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1. Introduction
Nasal polyposis (NP) is a type of chronic rhinosinusitis, 
and its treatment is one of the most difficult challenges in 
clinical rhinological practice. Although the pathogenesis 
of NP has received much attention recently, its 
etiopathogenesis and underlying molecular mechanisms 
remain controversial. NP is a multifactorial disease 
and its genetic causes have not been fully defined (1). 
Hyperproliferation, apoptosis, subepithelial chronic 
inflammation, and local immunological dysregulation 
may contribute to the development and progression of 
NP (2–4). Considerable evidence shows that apoptosis 
and proliferation induce secondary changes in chronic 
inflammation, including epithelial hyperplasia and tissue 
remodeling (5). Therefore, investigating hyperproliferation 
and apoptosis in inflammatory processes is important. 
The expression profiles of proteins that are involved in 
these processes could provide crucial information for 
understanding the pathogenesis of NP (6).

In this study, the expression of CD11b, galectin-1, 
beclin-1, and caspase-3 was measured in NP tissues and 
normal nasal mucosae. CD11b, a protein subunit known 
as integrin alpha M (ITGAM), is expressed on the surface 
of leukocytes in the innate immune system (7). It plays 
a major role in cell adhesion, inflammation, chemotaxis, 
cellular activation, and phagocytosis and is involved in 
systemic lupus erythematosus according to genome-wide 
association studies (8). Galectin-1 is a galactosidase-
binding protein that is thought to play a role in 
immunotolerance during pregnancy. Galectin-1 modulates 
cell–cell and cell–matrix interactions and is important for 
cell proliferation, acting as an autocrine negative growth 
factor (9). Beclin-1 regulates autophagy and plays an 
important role in cellular development and tumorigenesis. 
It has important effects on cell proliferation and is 
involved in neoplastic and neurodegenerative diseases 
(10). Caspase-3 is involved in different apoptotic pathways 
and plays a central role in the execution of apoptosis. 

Background/aim: Nasal polyposis is a chronic inflammatory disease affecting the paranasal sinuses and nasal mucosae. It is thought 
that genetic and molecular mechanisms in inflammatory and apoptotic pathways are the main factors in the etiopathogenesis of nasal 
polyposis. The aim of this study was to investigate the expression patterns of CD11b, galectin-1, beclin-1, and caspase-3 in nasal polyps.

Materials and methods: The mRNA expression levels of CD11b, galectin-1, beclin-1, and caspase-3 protein and western blot analysis 
of caspase-3 protein were evaluated in inferior turbinate mucosae and nasal polyp tissues.

Results: CD11b expression was markedly higher in nasal polyp tissues when compared to turbinate mucosae (5.5 times higher, P < 
0.05). Expression of galectin-1 was not statistically higher in nasal polyp tissues when compared to the controls. Beclin-1 expression in 
nasal polyp tissues was lower than in controls (17 times lower, P < 0.05). Caspase-3 expression was significantly lower in nasal polyp 
tissues than in controls (5.5 times lower, P < 0.05).

Conclusion: Inflammation, apoptosis, and hyperproliferation are the major cellular processes in nasal polyposis and these proteins may 
take part and play some important roles in formation of this disease and the targeting of new treatment protocols.
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In a cell, native caspase-3 exists as procaspase, which is 
activated by a biochemical change (11). In addition to the 
mRNA expression analyses of these proteins, caspase-3 
was studied via western blot analyses. In summary, in this 
study, we investigated molecules that have important roles 
in apoptosis, proliferation, and inflammation in order to 
help elucidate the etiopathogenesis of NP.

2. Materials and methods
This study was approved by the local institutional ethical 
committee (approval number: 024; date: 18 January 2012), 
and informed consent was obtained from all participants 
before samples were collected.
2.1. Sample collection and preparation
NP tissue samples were obtained from 21 subjects (13 men 
and 8 women) undergoing endoscopic sinus surgery as 
treatment for chronic rhinosinusitis with NP. All subjects 
received systemic steroids and antibiotics prior to surgery. 
Inferior turbinate control tissues were obtained from 20 
controls (10 men and 10 women) undergoing surgery for 
either septorhinoplasty or septoplasty. All samples were 
obtained during surgery. Control subjects had no allergies 
or chronic rhinosinusitis. 

For preparation of RNA studies and western blot 
analysis, NP tissues were washed with saline in the 
operating room. Tissues were stored at –80 °C with frozen 
liquid nitrogen.
2.2. Total RNA extraction and cDNA preparation
Total RNA was extracted using the TriPure reagent 
(Roche, Darmstadt, Germany) and some arrangements 
were planned to avoid DNA contamination according to 
the manufacturer’s instructions. After homogenization of 
tissues and incubation in 100 mg/mL TRIzol for 5 min, 
separation of RNA was done using chloroform (0.2 mL/1 
mL TRIzol). After 15 min of centrifugation at 12,000 × g at 
4 °C, the aqueous phase of the sample was transferred to a 
new fresh tube. Sedimentation of RNA material was done 
by isopropyl alcohol (0.5 mL/1 mL TRIzol). Incubation 
and centrifugation was repeated as above and the pellet 

was washed with 75% ethanol. Centrifugation of the 
mixture was applied for 5 min at 7500 × g at 4 °C. The air-
dried pellet was dissolved again in DEPC-treated water. 
RNA yield, efficiency, and standards were determined 
by measuring the absorbance at 260 and 280 nm using a 
spectrophotometer (NanoDrop ND-1000; Montchanin, 
DE, USA). An A260/280 ratio of <2.0 and an A260/230 
ratio in the range of 1.8–2.2 were accepted as measures 
of RNA purity in the analysis. Reverse-transcription of 
total RNA (1 µg) was applied in a reaction mixture of 
20 µL using random hexamers and a Transcriptor First 
Strand cDNA Synthesis Kit (Roche Diagnostics GmbH, 
Mannheim, Germany). The procedure was done according 
to the manufacturer’s instructions.
2.3. Quantitative real-time PCR analysis
BECN1, CASP3, CD11b, and galectin-1 mRNA expression 
levels were measured by real-time PCR as described above 
previously (12). Sets of primers and probes were designed 
using the Probe Finger Design Assay Centre. The primers 
and probe numbers for the CD11b, BECN1, galectin-1, 
CASP3, and GAPDH genes are described in the Table. 
The reaction mixture of 10 µL contained 1X LightCycler 
Probe Master mix, 2.5 pmol of each primer, 1 pmol of UPL 
probe, 4 mM MgCl2, and 1 µM cDNA prepared in 96-well 
plates. All PCR reactions were performed in a LightCycler 
480 thermocycler (Roche Diagnostics). The housekeeping 
gene, GAPDH, was used for normalizing quantitative 
reverse transcriptase PCR results. Each sample was tested 
in triplicate. Amplification efficiencies and yields of the 
target genes and GAPDH were approximately equal. The 
results were reported as mean ± standard deviation of at 
least three independent experiments (Table).
2.4. Protein extraction and western blot analysis
Western blot analysis of caspase-3 was performed as 
described previously in a recent study (13). Briefly, the 
cells were lysed in lysis buffer solution (Cell Signaling 
Technology, Inc., Danvers, MA, USA) containing 1 mM 
phenylmethanesulfonyl fluoride (Sigma-Aldrich). Equal 
amounts of protein were loaded and separated by 12% SDS-

Table. Primers and probe numbers for BECN1, CD11b, galectin-1, CASP3, and GAPDH. 

Gene Forward primer Reverse primer UPL probe

BECN1 5’-GGATGGTGTCTCTCGCAGAT-3’ 5’-TTGGCACTTTCTGTGGACAT-3’ #20

CD11b 5’-GGCATCCGCAAAGTGGTA-3’ 5’-GGATCTTAAAGGCATTCTTTCG-3’ #9

Galectin-1 5’-CGCCAGCAACCTGAATCT-3’ 5’-CAGGTTCAGCACGAAGCTCT-3’ #80

CASP3 5’-CTGGTTTTCGGTGGGTGT-3’ 5’-CCACTGAGTTTTCAGTGTTCTCC-3’ #34

GAPDH 5’-AGCCACATCGCTCAGACAC-3’ 5’-GCCCAATACGACCAAATCC-3’ #60  

UPL: Universal Probe Library, GAPDH: glyceraldehyde 3-phosphate dehydrogenase, A: adenine, G: guanine, C: cytosine, T: thymine.
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PAGE and a transfer process was done to a polyvinylidene 
difluoride membrane (Thermo Fisher Scientific, Inc., 
Waltham, MA, USA). For blockage of the membrane, 
5% w/v nonfat milk or 5% w/v bovine serum albumin in 
Tris-buffered saline with 0.1% Tween-20 was used. After 
blocking, the membrane was incubated for 24 h at 4 °C 
with a rabbit antihuman caspase-3 polyclonal antibody 
(Cell Signaling Technology), and a rabbit antihuman 
β-actin monoclonal antibody (Cell Signaling Technology) 
was used as the loading control. All primary antibodies 
were diluted in a ratio of 1/1000. The incubation process 
was applied with a goat antirabbit horseradish peroxidase 
(HRP)-conjugated secondary antibody (Cell Signaling 
Technology) for 2 h at room temperature. Visualization 
of proteins was performed using a Kodak Gel Logic 
2200 imaging system (Kodak, Rochester, NY, USA) with 
a Luminata Crescendo Western HRP substrate (EMD 
Millipore, Billerica, MA, USA).
2.5. Statistical analyses
The relative expression was described according to the 
expression ratio of the target gene to a reference gene. 
This approach is usually adequate for evaluations of 
physiological processes and changes in gene expression 
levels. The results are affected by the reference gene and 
a normalization procedure should be used. Mathematical 

models have been developed to calculate relative 
expression ratios for genetic and molecular studies. The 
Pfaffl equation is the most common and convenient 
mathematical model for these purposes (Eq. (1)). Gene 
expression analyses of IkBα and CASP3 were performed 
using the Relative Expression Software Tool (REST v 2009, 
Technical University, Munich, Germany) (14). P < 0.05 
was considered to be statistically significant.

Ratio = [(Etarget)
ΔCPtarget(control – sample)] /

[(Eref)
ΔCPref(control – sample)]                                                     (1)

3. Results
3.1. Demographic and clinical characteristics of the 
subjects
A total of 41 subjects were included in two groups. The 
NP group contained 21 subjects [13 (62%) males and eight 
(38%) females; median age: 43.3 ± 14.08 years] and the 
control group contained 20 subjects [ten (50%) males and 
ten (50%) females; median age: 28.1 ± 10.39 years].
3.2. RT-PCR analysis of BECN1, CD11b, galectin-1, and 
CASP3 expression
The mRNA levels were quantified by RT-PCR (Figure 1). 
BECN1 expression was 17 times lower in NP samples (P < 

Figure 1. Amplification curves of the quantitative mRNA levels of the genes studied. Quantitative amplification 
curves of BECN1, CD11b, galectin-1, and CASP3. The x-axis represents Cp levels of RT-PCR reactions and the y-axis 
represents fluorescent signals.
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0.05). CD11b expression was 5.5 times higher in NP tissues 
(P < 0.05), while CASP3 expression was 5.5 times lower (P 
< 0.05). Galectin-1 expression was not significantly higher 
in NP tissues. The expression profiles of the investigated 
genes are presented in Figure 2.
3.3. Western blot analyses of caspase-3 expression
Caspase-3 expression was semiquantitatively measured 
by western blotting and using the REST software (2009). 
The caspase-3 protein was expressed in both normal nasal 
turbinate mucosae and NP tissues. Caspase-3 expression 
was significantly higher in turbinate mucosae than in 
NP tissues. This correlated with reduced CASP3 mRNA 
expression (Figure 3).

4. Discussion
NP is chronic disease affecting the nose and paranasal 
sinuses and the main pathological characteristic is 

inflammation (15). Apoptosis and hyperproliferation could 
be observed in asthma and allergic rhinitis, although the 
main role of these cellular processes could not be defined 
well in NP (16,17). Caspase-3 and beclin-1 are the main 
key proteins in apoptotic pathways; results of expression 
profiles in this study are statistically significant and this 
points to the importance of these processes in NP. Besides 
this, the results of CD11b expression are also significant 
and show the eosinophilic migration and inflammation 
in NP; this result is a new and different insight into the 
chronic inflammatory pathways of NP.

CD11b is a protein subunit expressed on surface 
integrins of inflammatory cells. Lim et al. showed that 
CD11b expression affects the migration of eosinophils 
from the blood stream to local tissues. Steroid receptor 
activation reduces CD11b expression in eosinophils (18). 
Furthermore, eosinophils in bronchoalveolar fluid are 

Figure 2. Quantitative mRNA expression profiles of BECN1, CD11b, galectin-1, and CASP3 in NP samples and normal inferior turbinate 
mucosae. The differences in BECN1, CD11b, and CASP3 expression were statistically significant.
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activated by lung fibroblasts expressing CD11b, which 
highlights the importance of CD11b (19). Eosinophils in 
NP tissues express higher levels of the chemotaxin eotaxin 
(20). CD11b may contribute to eosinophilic activation 
by affecting cytokines like eotaxin. Eotaxin upregulates 
CD11b expression in integrins and the increased 
expression of CD11b has been related to oxidative burst 
and cell–cell interactions by eosinophils (21). Oxidative 
stress in NP tissues may be caused by CD11b, which 
would suggest altered CD11b expression in NP tissues. We 
observed higher CD11b expression in NP tissues in the 
present study. In eosinophilic migration and eosinophilic 
activation, CD11b may have a key role and therefore it 
may be an important protein in adhesion and activation of 
inflammatory cells.

Galectins have a wide range of functions including 
cell–cell and cell–matrix interactions, apoptosis, and T-cell 
receptor activation in the immune response. Galectin-1 
contributes to apoptosis and is upregulated during an 
immune response (22). Galectin-3 is expressed in head 
and neck carcinomas, where it influences apoptosis 
(23). Similarly, galectin-9 is a selective eosinophil 
chemoattractant that may contribute to the development 
of NP, asthma, or allergic rhinitis (24). Delbrouck et al. 
detected a higher expression of galectin-1 and galectin-3 
in NP tissues than in controls and showed that these 
galectins influenced polyp growth and immunoregulation 
(25). Galectin-1 expression was also found to be positively 
correlated with allergen status (26). Increased galectin-1 
expression should be expected in allergic diseases such as 
asthma, allergic rhinitis, and NP. However, an association 
between NP and allergic rhinitis has not been clearly 
demonstrated to date. Galectin overexpression has also 
been reported in aspirin-induced asthma (27). Galectin-1 
expression was not significantly higher in NP tissues in the 
present study. This was not surprising, considering that NP 
is not related to allergen status. Previous studies have shown 
that galectin-1 may be related to atopic immunological 

processes and allergic responses; therefore, tissues need to 
be analyzed from allergic and nonallergic NP patients in 
order to elucidate the role of galectin-1 in NP. Effects and 
relations of allergic and immunologic substructure in NP 
etiopathogenesis are still unclear. Progression of molecular 
studies focusing on these issues may help in identifying 
the role of galectin-1 in NP formation.

Apoptosis is caused by environmental and 
developmental factors. Resistance to apoptosis prolongs 
cell survival and causes hyperproliferation (28). Activation 
of antiapoptotic pathways promotes cell survival, 
causing hyperplastic and neoplastic development. 
Hyperproliferation of cells in NP tissues may thus be 
explained by apoptosis-related processes. Küpper et al. 
evaluated the influence of apoptosis on NP by observing 
the expression of p53 and caspase proteins in NP tissues 
(29). Apoptotic agents like methotrexate and mitomycin 
can resolve NP symptoms (30). Beclin-1 has major roles 
in autophagy, differentiation, antiapoptosis, and the 
development and progression of neoplastic processes. Its 
regulation of the autophagic pathway and contribution to 
cell differentiation and apoptosis in the cell cycle have been 
well established. It was one of the first autophagy proteins 
to be related to malignancies (31). Beclin-1 functions as 
a tumor suppressor in breast and ovarian cancers and 
glioblastomas and is associated with tumorigenesis in 
colorectal and gastric cancers (32–34). Because beclin-1 
can influence apoptosis and cellular hyperproliferation, it 
may have a role in NP. However, beclin-1 expression has 
not been investigated in NP tissues. In the present study, we 
observed significantly reduced beclin-1 expression in NP 
tissues compared with that in controls. This result indicates 
that apoptosis and cell hyperproliferation are important 
for NP etiopathogenesis and chronic inflammation. 

Apoptosis in inflammatory cells may reduce 
inflammation. Glucocorticoids increase the apoptosis 
of polymorphonuclear cells such as eosinophils, which 
improves disease progression (35). Caspases play an 

Figure 3. Reduced caspase-3 protein expression in nasal polyp tissues, as analyzed by 
western blot.
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important role in apoptosis. Caspase-3 plays a central role 
in the caspase cascade and affects the execution of cellular 
apoptosis, causing protein proteolysis (36). Cho et al. 
found no significant differences in caspase-3 expression in 
NP tissues compared with that in controls (37). However, 
Lin et al. reported caspase-3 downregulation together 
with second mitochondria-derived activator of caspases 
(Smac) in NP tissues. In the present study, the expression 
of caspase-3 mRNA and protein was reduced in NP tissues 
compared with that in controls. This indicated decreased 
apoptosis, possibly caused by increased inflammation in 
NP. However, more molecular analyses are required to 
elucidate the role of caspase-3 in the development of NP 
(38).

Beclin-1-dependent apoptosis is defined as 
programmed cell death type II, while caspase-dependent 
apoptosis is defined as programmed cell death type 
I (39). The altered expression levels of beclin-1 and 
caspase-3 may promote NP development by affecting cell 
proliferation in the subepithelial area and affecting the 
survival of inflammatory cells localized in NP tissues. NP 
is a chronic inflammatory disease that affects the paranasal 
sinuses and is exacerbated by these proteins. Significant 
results of beclin-1 and caspase-3 expressions may show 
the importance of hyperproliferation and apoptosis in NP 
besides the immunologic and inflammatory pathways. 
In future treatment protocols for NP, agents that block 
hyperproliferative cascades and agents that induce 
apoptosis of inflammatory cells may be used for effective 
management.

There are some limitations of this study that may lead to 
misleading results while evaluating the etiology of NP. One 
of the important limitations is the age difference between 
patient and control subjects. It may have a possible effect 
on expression profiles of genes; therefore, age differences 
must be taken into consideration in this study. Although 

the subjects in the two groups were selected carefully and 
matched according to clinical characteristics, our study 
is not without limitations. Another important limitation 
of the study is the small sample size. Studies with high 
enough numbers of subjects focusing on this topic can 
help identify the etiologic and pathological basis of NP.

Pezato et al. described the different response of 
interstitial hydrostatic behavior during a saline infusion 
between the inferior turbinate and middle turbinate 
mucosae (40). There can be an effect on inferior turbinate 
tissue as a control compared to the middle turbinate. In 
spite of different mechanical and physical characteristics 
of the inferior and middle turbinates, it may have a slight 
effect on expression patterns of proteins in this study. 
Results of this study should be evaluated while these 
limitations are kept in mind. In the future, NP tissue might 
be compared to middle turbinate tissue of completely 
healthy controls in molecular studies because of the 
molecular and mechanical similarities of these two tissues.

In conclusion, CD11b, beclin-1, and caspase-3 
expressions were altered in NP tissues, while no changes in 
galectin-1 expression were observed. Chronic inflammation 
and cell proliferation are important processes in NP 
formation. Apoptotic pathways may also contribute to NP 
development by inducing hyperproliferation in the basal 
membrane and by controlling the lifespan of inflammatory 
cells. Inhibiting these processes may prevent the formation 
and recurrence of NP. Therefore, future studies should 
focus on these processes to identify inhibitory agents. 
Medications targeting apoptotic processes may represent 
future treatment protocols.
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