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1. Introduction
Brain F-18 fluorodeoxyglucose (FDG) positron emission 
tomography (PET) is a frequently used diagnostic imaging 
method for the evaluation of drug-resistant epilepsy 
patients [1]. In epilepsy, cortical hypometabolism is seen 
in the interictal period in the epileptogenic brain region, 
which is responsible for the onset of seizures, and in other 
related brain regions where epileptic activity spreads 
[1,2]. The mechanism underlying hypometabolism in 
epilepsy is believed to include neuronal loss, a decrease 
of synaptic density and diaschisis [2]. Hypometabolism 
observed in the ipsilateral temporal lobe is a finding 
that contributes to lateralization of epileptogenic focus 
in drug-resistant mesial temporal lobe epilepsy (TLE) 

patients undergoing surgical treatment [3-8]. The rate 
of ipsilateral temporal hypometabolism in TLE varies 
between 60% and 100% depending on the different 
analysis methods used and differences in patient groups 
in the studies [1]. This finding also has a significant 
prognostic impact regarding patient outcomes [1,5,7–12]. 
In a metaanalysis of 46 publications (between 1992 and 
2006), it was shown that hypometabolism in the ipsilateral 
temporal lob in TLE patients had a predictive value of 
86% for a good postsurgical outcome [4]. Predictive 
values of the same finding in TLE patients with normal 
magnetic resonance imaging (MRI) and nonlocalized ictal 
scalp electroencephalography (EEG) were 80% and 72%, 
respectively [4]. Therefore, brain FDG PET imaging may 
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contribute to patient management, especially in cases 
where the patient’s brain MRI findings are normal and 
clinical findings are inconclusive [1,4,8,13].

In routine clinical practice, brain FDG PET images are 
often visually evaluated by physicians [2]. However, it has 
been shown in several studies that the use of quantitative 
analysis in the evaluation of brain FDG PET images in 
terms of localization and lateralization of epileptogenic 
focus increases the diagnostic accuracy of the examination 
[2,9,10,12,14]. Voxel or region-of-interest (ROI)-based 
quantitative analysis can be performed by statistically 
comparing the brain FDG PET image of the patient with 
a normal FDG PET database [1–3,6,10,11]. Another 
commonly used analytical approach is to determine 
regional metabolism values   and to investigate the presence 
of asymmetric involvement between homologous 
brain regions in the two hemispheres [2,3,5,11,15]. The 
advantage of ROI-based calculation of asymmetry over 
the voxel-based analysis is that the values   obtained from 
the PET images reflect relative differences in FDG uptake 
between homologous regions and therefore do not need a 
count normalization [2,9,15]. In several FDG PET studies 
performed in mesial TLE, the methods based on the 
calculation of asymmetry have shown better results than 
the voxel-based methods in terms of lateralization of the 
epileptogenic lobe, reaching accuracy values over 90% 
[3,5,6,9,11,16].  

In mesial TLE, in addition to the ipsilateral mesial 
temporal lobe, hypometabolism may also be observed in its 
neighboring neocortical temporal regions, ipsilateral insula, 
frontal lobes, ipsilateral thalamic nucleus, and contralateral 
temporal lobe [3,6,10,16–18]. Mild compensatory increase 
of metabolism in the contralateral temporal lobe may also 
be observed [3,16,19]. Hypometabolism in remote (distant 
to and not contiguous with perifocal hypometabolism) 
cortical regions, which is probably involving seizure 
propagation pathways and indicating the effects of 
seizures on these networks, has prognostic implications 
in patients operated for TLE [6,7,17,18,20]. Patients with 
remote hypometabolism in extratemporal regions are 
reported to have worse postsurgical outcomes [6,7,17,18]. 
This extensive hypometabolism may complicate visual 
assessment and may be regarded as a limitation of brain 
FDG PET imaging for the localization of the epileptogenic 
region [12]. However, it may also contribute to the 
lateralization of epileptogenic temporal lobe if quantitative 
analysis is used [3,5,6,9,11,20]. 

The lateralization of the epileptogenic temporal lobe 
in patients with mesial TLE using brain FDG PET data 
is a problem of classification. In this respect, data mining 
methods may be applied to classify PET images as right- 
or left-sided TLE and the outputs of the classification 
algorithm may support the human interpreter with 

classification and differential diagnosis [21]. The 
application of data mining is based on the evaluation 
of quantitative data obtained from images by statistical 
methods, such as logistic regression, model trees, and 
naive Bayes classifiers [21–23]. In TLE patients with a 
favorable postsurgical outcome, the definite lateralization 
results may be used in the supervised learning of data 
mining methods. Then test data may be classified with the 
trained data mining algorithm. Although there are many 
studies in the literature using both voxel- and ROI-based 
numerical analyses for lateralization in TLE, to the best of 
our knowledge, there are only two studies in which data 
mining methods are applied to the brain FDG PET data 
[24,25]. In one of these studies Peter et al. showed that 
lateralization indices calculated from temporal regions are 
reliable and reproducible measures for predicting seizure 
lateralization in unilateral TLE patients [25]. In the second 
study, Lee et al. compared the performance of a computer-
aided classifier using an artificial neural network with 
the reading performance of expert physicians in the 
lateralization of TLE and found an 85% average agreement 
[24]. The aforementioned studies suggest that data mining 
applications can provide supportive information for the 
lateralization of TLE. Therefore, the hypothesis of this 
study is that lateralization of the epileptogenic lobe in TLE 
as a classification problem can be performed with high 
accuracy using data mining methods and data obtained 
from the quantitative regional analysis of brain FDG 
PET images. This study aimed to develop a classification 
method using data mining methods for the lateralization 
of epileptogenic lobe in TLE patients which depends on 
the calculation of asymmetry indices from regional FDG 
PET data and to evaluate the accuracy of this method in 
comparison to visual reading performances and the voxel-
based quantitative analysis.  

2. Materials and methods
2.1. Patient population
In this study, data of TLE patients who were surgically 
treated and had a presurgical diagnostic interictal brain 
FDG PET examination with the routine clinical indication 
of localization and lateralization of the epileptogenic 
focus were analyzed retrospectively. Adult patients (age > 
18 years) who had successful treatment response (Engel 
I: “Free of disabling seizures”) in clinical follow-up of at 
least two years after surgical treatment were included in 
the study [26]. Therefore, the final clinical lateralization 
of TLE depended on the successful postsurgical outcome. 
The study was found to be ethically appropriate with the 
decision (numbered 20 and dated 14.01.2019) of the Gazi 
University Faculty of Medicine Clinical Research Ethics 
Committee.
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2.2. Brain FDG PET imaging
The routine interictal brain FDG PET protocol applied in 
our center includes fasting of the patient for a minimum of 
6 h before injection of 0.1 mCi/kg FDG. Throughout the 
FDG uptake period patient rests still in a dimly-lit, quiet 
room, with eyes open to minimize cerebral activation. 
Static brain PET images were acquired on a Discovery 
ST PET-CT camera (GE Medical Systems) 60 min after 
FDG injection. A computerized tomography (CT) scan 
for attenuation correction and a 15 min PET emission 
acquisition in the 3D mode were done. PET images were 
reconstructed using an iterative-reconstruction algorithm.
2.3. Quantitative analysis of PET images
The SPM8 (Wellcome Department of Cognitive 
Neurology, Institute of Neurology, University College 
London, London, UK) and the WFU PickAtlas (ANSIR 
Laboratory, Wake Forest University School of Medicine, 
Winston-Salem, NC) programs were used for quantitative 
evaluation of brain FDG PET images [27-29]. Spatial 
normalization process was applied to the brain FDG PET 
images by using the SPM8 program and the FDG PET 
template image which was created institutionally. In this 
way, patient images were placed in the standard Montreal 
Neurological Institute (MNI) space. All normalized images 
were visually checked for the success of normalization.

In order to obtain regional mean count values   from 
normalized PET images, the definitions of Automated 
Anatomical Labeling (AAL) atlas were used [30]. Thirteen 
regions (opercular part of inferior frontal gyrus, rolandic 
operculum, insula, hippocampus, parahippocampal 
gyrus, amygdala, supramarginal gyrus, thalamus, superior 
temporal gyrus, temporal pole of superior temporal gyrus, 
middle temporal gyrus, temporal pole of middle temporal 
gyrus, and inferior temporal gyrus) in the AAL brain 
atlas that were contiguous or functionally associated with 
mesial temporal lobe structures and reported to show 
hypometabolism in the studies on FDG PET imaging in 
mesial TLE were selected [3,6,16,18]. Regional asymmetry 
indices (AI)   for each selected area of   interest (ROI) were 
calculated using the formula: AIROI = (left hemisphereROI 
– right hemisphereROI) / (left hemisphereROI + right 
hemisphereROI) × 200.
2.4. Data mining process 
The 49 TLE patients included in the study were divided 
into training (n = 31, 63%) and test (n = 18, 37%) sets 
through randomization and by applying a customary 
proportion of approximately 60:40 [31]. In the R 
software, J48 (an entropy-based C4.5 algorithm) and 
LMT classification tools included in the RWeka package 
were used [22,23,32,33]. In a supervised learning session, 
lateralization models were generated by using J48 and 
LMT tools on the training set which included the final 
clinical lateralization data of patients and AIROI values   of 

13 selected regions from the PET data (Figures 1a and 1b). 
Subsequently, the accuracy of the two models in terms of 
lateralization was evaluated using the test set (Figure 1c).

Since the total number of patients was relatively 
limited, a k-fold cross-validation method was used in 
the study [31]. For this purpose, the whole dataset of 
49 patients was divided into five nonoverlapping sets by 
randomization. Five runs of training and testing were 
carried out for each of these five sets, by using one set as 
the test and the other four as the training sets. Then, the 
means of correct lateralization rates were calculated for J48 
and LMT algorithms by averaging the ratios obtained in 
each run.
2.5. Visual assessment of PET images
Brain FDG PET images of 18 patients in the test set were 
anonymized and prepared for visual evaluation as gray-
scale axial PET image slices in a standard anatomical 
orientation (axial plane parallel to the frontal-occipital 
line) and ordered sequentially from vertex to cerebellum. 
Two nuclear medicine physicians, one with eight and 
the other with four years of brain FDG PET reading 
experience, were asked to lateralize the epileptogenic 
temporal lobe of the patient. The physicians evaluated 
these images separately, and then they did a consensus 
reevaluation of inconsistent readings.
2.6. SPM analysis of PET images
SPM is a piece of software for statistical analysis of brain 
images at the voxel level and creating statistical parametric 
maps. In this program, using a statistical model (such 
as t-test, ANOVA) which is appropriate for the research 
question and the selected statistical and voxel extension 
thresholds, the brain regions that differ significantly are 
determined. The statistical threshold value (P) is decisive 
for statistical significance. The voxel extension threshold 
imposes a limitation on the neighborhood relationship of 
voxels exceeding the statistical threshold so that adjacent 
voxels exceeding the statistical threshold are only displayed 
if they are greater than the specified number.

PET images of the test set of patients (n=18), which 
were evaluated both by data mining methods and visually, 
were also evaluated by using SPM5. For this purpose, an 
institutional normal brain FDG PET database containing 
preprocessed and spatially normalized brain FDG PET 
images of 44 adult (mean age ± SD = 60.7 ± 10.6 years) 
patients were used. The SPM method has been validated 
as a tool to quantify hypometabolic patterns in a single 
patient’s brain FDG PET image [3,6,10–12,34]. Following 
the spatial normalization of PET image to the MNI 
template and a 10 mm isotropic Gaussian smoothing, 
each patient’s FDG PET image was tested for relative 
hypometabolism by comparison with the normal PET 
database on a voxel-by-voxel basis using the general 
linear model, employing the two-sample t-test design. 
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Figure 1. The data mining process. (a) The aim of the data mining process in this study is to lateralize 
interictal brain FDG PET images of patients with mesial TLE as “Right TLE” or “Left TLE”. (b) For this 
purpose, the classification method (represented by the blue computer) is provided with quantitative 
data (AIROI) obtained from the regional analysis of PET images together with the labels (definitive 
lateralization information) of the patients in the training set and will produce a set of classification rules 
(represented by the orange computer) in this supervised training process. (c) Then, the classification 
rules are used to make predictions from the similar quantitative data of the patients in the test set.
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Family-wise error (FWE) corrected statistical significance 
threshold of P = 0.005 at the voxel level and extend 
threshold of 250 voxels at the cluster level were used 
for the detection of hypometabolism. According to the 
result of the analysis performed with SPM5, if ipsilateral 
temporal hypometabolism consistent with definite clinical 
lateralization was observed, it was evaluated as correct 
lateralization. If hypometabolism was observed in both 
temporal lobes, the success of lateralization was decided 
by considering the side with the most extensive temporal 
lobe involvement.
2.7. Statistical analysis
Continuous variables are expressed as mean ± standard 
deviation (SD). Cohen’s kappa statistics were used to 
evaluate the results of the data mining algorithms and 
their compatibility with the exact clinical lateralization. 
The SPSS (version 23) statistical software was used for 
statistical analyses.

3. Results
Presurgical interictal brain FDG PET images of 49 adult 
patients (mean age ± SD = 36.2 ± 7.7) who underwent 
surgical treatment (selective amygdalahipocampectomy 
± anterior temporal lobectomy) with the diagnosis of 
drug-resistant TLE and had a favorable outcome (Engel 
I) during postsurgical clinical follow-up were evaluated 
(Table S1). In the patient group, female-to-male ratio was 
32/17, mean duration of epilepsy was 17.7 ± 7.7 years, 
and mean duration of postsurgical follow-up was 53.2 ± 
28.7 months. According to the surgical and postsurgical 
clinical findings 22 patients had right TLE and 27 patients 
had left TLE as their final diagnoses.

When the test set of 18 randomly selected patients 
were evaluated with the models obtained by J48 and LMT 
algorithms according to the training set of 31 patients, it 
was observed that the J48 model correctly lateralized 16 
(89%) patients and the LMT model correctly lateralized 
17 (94%) patients (Table 1). For the classification results 
obtained by J48 and LMT models, Cohen’s kappa values 
were 0.775 (T = 3.288, P = 0.001) and 0.889 (T = 3.795, 
P < 0.001), respectively. In the same test set of patients, 
the first reader (with four years of brain FDG PET 
reading experience) correctly lateralized all patients and 
the other reader falsely lateralized one patient. In their 
consensus reading, they correctly lateralized all patients 
(Figure 2a). SPM analysis of the test set produced no false 
lateralizations. However, in two patients SPM analysis 
showed no temporal hypometabolism and did not produce 
any lateralization information (Figure 2b). 

In the application of k-runs cross-validation method 
with five nonoverlapping test sets, the mean correct 
lateralization rates were 43/49 (88%) for the J48 and 47/49 
(96%) for the LMT algorithms (Table 2). The classification 

rules produced by the J48 algorithm in each run involved 
AI calculated from either inferior temporal gyrus, rolandic 
operculum, or parahippocampal gyrus. The classification 
rules produced by the LMT algorithm depended on AI 
calculated from the hippocampus and temporal pole of the 
middle temporal gyrus (Figure 2c).

4. Discussion
In this study, it was shown that the evaluation of interictal 
brain FDG PET images in mesial TLE patients with data 
mining methods has a high accuracy rate in terms of 
lateralization of the epileptogenic temporal lobe. Accurate 
clinical lateralization information based on postsurgical 
follow-up findings was used as a reference in the assessment 
of correct lateralization. LMT algorithm, which forms 
a classification model by using the asymmetry values of 
multiple regions together, has been observed to perform 
correct lateralization at a rate of 96% with the k-run cross-
validation method conducted on the data of 49 patients. 
With the same approach, the lateralization success of the 
J48 algorithm was 88%. When the whole patient group was 
divided into learning and test sets with a customary ratio 
of 60:40, these two algorithms have high lateralization 
success close to the results of the visual evaluation and 
SPM analysis in the test set of 18 patients.

The use of data mining in the analysis of medical data is 
currently becoming a popular issue. Data mining methods 
are applied in order to use various data obtained from 
medical examinations in the diagnosis of diseases [21]. 
In this respect, data mining can be defined as the work of 
extracting implicit information of value among large-scale 
data [31]. In order to classify diseases using diagnostic 
data, it is necessary to create a model that reveals hidden 
patterns in these data sets. Entropy-based methods, logistic 
regression models, Bayesian classifiers, and artificial neural 
networks are the commonly used classification methods 
[21–23,31,33]. The classification rules that are formed by 
applying these methods on training data are then applied 
to test data in order to predict the class of each subject. 
The success of the classification of the model is evaluated 
by comparing these predictions with the actual clinical 
data. In this study, a successful example of data mining for 
lateralizing the epileptogenic temporal lobe by utilizing 
interictal brain FDG PET images in mesial TLE patients 
was performed. 

In the medical literature, there are few studies using 
data mining in epilepsy patients [24,25]. Peter et al., in 
their retrospective study on 17 TLE patients, showed 
that by using the lateralization index calculated from 
the temporal lobe alone and a machine learning logistic 
regression analysis approach it was possible to lateralize 
the epileptogenic temporal lobe with 82% accuracy [25]. 
However, the lateralization information in this study was 
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based on the results of the diagnostic examination which 
also included the FDG PET study. In another study, the 
performance of a computer-assisted classifier using an 
artificial neural network in lateralization was compared 
with the reading performance of the experts in 261 TLE 
patients and an average 85% agreement was observed 
[24]. In our study, since the classification of the patients 
are confirmed by the favorable outcome after surgery, the 
diagnostic performance of artificial intelligence algorithms 
could be evaluated more reliably. 

Methods which are used to quantitatively evaluate 
brain metabolism can be divided into two categories 
according to the ROI used: The voxel-based analysis in 
which the ROI is defined as a single voxel and the ROI-

based analysis in which the mean values   of multiple voxels 
within anatomically restricted regions are used [1,2]. The 
high number of voxels that make up the PET images of the 
brain necessitate the use of special software such as SPM 
with statistical corrections specific to multiple analysis in 
the voxel-based analysis approach [27]. SPM analysis can 
be used for statistical analysis of group data or to identify 
hypometabolic brain regions in a single patient data 
[12,34]. However, especially for the second type of use, a 
normal brain FDG PET database to compare the patient’s 
PET image is required [12,34]. Similarly, in the ROI-
based approach, a normal database can be used to detect 
hypometabolism independent of regional asymmetry 
[9]. One of the most important steps of this approach is 

Table 1. The lateralizations of TLE patients in the test group (n = 18) by visual assessment of nuclear medicine physicians, SPM analysis, 
and data mining methods (J48 and LMT algorithms) in comparison to the definitive lateralization according to the postsurgical favorable 
(Engel I) outcomes. 

Test data 
(Patient 
numbers) 

Definitive 
lateralization

Visual assessment
SPM
analysis

J48
algorithm

LMT 
algorithmReader1 Reader2 Consensus

1 Left Left Left Left Left Left Left
2 Left Left Left Left Left Left Left
3 Left Left Left Left Left Left Left
4 Left Left Left Left Left Left Left
5 Left Left Left Left Left Left Left
6 Left Left Left Left Left Left Left
7 Left Left Left Left Left Left Left
8 Left Left Left Left Left Left Left
9 Right Right Right Right Right Right Right
10 Right Right Right Right Right Right Right
11 Left Left Left Left Left Left Left
12 Left Left Left Left No lateralization Right Right
13 Right Right Left Right Right Right Right
14 Right Right Right Right No lateralization Right Right
15 Right Right Right Right Right Right Right
16 Right Right Right Right Right Right Right
17 Right Right Right Right Right Right Right
18 Right Right Right Right Right Left Right

Correct 
lateralization 
(ratio, %)

18/18, 100% 17/18, 94% 18/18, 100% 16/18, 89% 16/18, 89% 17/18, 94%

Note: Italic characters are used whenever the lateralization is not successful (“No lateralization”) or false in comparison to the 
definitive lateralization. Left and right refer to left TLE and right TLE, respectively. The criteria for the J48 model were “Left TLE” if 
AIROI[Hippocampus] was lower than or equal to 3.18 and “Right TLE” if AIROI[Hippocampus] was greater than 3.18. The criteria for 
the LMT algorithm were as follows: Class “Left TLE”: 0.06 + AIROI[Hippocampus] × –0.08 + AIROI[Temporal pole of middle temporal 
gyrus] × –0.03 and Class “Right TLE”: –0.06 + AIROI[Hippocampus] × 0.08 + AIROI[Temporal pole of the middle temporal gyrus] × 0.03.
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Figure 2. An example of a patient’s lateralization results of the three methods used in the study. The patient (The patient with number 
12 in Table 1) presented here is a 37-year-old female with focal impaired awareness seizures and focal to bilateral tonic-clonic seizures 
which started at the age of 18. The patient was operated for left mesial TLE and had Engel IA postsurgical outcome in a follow-up 
period of 29 months. (a) The axial brain FDG PET slices that pass through the long axis of temporal lobes are shown. The visual reading 
of the patient’s FDG PET images with the consensus of two nuclear medicine physicians was “Left TLE”. (b) The SPM analysis of the 
patient’s PET data against the institutional normal brain FDG PET database showed no statistically significant hypometabolic clusters 
in the temporal lobes; therefore, it was accepted as “No lateralization”. (c) The criteria for lateralization obtained by the J48 and LMT 
algorithms and the relevant ROI definitions (red-colored regions) in the AAL brain atlas are shown. The patient’s AIROI values were 5.71 
and 7.94 for the hippocampus and the temporal pole of the middle temporal gyrus respectively. According to these values both of the 
data mining methods falsely lateralized the patient’s PET data as “Right TLE” which was the single case of false lateralization of the LMT 
classification algorithm.
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how the ROIs are defined. For standardization of ROI 
definitions and to improve the quantification of brain 
images, tools such as AAL which are prepared according to 
a common anatomical brain space definition (such as the 
MNI atlas) and contain spatial definitions of brain regions 
are generally used [28–30]. In this study, AAL definitions 
that are widely used in quantitative analysis of brain PET 
images and which can be run with WFU PickAtlas toolbox 
under the SPM were used [27–30].

There are many studies which evaluated the success of 
lateralization of epileptogenic lobe from interictal brain 
FDG PET images in TLE [3–6,9–12,20,35,36]. These 
studies generally show that PET examination has high 
diagnostic accuracy when evaluated quantitatively and the 
quantitative analysis contributes to the visual evaluation 
of the readers [5,11,12,35,36]. A metaanalysis study based 
on the data of 46 studies conducted between 1992 and 

2006 showed that ipsilateral temporal hypometabolism 
predicted good postsurgical outcome in TLE patients, 
thus providing accurate lateralization information [4]. 
More recent studies suggest that PET imaging has a 
lateralization success greater than 90% in TLE [5,9]. The 
contribution of quantitative analysis increases especially in 
cases where the reader’s PET imaging experience is limited 
or there is an epileptogenic focus outside the temporal lobe 
[12,35,36]. In contrast to the subjective assessment of the 
reader, quantitative analysis is performed independently 
of the impact of the reader and provides objective findings. 
The normalization of the patient’s PET image to a standard 
anatomical atlas such as MNI and the use of standard 
ROI definitions defined eliminates possible erroneous 
approaches of the processor and bias that may arise in this 
regard. There is no direct confounding effect of the reader 
on the results during the quantitative analysis and data 

Table 2. The results of 5-runs of data mining algorithms according to the k-fold cross-validation method using the randomly produced 
training and test sets. 

k-fold cross-
validation 
method

J48 algorithm LMT algorithm

Model
Correct 
lateralization 
(ratio, %)

Model
Correct 
lateralization 
(ratio, %)

 1st run
AIROI[Inferior temporal gyrus] 
≤ –3.99: Left
AIROI[Inferior temporal gyrus] 
> –3.99: Right

9/10, 90%

Class Left : 0.13 + AIROI[Hippocampus] × –0.07 + AIROI
[Temporal pole of middle temporal gyrus] × –0.02
Class Right : –0.13 + AIROI[Hippocampus] × 0.07 + AIROI
[Temporal pole of middle temporal gyrus] × 0.02

10/10, 100%

 2nd run

AIROI[Inferior temporal gyrus] 
≤ –3.99: Left
AIROI[Inferior temporal gyrus] 
> –3.99: Right

10/10, 100% Class Left : 0.14 + AIROI[Hippocampus] × -0.07
Class Right : –0.14 + AIROI[Hippocampus] × 0.07 9/10, 90%

 3rd run

AIROI[Parahippocampal gyrus] 
≤ –5.46: Left
AIROI[Parahippocampal gyrus] 
> –5.46: Right

9/9, 100%

Class Left : 0.16 + AIROI[Hippocampus] × –0.07 + AIROI
[Temporal pole of middle temporal gyrus] × –0.02
Class Right : –0.16 + AIROI[Hippocampus] × 0.07 + AIROI
[Temporal pole of middle temporal gyrus] × 0.02

9/9, 100%

 4th run

AIROI[Rolandic operculum] 
≤ 2.06: Left
AIROI[Rolandic operculum] 
> 2.06: Right

8/10, 80%

Class Left : 0.09 + AIROI[Hippocampus] × –0.07 + AIROI
[Temporal pole of middle temporal gyrus] × –0.03
Class Right : –0.09 + AIROI[Hippocampus] × 0.07 + AIROI
[Temporal pole of middle temporal gyrus] × 0.03

9/10, 90%

 5th run

AIROI[Parahippocampal gyrus] 
≤ –0.24: Left
AIROI[Parahippocampal gyrus] 
> –0.24: Right

7/10, 70%

Class Left : 0.23 + AIROI[Hippocampus] × –0.07 + AIROI
[Temporal pole of middle temporal gyrus] × –0.02
Class Right : –0.23 + AIROI[Hippocampus] × 0.07 + AIROI
[Temporal pole of middle temporal gyrus] × 0.02

10/10, 100%

 Mean 43/49, 88% 47/49, 96%

Note: The models show the classification criteria obtained in each run of J48 and LMT algorithms using the training set. For this purpose 
the whole study group is randomly divided into five smaller, nonoverlapping subgroups while trying to preserve a similar ratio of left-
to-right TLE in each subgroup. The subgroups included 10 patients in all except one which included 9 patients. Then, a five-fold cross-
validation procedure was applied by using one subgroup as the test set and the other subgroups all together as the training set in each 
run. The mean correct lateralization ratios were calculated for J48 and LMT algorithms.
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mining applications used in this study. However, it is the 
responsibility of the reader to optimize the standardization 
of the analytical method and to observe possible sources 
of error (such as patient movement, low image quality, 
incorrect spatial normalization) during the analysis.

In the visual evaluation process, the reader assesses 
the distribution of cortical metabolism, particularly 
investigating differences in involvement between 
homologous brain regions in the two hemispheres. In this 
regard, the evaluation of brain FDG PET examination may 
be considered a lateralization problem especially in TLE 
patients. In epilepsy, interictal brain FDG PET imaging 
shows signs of hypometabolism in the epileptogenic 
brain region, which is responsible for the onset of 
seizures. However, it appears that this hypometabolism 
extends beyond the epileptogenic focus and involves 
other brain regions in which epileptic activity spreads 
during seizures due to neighboring relationships and 
functional connections [3,6,16,18]. In studies using 
quantitative analysis methods, cortical asymmetry values   
of temporal lobe were used to determine lateralization in 
brain FDG PET images [3,5,9,11,20].   In these studies, 
the asymmetry between temporal lobes showed better 
results in terms of lateralization compared with numerical 
analyses performed with global normalization [5,11]. The 
results obtained in the voxel-based statistical evaluations 
vary according to the statistical threshold values   used 
and there is no threshold value that can be applied 
as a standard. This may give priority to the use of AI 
calculation for lateralization. In addition, AI calculation 
eliminates the need for a regional reference selection and 
count normalization by definition. The aim of this study 
was to use asymmetry findings of mesial TLE patients in 
other brain regions, which are known to be affected by 
neighboring relationships or dynamic connections, besides 
mesial temporal structures for lateralization purposes 
[3,6,16,18]. This approach is expected to contribute to the 
lateralization of the epileptogenic temporal lobe. In fact, 
in this study, the model obtained by LMT, which uses 
asymmetry values   of multiple regions (hippocampus and 

temporal pole of the middle temporal gyrus) together, 
produced better results when compared with the model of 
J48 algorithm which is based on data of a single region 
(hippocampus), although the difference is not statistically 
significant.

The inclusion of TLE patients with Engel I outcome, 
according to at least 2-year follow-up results is a 
strong aspect of the study in terms of the reliability of 
lateralization results. Compared with similar studies in the 
literature, the number of patients is acceptable. However, 
in data mining applications, during the supervised 
learning phase, a large number of marked data is required 
to be presented to the algorithm. Therefore, the number 
of patients in the study may not be sufficient to establish 
a generalizable classification method with data mining. 
For this reason, k-fold cross-validation method is used to 
increase the knowledge about the behavior of algorithms 
used [31].  In addition, the test data used in the study can 
be classified with 100% accuracy in visual evaluation. This 
high accuracy rate, which contradicts with the 60% to 90% 
correct lateralization rates reported in the literature [37], 
may be related to the strong PET experience of the readers. 
In addition, the characteristic of the included patient group 
may be a bias for the study to give high accuracy rates.  

In conclusion, this study showed that data mining 
methods using regional metabolic asymmetry values   
obtained from interictal brain FDG PET images in mesial 
TLE patients have high accuracy in the lateralization 
of epileptogenic temporal lobe. Therefore, data mining 
applications can contribute to the process of visual 
evaluation of brain FDG PET images by the reader. 
Investigation of different data mining methods by using 
series with a higher number and a broader spectrum of 
epilepsy patients may be helpful in guiding the use of this 
method in routine clinical applications.
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