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1. Introduction
The dynamic behavior and properties of autonomous 
physiological systems can provide an understanding 
of the human body (1) while additionally providing 
simulation and mechanical models to predict behaviors 
of physiological systems. One such autonomous 
physiological system is the cardiorespiratory system, 
whose function requires harmony from the time-
dependent dynamic changes between the heart and 
lungs. This harmony is investigated as a complex system 
with sensitive physiological parameters. The cardiac 
signals superposed on respiratory curves, including 
pneumocardiography (PNCG) signals (2), are known as 
air flow changes, which appear in the respiratory tract in 
relation with cardiac rhythms. These pulses are usually 
used to evaluate the effectiveness of the cardiac and 
respiratory relationship (3).

In nonlinear dynamic system studies, the Lyapunov 
exponent is a quantitative measurement method of a 
parameter’s sensitive dependence on initial conditions 

and provides a quantitative indication of the chaotic 
level of a system. If physiological signals have at least one 
positive Lyapunov exponent, they reflect an unstable and 
unpredictable system and are used to define deterministic 
chaos (4). The Lyapunov exponent defines the average 
rate of divergence of 2 neighboring trajectories of chaotic 
signals in phase space. If the Lyapunov exponent is zero or 
negative, trajectories are on a stable attractor. Contrarily, 
a positive exponent means that the trajectories are on a 
chaotic attractor (5,6). An increased Lyapunov exponent 
implies increased sensitivity to initial conditions and 
characterizes unpredictable variations (7). Basically, 
sensitivity to initial conditions is a primary characteristic 
of chaotic systems and is quantified by the Lyapunov 
exponent for dynamic systems.

Since the cardiorespiratory system has been considered 
as a nonlinear dynamical system (8), its trajectories can 
be investigated in phase spaces (9) using PNCG signals. 
This investigation could lead us to determine the chaotic 
dynamics of the cardiorespiratory system, such as the 
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delay time and the embedding dimension using the 
autocorrelation function (10) and the false nearest-
neighbor methods (11). In addition to these methods, the 
Lyapunov exponent might be the most valuable method 
with its quantitative measurement features.

The chaotic dynamics of respiratory systems have been 
determined by different nonlinear analyses methods. The 
noise titration technique (12), automatic classification 
of signals method (13), combined nonlinear methods 
(14), approximate entropy method (15), and Lyapunov 
exponents (16) have been successfully applied to the 
analysis of respiratory volume. 

In the last decades, significant attention has been given 
to the nonlinear dynamics of body temperature (17), 
blood volume, blood flow and blood oxygenation signals 
(18), neurophysiologic (19) and electrocardiographic 
signals (20), heart rate (21), arterial pressure fluctuations 
(22), and human menstrual cycles (23) using nonlinear 
techniques related to Lyapunov exponents. 

Positive Lyapunov exponents and nonlinear fractal 
dimensions had been found in arterial blood pressure 
time series (24). The Lyapunov exponent was positive in 
ocular aberration dynamics of the human eye (25). Recent 
studies have indicated that nonlinear methods could be 
valuable to understand neuronal dynamics. In one study, 
an epileptic seizure was detected from EEG signals using 
nonlinear time series analysis techniques (26) as well as 
independent component analysis (27). 

Recently, the embedding parameters including the 
delay times and the embedding dimensions of PNCG 
signals were obtained at the Celal Bayar University Faculty 
of Medicine in order to investigate the dynamic features 
of the cardiorespiratory system of small laboratory rats 

(28). The Lyapunov exponents of the PNCG signals from 
the time series were also presented (29,30) and they were 
reconsidered in two graduate theses (31,32). In this study, 
we would like to renew the Lyapunov exponents (29–
32) as given in the Table to interpret the diagnostic and 
prognostic features of the cardiorespiratory system.  

This paper has been organized as follows: in Section 
2, we present the experimental preparations, protocol, and 
recording system of PNCG signals. The time series results 
and attractors of PNCG signals (28–32) were respectively 
plotted and tabulated. The data are also represented in 
Figures 1–3 in Section 3 in order to obtain more information 
about the diagnostic and prognostic properties of the 
pathologic behaviors of the cardiorespiratory system. In 
Section 4, we consider the role of the Lyapunov exponents 
to determine physiological and pathological conditions of 
the cardiorespiratory system. We conclude with how these 
results could lead us to construct an electrical circuit model 
for the cardiorespiratory system and show the application 
possibility of q-statistical models. 

2. Materials and methods
2.1. Study protocol and experimental applications 
Tracheal air flow signals were recorded in spontaneously 
breathing anesthetized rats. Male Sprague Dawley rats 
were used to obtain PNCG signals. Their weights varied 
between 0.27 and 0.33 kg. The rats received humane 
care in pursuance of the Guidelines of Care and Use of 
Laboratory Animals for Research designed by the National 
Medical Research Society. During the experiment, the rats 
were fed a standard laboratory diet and drinking water was 
available ad libitum.

Table. Nonlinear analysis of the tracheal air flow signals including PNCG signals of rat 1, rat 2, 
and rat 3.

Delay 
times (τ)

Embedding 
dimensions (m)

Lyapunov exponents
(λ1, λ2, λ3, λ4, λ5)

Fractal
dimensions (Dc)

Rat 1 33 4

0.100842
–0.010083
–0.12731
–0.446907

0.865

Rat 2 31 4

0.103975
0.000221
–0.135505
–0.499214

0.883

Rat 3 40 5

0.182774
0.0166
–0.0833
–0.3333
–0.925

0.807
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An intraperitoneal administration of pentobarbital 
sodium was used for the anesthetizing of rats. The 
primary dose of pentobarbital sodium was 50 mg/kg, and 
additional doses were between 5 and 7.5 mg/kg. Following 
the pentobarbital application, the anesthetized rats were 
placed horizontally on an operating table. All applications 
were performed under spontaneous respiration. Initially, 
we performed the tracheotomy with a metal cannula 
to keep the airway free and to prevent resistance in the 
airway. The arterial blood pressure was recorded from the 
catheterized right femoral artery. The body temperature 

of the rats was kept at around 36.5 °C with the help of a 
warmed operation table. 

For the electrolyte requirements of the rats, 2 mL of 
saline was intraarterially injected after the operational 
preparation. Signals were recorded 30 min after the 
injection. The rats were sacrificed using an overdose 
of pentobarbital at the end of the experiment. The 
experimental procedures involved in this study were 
approved by the local animal ethics committee of Celal 
Bayar University, Manisa, Turkey.
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Figure 1. Simultaneous record of arterial blood pressure pulsations (upper trace) and breathing pattern (lower trace), including the 
pneumocardiography (PNCG) signals. Upper trace: The systolic and diastolic arterial blood pressures are determined as maximal and 
minimal values (120 and 90 mmHg), respectively, but the periods of both systole and diastole are approximately estimated according to 
the shape of arterial blood pressure signals. Lower trace: The PNCG signals are manifested between the air flow signals of inspiration 
and expiration periods. The PNCG signals are also air flows signals reflecting changes in blood flow direction between thorax and 
abdomen, due to the heart’s actions.
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Figure 2. Time series of the tracheal air flow signals including PNCG signals of rat 1, rat 2, and rat 3. These are the row data used to 
calculate the Lyapunov exponents.  
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2.2. Recordings and analysis of signals 
In this experiment carried out in the physiology laboratory, 
an innovated instrument of the miniature Fleisch 
pneumotachograph was used to record the tracheal air flow 
signals, including PNCG signals. This pneumotachograph 
was calibrated at body temperature as suggested by Kreit 
and Sciurba (33). During the studies, the resistance of the 
tube did not need to be controlled due to the open side 
of the instrument. The tracheal cannula was bound to the 
instrument over the record of these signals. The Pneu01 
differential pressure transducer (WPI, Berlin, Germany) 
was used to measure the airflow rate. The signals of the 
Pneu01 transducer were respectively amplified by the 
TBM-4 multichannel transducer amplifier (WPI) and 
a multichannel differential amplifier (INH-Verstärker, 
Science Products GmbH, Hofheim, Germany). Both BLPR 
blood pressure transducer and the TBM-4 (WPI) were 
used to record the femoral artery pressure (Figure 1). 

We then calculated the Lyapunov exponents of the 
PNCG signals using the Nonlinear Dynamics Toolbox of 
the Applied Chaos Laboratory, including the Eckmann 
and Ruelle method.

3. Results
Figure 1 shows the results of the simultaneous recording 
of blood pressure (upper) and respiratory airflow rate 
(lower) signals. The heart rate and respiratory frequency 
were 360 min–1 and 46 min–1, respectively. The remarkable 
synchronization between blood pressure pulsation and 
small air flow signals indicated that these are heart beat-
induced air flow signals, the so-called PNCG signal. As 
shown in Figure 1, PNCG signal was manifested between 

expiration and inspiration signals, but it was not observed 
if the respiratory flow changed rapidly. 

In the recent work of our collaborative group, the 
tracheal air flow signals, including PNCG signals, of 3 
representative rats from 16 experimental rats were analyzed 
to construct phase spaces by using the delay times (τ) and 
the embedding dimensions (m) for τa = 33, ma = 4; τb = 31, 
mb = 4; and τc = 40, mc = 5 (28). In this study, the chaotic 
attractors (9) were also investigated from a time series of 
reconstructed phase space of the cardiorespiratory system, 
and we renewed the Lyapunov exponents for the rats given 
in the studies published by Yalcin and Akdeniz, Uzel, and 
Akıllı (29–32). The data, extracted using the Nonlinear 
Dynamics Toolbox from the Applied Chaos Laboratory, 
in addition to the Eckmann and Ruelle method (4), are 
shown in Figure 3:
i)	 Lyapunov exponents for the signals of rat 1 given in 

Figure 3: λ1 = 0.100842 (largest), λ2 = –0.010083, λ3 = 
–0.12731, and λ4 = –0.446907.

ii)	 Lyapunov exponents for the signals of rat 2 given in 
Figure 3: λ1 = 0.103975 (largest), λ2 = 0.000221, λ3 = 
–0.135505, and λ4 = –0.4992140.

iii)	 Lyapunov exponents for the signals of rat 3 given in 
Figure 3: λ1 = 0.182774 (largest), λ2 = 0.0166, λ3 = 
–0.0833, λ4 = –0.3333, and λ5 = –0.925.

All these results are also shown in the Table for 
comparing the Lyapunov exponents.

4. Discussion
PNCG is the recording of cardiac signals superposed on 
respiratory curves in the external airways; PNCG signals 
can be obtained using a precise method (34,35). PNCG 
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Figure 3. The largest Lyapunov exponents, λa = 0.100842, λb = 0.103975, and λc = 0.182774, for the time series of the tracheal air flow 
signals including PNCG signals of rat 1, rat 2, and rat 3 in Figure 2. The positivity of these values points out the chaotic behavior of the 
series and may reflect the normal physiological condition.
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signals have been proposed as an effective method for 
the evaluation of cardiac performance. In addition, these 
signals might be beneficial to assess respiratory conditions 
(36). Initially, animal experiments to measure PNCG 
signals were performed on large laboratory animals, 
such as specially ventilated dogs (34,37). In contrast, our 
collaborative group has developed a technique to measure 
PNCG in small laboratory animals (28).

The Lyapunov exponent (λ) is a quantitative 
measurement method of a parameter’s sensitive dependence 
on initial conditions, which is the primary characteristic 
of a chaotic system. The Lyapunov exponent is often used 
to discriminate between chaotic dynamics and periodic 
signals. The feature of the quantitative measurement 
provides an advantage to Lyapunov exponents for 
classifying the nonlinearity of the system. An increased 
Lyapunov exponent value reflects greater sensitivity 
to initial conditions and characterizes unpredictable 
variations, whereas low values indicate regularity (7). The 
largest Lyapunov exponent value, closest to 1, indicates 
chaotic behavior in the series. This value falls due to the 
relaxed situation of the brain. This suggests that when the 
subjects are under sound or reflexologic stimuli, the brain 
goes into a more relaxed state (5).

 Lately, mathematical models have been created to 
assess the behavior of the cardiorespiratory system using 
pulsation analysis techniques (38). Compatible with our 
aim to calculate the strangeness (39), we constructed 
the phase space from the PNCG signals, which might 
be considered to be a sensitive type of cardioventilatory 
coupling, a transient temporal coherence between 
the cardiac and respiratory activity (40,41). After that 
reconstruction, we found the Lyapunov exponents of the 
PNCG signals attractors as given in Figure 3.       

We previously assessed the cardiopulmonary signals 
from the point of view of nonlinear dynamics by the 
reconstruction of phase space (28). In this study, we 
combined the PNCG signals with a quantitative method 
to measure the degree of nonlinearity. Our objective was 
not only to obtain tracheal airflow signals but also to 
assess these signals in laboratory rats. For this reason, we 
analyzed the nonlinear features of these cardiopulmonary 
signals using a quantitative measure method called the 
Lyapunov exponent. This method could be useful to 
assess cardiorespiratory performance, as well as to predict 
progressive changes in the functions of the systems. 

When researchers obtain nonlinear physiologic signals, 
they wonder if it is healthy for these biological systems to 
be chaotic (42). For this reason, the Lyapunov exponent 
has been investigated as a diagnostic method. Babloyantz 
and Destexhe concluded using Lyapunov exponents that 
a healthy brain is more chaotic than an epileptic brain, 
and there is variability loss in the brain’s electrical activity 
during an epileptic seizure (43). The diagnostic values of 

the Lyapunov exponent have also been found to be similar 
to a diagnosis from medical doctors in the case of typical 
general epilepsy (27). In another study, the Lyapunov 
exponent was found to be decreased for epileptic subjects 
compared with normal subjects (26). Lyapunov exponents 
have been claimed to be useful for early detection of the 
electroencephalographic changes (6).

On the other hand, Babloyantz and Destexhe proposed 
the use of the Lyapunov exponent value of cardiac activity 
in clinical diagnosis (44). The decrease of the Lyapunov 
exponent value of heart rate fluctuations and maintained 
arterial pressure fluctuations during hypoxia have 
suggested characteristic pathological change (22). The 
nonlinear behavior of heart rate variability (HRV) may have 
a diagnostic (45) and prognostic (46,47) value for patients 
in cardiovascular disease states and in the postoperative 
period of surgical myocardial revascularization (48,49). 
The nonlinear analysis of the HRV has also been suggested 
to be used for prognostic purposes in patients with stable 
angina pectoris (50). The decreased Lyapunov exponent 
and nonlinear features in heart-transplanted patients may 
be due to the loss of the neural modulation of heart rate 
(51). In addition to the Lyapunov exponent, the correlation 
dimension has been applied to investigate the complexity of 
Doppler signals and has been used as a prognostic method 
to determine pathological cases of the aortic valve (52). 
In patients suffering from chronic obstructive pulmonary 
disease, bronchodilator therapy and acute bronchodilation 
effect have increased the value of the largest Lyapunov 
exponent and nonlinearity (53). Recently, it was suggested 
that nonlinear parameters might be useful to evaluate the 
patient’s progression in intensive care units (54). It can 
be expected that if the value of Lyapunov exponent falls 
under zero, the patient may get progressively worse.

This study shows that the Lyapunov exponent could 
play a significant role in the investigation of the nonlinear 
properties of cardiorespiratory systems. In addition, it shows 
the validity of modeling the cardiorespiratory systems as 
an electrical circuit (55,56). As Lyapunov exponent values 
draw closer to 0, the q-statistics investigations (57,58) of 
the PNCG signals in Figure 2 could give more information 
about cardiorespiratory systems.

This combined method of PNCG signals and Lyapunov 
exponent values might be useful for physiological and 
pharmacological studies of cardiorespiratory interactions 
in small laboratory animals. The effects of drugs and 
other substances on the cardiorespiratory system could be 
evaluated using the value of the Lyapunov exponent of the 
signals. The nonlinear parameters might be used as vitality 
indicators of small laboratory animals. After this study, 
we will continue to discuss our results to further improve 
the prognostic and diagnostic features of the nonlinear 
dynamics. 
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