. PCR-RFLP and statistical analysis
Information about the complaints of the patients and 
other clinical and laboratory results were obtained from 
medical records prepared by the specialist neurologists 
who examined them. Regions with increased TNRs 
were amplified using a standard PCR amplification 
protocol (12). The primers used for PCR amplification are 
given in Table 1 (13,14). 

The lengths of the PCR fragments amplified using 
the PCR-RFLP technique were determined using 
DNASIZE  (15) following a 3% agarose gel run. This 
program enabled us first to measure the length of the 
product in the original gel run and then to calculate the 
increased number of sample TNRs. At first, the expected 
bp length of the product was accepted as standard (Table 
1), i.e. 308 bp  (16,17) for SCA 7 and 203 bp  (18,19) for 
SCA 17 were subtracted and then divided by 3 to find 
the increased TNR numbers. After that, the expected 
reference TNR numbers of 10 for SCA 7 (16,17) and 38 for 
SCA 17 (18,19) were added to the increased TNR numbers 
to find the total TNR numbers. 

The relationship between the TNR numbers and 
variables such as patient complaints, age, age of disease 
onset, and sex were analyzed using SPSS 13.0. Lastly, the 

accuracy and validity of the agarose gel measurement 
method used here was tested by sequencing the related 
DNA regions, especially from the samples having 
expanded alleles (Table 2). Dye Cycle Sequence (Applied 
Biosystems) agents and a 3130 Genetic Analyzer (Applied 
Biosystems) were used for sequencing to determine the 
exact numbers of TNRs.  

3. Results 
For SCA types 1, 2, 3, 6, 7, and 17, the affected genes and 
the largest ranges of TNRs for normal, premutational, and 
expanded alleles cited to date are shown in Table 1. Each 
of the 42 healthy controls and 159 clinically diagnosed 
SCA patients was analyzed separately for increases in 
TNR numbers to distinguish SCA types 1, 2, 3, 6, 7, and 
17. Ranges and averages of TNR numbers in the controls 
and patients studied and the relative frequency of the 
particular SCA types in all patients and controls are given 
in Table 2. When constructing a control group for a SCA 
type, people having no expanded allele for the related 
SCA type were considered as normal and, in that way, a 
SCA type-specific control cohort was assembled. The 
total number of a control cohort particular to a SCA type 
is supposed to be the sum of the healthy controls plus all 
the patients diagnosed as SCA except for the patients of 
the SCA type considered; the number of control cohorts 
therefore changed between 195 and 201 as the number 
of related SCA types were subtracted. Of the 6 SCA 
types studied, 4 types (SCA 1,3, 7, and 17) were observed 
with some percentages, with two of these (SCA types 
1 and 17) having higher frequencies of 4.4% and 3.8%, 
respectively, and all 4 types having one allele expanded 
(i.e. all were heterozygous). When calculating the average 
TNR numbers shown in Table 2, three patients having the 
expanded allele at a premutation level were also included; 
these patients showed low penetrance and duly had mild 
symptoms. The other two types studied, SCA 2 and 6, were 
not encountered in the patients and none of the SCA types 
were found in the healthy controls (Table 2).

The primary complaints of patients are noted in Table 
3. The age of onset of SCA in the patients ranged between 3 
and 40 years old and the rate of consanguineous marriage 
was found to be considerably higher for SCA types 1 and 
7 (Table 3).

4. Discussion
Repetitive DNA regions account for nearly 50% of the 
human genome  (20) and changes in the repetitive DNA 
regions are thought to contribute to the diversity of many 
species during evolution  (21). Mammals have developed 
various systems in order to prevent changes in the repeat 
numbers that can be harmful when a critical threshold 
value is exceeded for the repeat numbers. McMurray (22) 
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stated that for repeat numbers over 25–40 in the coding 
region of the gene and 55–200 in the noncoding region, 
simple TNR repeats become unstable and override the 
mechanisms that prevent the increase in TNR numbers 
and are prone to increase during an individual’s life and in 
parent–child transitions.

Expansion mutations in the glutamine coding regions 
of these genes result in spinocerebellar ataxia because 
the mutant protein gains a new function as a result of 
polyglutamine increase  (23), as is probably the case in 
the SCA type 1, 2, 3, 6, 7, and 17 gene regions examined 
in our study. Although it is still unclear, there are some 
opinions explaining how the increased polyglutamine 
in proteins causes ataxia. According to Gatchel and 
Zoghbi (24), a polyglutamine increase causes production 
of an abnormal toxic protein that builds up within the cell 
since the cell protein homeostasis is impaired. In sensitive 
cells like neurons, this has many harmful consequences 
such as abnormal function of organelles, defects in axonal 
conductivity, and defects in synaptic activity. According to 
Williams and Paulson (25), a polyglutamine increase also 
has an impact on the quality control mechanisms of the 
proteins and triggers the build-up of misfolded proteins 
in the cell. Although these and other similar views put 
forward are not conclusive, they all share the common idea 
of toxic effects of a polyglutamine increase in proteins. 

It is known that the average TNR numbers vary 
according to geographical region and race. In this study, 
the average TNR numbers in genes with SCA types 1, 2, 
3, 6, 7, and 17 and the frequency of each type relative to 
all SCA patients studied have been recorded for the first 
time for the Çukurova population of Turkey. To determine 
the TNR numbers, we used PCR-RFLP combined with 
DNASIZE (15). This fast and easy method was confirmed 
by the sequencing data of related genes as an adequate 
method since no differences were found between the results 
of the agarose gel electrophoresis and the sequencing. 

Other clinical data of patients such as age of 
onset, mental retardation state, primary complaints, 
consanguineous marriage status, sex, and paresis state 
were also evaluated to correlate with the increased TNR 
numbers, but no statistically significant results were 
obtained, probably due to the small number of patients 
studied. Age of disease onset can vary from infancy to 
the age of 70; in our study it varied from 3 to 40 years of 
age and, as is generally accepted by many authors, age of 
disease onset is inversely correlated to the TNR numbers 
and patients with early onset are more likely to receive their 
TNR regions via transmission from their parents (26,27). 
It was also observed that the degeneration progresses 
much faster in patients with early onset  (6). Several 
studies showed (28–30) that in SCAs with early onset in 

Table 2. Ranges of TNR numbers in controls (n = 42) and patients (n = 159) studied and relative frequency of SCA types in patients. 

n
TNR numbers (means ± SD)

Frequency of
SCA typeControl Patients

Control Patients All alleles Normal allele Expanded allele

SCA 1 194 7 10–33 (28.2 ± 2.3) 26–33 (29.7 ± 3.0) 43–58 (49.0 ± 5.5) 4.4%
SCA 2 201 0 20–28 (23.5 ± 1.8) – – –
SCA 3 200 1 13–36 (16.3 ± 2.8) 18 (18.0 ± 0.0) 72 (72.0 ± 0.0) 0.6%
SCA 6 201 0 8–18 (12.7 ± 1.3) – – –
SCA 7 200 1 9–17 (12.9 ± 2.4) 17 (17.0 ± 0.0) 77 (77.0 ± 0.0) 0.6%
SCA 17 195 30–42 (36.5 ± 3.4) 30–38 (32.8 ± 2.8) 45–63 (53.5 ± 8.0) 3.8%

Table 3. Clinical data of patients who had one of the alleles expanded for the related SCA type. 

n Age at examination Age at onset Consanguineous
marriage rate

Primary 
complaint

SCA 1 7 5–50 7–40 57.1% (n = 4) Gait disorders
SCA 3 1 39 12 0% (n = 0) Imbalance
SCA 7 1 5 3 100% (n = 1) Loss of vision
SCA 17 6 3–44 1–36 0% (n = 0) Imbalance
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childhood, the affected allele is transmitted to the child 
mostly from the father, and according to David et al. (31), 
the TNR numbers in the sperm cells of SCA patients 
are significantly higher than the TNR numbers in blood 
cells. It may also be noteworthy to state our observation 
on the patients with consanguineously married parents, 
whose alleles, even the normal alleles, tend to have higher 
averages of TNR numbers than the controls (Table 2). 
However, this assumption could not be examined in detail 
due to the lack of parental blood samples.

It appears that this study includes the first mutation 
records of SCAs presenting a relative prevalence of 6 
SCA types in 6 provinces of southern Turkey. The study 
indicates that 9.4% of cases belonged to 4 types: SCA 1, 3, 
7, and 17. 
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