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1. Introduction
Beta-thalassemia is a congenital hemolytic disorder caused 
by a partial or complete deficiency of β-globin chain 
synthesis. Patients with beta-thalassemia major suffer 
from severe anemia and other serious complications from 
early childhood. The disease is treated by chronic blood 
transfusion. However, this can cause severe iron overload, 
resulting in progressive organ failure (1,2).

Infectious complications and immune abnormalities 
have always been considered as causes of morbidity and 
mortality in β-thalassemia. A wide range of functional 
and quantitative immune alterations have been described 
in β-thalassemia patients with multiple transfusions. 
These abnormalities seem to be acquired and secondary 
to allogenic stimulation of the antibody-producing cells 
by continuous blood transfusions, together with iron 
overload (3–8). 

Two decades ago Mossman and Coffman (for review 
see 9) proposed that CD4+ T cells differentiate into two 

subsets with reciprocal functions and patterns of cytokine 
secretion, termed T-helper 1 (Th1) and Th2 (10). This 
paradigm was maintained until 2005, when a third T-cell 
subset, known as Th17, was identified (11,12). The main 
feature of this subset is its release of interleukin 17 (IL-
17) (13,14). The role and function of Th17 indicate that 
this subset of CD4+ T cells plays a fundamental role in 
infiltration and recruitment of inflammatory cells against 
intercellular parasites and fungi (15) and recently in certain 
Th1 mediated autoimmune diseases such as rheumatoid 
arthritis and multiple sclerosis (16). Several recent studies 
demonstrated that transforming growth factor beta 
(TGF-β) and IL-6, but not IL-23, are critical factors for 
murine Th17 cell differentiation in vitro (17,18).

It appears that TGF-β plays an essential role in 
dictating whether CD4+ T cells become Treg cells 
or Th17 cells. The combination of TGF-β and IL-6 
promotes the differentiation of Th17 cells and inhibits 
Treg cell differentiation in mice (17,18), whereas TGF-β 
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plus retinoic acid inhibits Th17 cell differentiation and 
promotes Treg cells (19,20).

It is shown that IL-21 is another cytokine highly 
expressed by mouse Th17 cells. IL-21 is induced by 
IL-6 in activated T cells, a process that is dependent on 
STAT3 but not ROR-gamma. IL-21 potently induces Th17 
differentiation and suppresses Foxp3 expression, which 
requires STAT3 and ROR-gamma, which is encoded by 
Rorc. IL-21 deficiency impairs the generation of Th17 
cells and results in protection against experimental 
autoimmune diseases (18).

Apart from synthesis by Th17, IL-17 may also be 
produced by other cells such as CD8+ T cells, NKT cells, 
epithelial cells, and cells from the innate immune system 
(for review see 21). It seems IL-17 acts as an interface 
between inflammatory response and cell-mediated 
immunity in the case of cancer and also in infectious 
diseases. Inflammatory reactions are considered a first 
line of host immune response against pathogens (22). It 
seems the role of IL-17 in recruiting inflammatory cells 
and potentiating of this event is necessary. IL-17 and IL-21 
are proinflammatory cytokines whose roles in recruiting 
inflammatory cells and potentiating of this event should 
be considered. 

Several factors may be significant in triggering Th17 
and consequently the synthesis and release of IL-17 such 
as TGF-β, IL-6, progstaglandin E2, IL 21, IL-23, IL-1β, 
and TNF-α play major roles in the induction of Th17 
differentiation (23–25).

Despite the known roles of IL-17 in enhancing 
inflammatory reactions, reports on the role and 
involvement of iron overload in Th17 response do not 
exist. On the other hand, it is shown that iron directs the 
immune response toward a Th2 response pattern, which 
is unfavorable for fighting a bacterial or viral infection 
(3). Gharagozloo et al. found low production of IL-2 and 
IFN-γ by PHA-stimulated peripheral blood mononuclear 
cells from thalassemia patients with serum ferritin levels 
higher than 4500 ng/mL (26). Other research has found 
that thalassemia patients have higher serum levels of 
mediators of inflammation, such as IL-6, IL-18, IL-1, and 
TNF-α (27–30).

Therefore, we aimed to study the relation of repeated 
blood transfusions and high serum ferritin levels on the 
serum levels of IL-17, IL-21, and TGF-β on Th17 cells in 
the blood of thalassemia major patients in Iran. We also 
compared the results according to the patients’ clinical or 
pathological status.

2. Materials and methods
Forty-three β-thalassemia major patients (17 males and 26 
females) of mean age 15.8 ± 5.9 years (range 6–23) with 
serum ferritin levels 460 to 7200 ng/mL over the previous 

6 months (34 children with ferritin <4500 and 9 patients 
with >4500 ng/mL) participated in this study, of which 
only eleven were splenectomized (seven males and four 
females). The patients were referred to the immunology 
laboratory from the hospitals of Jahrom University of 
Medical Sciences. The patients were regularly transfused 
with packed red cells every 3–4 weeks to maintain mean 
hemoglobin levels above 9.8 g/dL, and were receiving 
regular iron chelating therapy (deferoxamine 40 mg/kg 
daily) without ascorbic acid that was similar between all 
patients. The mean dose of deferoxamine was 40–50 mg/
kg per infusion over 8–12 h, 5–6 days per week in all 
patients. All experiments were performed (once for each 
patient) before transfusion. Patients were excluded from 
this study if they had one of the following conditions: 
poor deferoxamine compliance (those with less than 80% 
compliance), chronic liver disease such as hepatitis B or 
C infection, a history of a positive HIV test, chronic renal 
or heart failure, iron chelation therapy with deferiprone, 
pregnancy, and infection 2–3 weeks before. Meanwhile, 
five and two patients were excluded from study because 
of colds and some technical errors, respectively. Data 
on age, sex, white blood cell count, red blood cell count, 
hemoglobin, hematocrit, mean corpuscular volume, mean 
corpuscular hemoglobin, mean corpuscular hemoglobin 
concentration, platelet count, splenectomy performance, 
and deferoxamine treatment were obtained from the 
hospital records for patients and controls. The control 
group included 43 subjects matched for age and sex (20 
males and 23 females) selected randomly from healthy 
individuals undergoing a check-up and routine complete 
blood cell count. The controls were of mean age 10 ± 
5.8 years; range 3–20 years. During sample collection, 
it was ensured that subjects had neither infection nor 
any acute or chronic disease. Sample characteristics and 
hematological findings of the β-thalassemia major patients 
and healthy controls are summarized in Table 1. During 
the data analyses, six from the 49 samples were excluded. 
All subjects provided informed consent to participate 
in the study and to allow their biological samples to be 
analyzed. Approval for the study was given by the Ethics 
Committee of the Shiraz University of Medical Sciences 
(Jahrom, Iran).
2.1. Enzyme linked immunosorbent assay (ELISA)
The amounts of IL-17, TGF-β, and IL-21 in the patients’ and 
controls’ sera were measured at the same time by the same 
technician, using ELISA kits (eBiosciences, San Diego, 
CA, USA). Briefly, premixed standards were reconstituted 
in PBS (pH 7.2), generating a stock concentration of 
500, 1000, and 4000 pg/mL for IL-17, TGF-β, and IL-
21, respectively. Sensitivity for IL-17 was 4 pg/mL and 
minimal cross-reactivity IL-17 to the recombinant human 
Il-17AF heterodimer was observed at 0.4%. Sensitivity for 
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both IL-21 and TGF-β was 8 pg/mL. The standard stocks 
were serially diluted in Reagent Diluent to generate 7 
points for the standard curves. Diluted Capture Antibody 
was added to a 96-well, flat-bottomed, polystyrene 
microtiter plate, at final volume of 100 μL. The plates were 
sealed and incubated overnight at room temperature, then 
washed with Wash Buffer. Premixed standards or samples 
(100 μL) were added to each well, which covered with an 
adhesive strip and incubated for overnight at 4 °C. After 
incubation and washing, 100 μL of the premixed Detection 
Antibody was added to each well and the plate was covered 
with a new adhesive strip and incubated for 2 h at room 
temperature. After incubation and washing, Streptavidin-
HRP was added to each well (100 μL). The incubation 
was terminated after 20 min at room temperature and the 
plates were kept away from direct light. Then 50 μL of Stop 
Solution was added to each well, and the optical density of 
each well was immediately determined using a microplate 
reader set to 450 nm. The results were expressed in pg/mL.
2.2. Statistical analysis
The serum levels of IL-17, IL-21, and TGF-β in the 
peripheral blood were compared to the corresponding 
values from control samples using nonparametric Mann-
Whitney tests by SPSS v. 11.5 (SPSS, Chicago, IL, USA). 
Finally, correlations between different cell populations 
were evaluated using Spearman correlation coefficients. 
The variable levels were evaluated by means of Prism 

4 software (San Diego CA, USA, 2003). P < 0.05 was 
regarded as significant in all statistical analyses.

3. Results
3.1. Cytokine assay in patient and healthy groups 
Serum levels of IL-17 among patients were significantly 
increased compared to the controls (25.76 ± 4.15 vs. 
19.91 ± 2.79 pg/mL; P = 0.005) (Figure 1A). We noted 
significant differences in the serum levels of IL-17 in 
peripheral blood of patients with low ferritin (less than 
4500 ng/mL) and splenectomized and nonsplenectomized 
patients compared to the healthy controls (28.21 ± 5.17, 
30.94 ± 13.38, and 22.79 ± 3.69 vs. 19.91 ± 2.79 pg/mL; P = 
0.004, 0.04, and 0.01, respectively). However, there was no 
significant difference in the serum level of IL-17 between 
the healthy controls compared to patients with high 
ferritin (higher than 4500 ng/mL) (P > 0.05). In addition, 
in patients none of the hematological findings showed 
significant difference in IL-17 serum level (Table 2). The 
levels of IL-17 in splenectomized and nonsplenectomized 
patients, and between patients with low ferritin and 
high ferritin were similar (P > 0.05). These results are 
summarized in Table 3.

Comparison of the findings shows significantly higher 
levels of TGF-β in all patients, patients with low ferritin and 
high ferritin, and splenectomized and nonsplenectomized 

Table 1. Descriptive statistics of general characteristics and hematological findings for β-thalassemia major patients and controls.

Characteristics and hematological findings Patients (n = 43) Controls (n = 43) P

Age (years) 15.8 ± 5.9 10 ± 5.8 -

Male 17 (39.5%) 28 (65.1%) 0.5

Female 26 (60.5%) 15 (34.9%) -

White blood count × 109/L 9.5 ± 6.3 9.1 3.3 0.19

Red blood cell count × 1012/ L 3.6 ± 0.5 4.6 ± 0.6 <0.0001

Hemoglobin (g/L) 9.8 ± 1.0 12.8 ± 1.7 <0.0001

Hematocrit (%) 29.3 ± 5.2 37.4 ± 5.0 <0.0001

Mean corpuscular volume (fL) 79.9 ± 9.7 80.7 ± 8.5 0.23

Mean corpuscular hemoglobin (pg/cell) 26.5 ± 2.3 27.9 ± 3.4 0.0003

Mean corpuscular hemoglobin concentration (27–33.3 g/dL) 32.9 ± 1.5 34.0 ± 2.5 0.004

Platelet count (150–400 × 109/ L) 361.6 ± 199.5 236.4 ± 115.5 <0.0001

Splenectomy (%) 28.9 - -

Deferoxamine treatment (week/ night) 3 ± 1 - -

Deferoxamine dosage (mg/kg) 40–50 - -
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patients than in healthy volunteers (546.35 ± 58.27, 
546.15 ± 62.39, 527.96 ± 176.26, 632.74 ± 65.30, and 
469.67 ± 72.15 vs. 171.58 ± 51.68 pg/mL; P = 0.0002, 
0.001, 0.01, 0.005, and 0.007, respectively) (Figure 1B). 
However, there is no significant difference in the serum 
levels of TGF-β in patients with low ferritin compared to 
those with high ferritin, or between splenectomized and 
nonsplenectomized patients (P > 0.05) (Table 3). We noted 
no correlation between TGF-β serum level with ferritin, 
Hb, or HCT in patients (r = –0.48, –0.28, and –0.19, 
respectively; P > 0.05) (Table 2).

Serum levels of IL-21 in patients did not differ 
compared to the control group (597.24 ± 51.37 vs. 796.18 
± 83.71 pg/mL; P = 0.2). Moreover, among the patients 
with low ferritin and high ferritin, and splenectomized 

Figure 1. Serum level of IL-17, TGF-β, and IL-21 in the peripheral blood of patients with thalassemia patients and normal controls. 
(A) Significant differences were found in the serum levels of IL-17 in the peripheral blood of all patients, patients with low ferritin, 
splenectomy, and nonsplenectomy compared to the healthy controls. (B) TGF-β serum levels were significantly higher in the peripheral 
blood of all patients, patients with low ferritin, high ferritin, splenectomy, and nonsplenectomy compared to the healthy controls. (C) 
No significant difference was found in the serum levels of IL-21 among patients compared to the healthy controls. Presented data were 
analyzed with the nonparametric two-tailed Mann–Whitney test and the horizontal lines show the median of the groups. *P < 0.05 and 
**P < 0.01.
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Table 2. Correlations between ferritin, Hb, and HCT with IL-17, 
TGF-β, and IL-21 serum levels in patients with thalassemia. 

IL-17 TGF-β IL-21

Ferritin r –0.08 –0.48 –0.22

P 0.59 0.76 0.14

Hb r 0.10 –0.28 –0.13

P 0.52 0.06 0.40

HCT r –0.13 –0.19 –0.24

P 0.93 0.21 0.12

Hb; Hemoglobin, HCT; Hematocrit
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and nonsplenectomized patients, the serum levels of IL-
21 were not different compared to those of the controls 
(620.42 ± 61.41, 490.34 ± 89.10, 778.20 ± 147.40, and 517.04 
± 43.26 vs. 796.18 ± 83.71 pg/mL; P > 0.05) (Figure 1C). In 
addition, there was no significant difference in the serum 
levels of IL-21 in patients with low ferritin compared to 
those with high ferritin, or between splenectomized with 
nonsplenectomized patients (P > 0.05) (Table 3). Similar 
to previous cytokines, IL-21 levels in patients did not 
correlate with level of ferritin, Hb, or HCT (r = –0.22, 0.13, 
and –0.24, respectively; P > 0.05) (Table 2).

4. Discussion
In this study, serum levels of IL-17, IL-21, and TGF-β in 
the peripheral blood of patients with β-thalassemia were 
analyzed. The data indicated higher levels of IL-17 and 
TGF-β, but not IL-21, in the patients compared to the 
controls, suggesting an inflammatory status associated 
with the suppression of T cell immune response. This is in 
agreement with Balouchi et al.’s study showing increased 
TGF-β and IL-17 in thalassemia patients, which means 
that T cells show a stimulated phenotype, while their 
activity has been suppressed (31).

The effects of splenectomy, iron overload, and 
hematologic factors on the immune response of 
β-thalassemia major patients were also investigated. In 
this study, no correlation was observed between ferritin 

and the cytokine levels in thalassemia patients, whereas 
increased IL-17 serum levels in patients with low ferritin, 
splenectomy, and nonsplenectomy were found. In addition, 
it was shown that TGF-β serum levels in splenectomized 
and nonsplenctomized, and low ferritin and high ferritin 
patients were higher than in the healthy controls. Weiss 
et al. reported that iron directs the immune response 
toward a Th2 response, which is unfavorable for fighting 
bacterial or viral infections (3). Gharagozloo et al. also 
demonstrated a significant decreasing in IL-2, IFN-γ, and 
IL-4 production by activated lymphocytes from patients 
with β-thalassemia compared to the normal group (26). 
However, Salasa and Zoumbos showed that stimulated 
blood mononuclear cells from thalassemia patients 
produced more IFN-γ than their control group. This might 
be due to infections in β-thalassemia patients (32).

In the present study, serum ferritin levels in ten patients 
were higher than 4500 ng/mL and those of the rest were 
less than 4500 ng/mL. Although the mean serum levels 
of IL-17, IL-21, and TGF-β were not different between 
ferritin subgroups, high serum levels of IL-17 in patients 
with serum ferritin levels less than 4500 ng/mL compared 
to those with levels higher than 4500 ng/mL rather than 
healthy controls were found. This is somewhat in keeping 
with the findings of Gharagozloo’s study, which reported 
low production of IL-2 and IFN-γ in patients with serum 
ferritin levels higher than 4500 ng/mL in response to PHA 

Table 3. The serum concentrations of IL-17, TGF-β, and IL-21 in patients with thalassemia in low ferritin, high ferritin, splenectomy, 
and nonsplenectomy groups. Presented data were analyzed with the nonparametric two-tailed Mann–Whitney test. 

Low ferritin b High ferritin c

Splenectomy Nonsplenectomy Splenectomy Nonsplenectomy

IL-17a

Mean ± SEM 44.19 ± 15.97 21.63 ± 2.51 -d 31.86 ± 14.95

Median 27.05 17.25 -d 13.28

P n.s. n.s.

TGF-β a

Mean ± SEM 490.40 ± 106.72 593.97 ± 88.22 -d 494.38 ± 108.78

Median 671.34 653.88 -d 616.64

P n.s. n.s.

IL-21 a

Mean ± SEM 565.65 ± 87.70 585.86 ± 49.45 -d 639.52 ± 172.78

Median 490.34 540.55 -d 465.24

P n.s. n.s.

a pg/mL, b<4500 ng/mL, c>4500 ng/mL, d there was no value, n.s.: Nonsignificant
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stimulation (26). Accordingly, iron overload may suppress 
Th1 immunity in thalassemia patients with increased 
serum ferritin levels (3,33,34).

Cytokine serum levels between splenectomized and 
nonsplenectomized patients were similar in our study. 
However, other studies reported that patients with 
splenectomy have marked absolute lymphocytosis. This 
suggests that the spleen could play some part in the 
regulation of lymphocyte counts and act as a reservoir for 
lymphocytes produced in the body but it could not affect 
cytokine levels (26).

The effect of Th17 should be considered within the 
context of Treg function, as the two cell subsets of the 
immune response have evolved to fine-tune immune 
suppression versus immune potentiation. In this 
scenario, our finding of increased expression of IL-17 as 
proinflammatory cytokine in peripheral blood from a 
group of patients that contained many children without 
spelenectomy can be interpreted as a reflection of a 
proinflammatory response. Furthermore, higher levels of 
TGF-β in either the current study or other studies (31,35) 
in thalassemia patients compared to the control group 
show TGF-β is mainly produced by Treg, which mediates 
immune suppression to limit immunopathogenesis 
associated with chronic inflammation and persistent 
infections. Therefore, increased production of IL-17 
and TGF-β might contribute to abnormalities in iron 
metabolism and it is probably due to overstimulation of 

Th17. In fact, iron deposition in the reticuloendothelial 
system such as macrophages and epithelial cells may 
influence the regulation of Th17 responses in thalassemia 
patients and result in higher levels of its cytokines in the 
circulation. On the other hand, multiple blood transfusions 
may cause the immune system in β-thalassemia patients 
to be under constant alloantigen stimulation, despite the 
suppressed immune responses due to iron overload (36). 

Taken together, it seems T lymphocytes are activated 
in multitransfused β-thalassemia major patients, though 
T-cell suppression due to TGF-β is seen too. These 
observations may have implications for the associations 
between repeated immune activation and premature aging 
of the immune system that result in exhaustion of immune 
resources (37). On the other hand, blood transfusion and 
chronic immune activation might induce Treg cells, which 
suppress T-cell effector functions. Finally, this cytokine 
profile clinically can be used as a related marker for 
assessing disease severity and an indicator in following the 
disease and consequently therapeutic intervention.
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