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1. Introduction
Structural DNA nanotechnology has made considerable 
development since Seeman proposed using DNA as a 
building material for bottom-up self-assembly in 1982 [1]. 
DNA origami is the common technique to form 2- and 
3-dimensional nanostructures with exceptional complexity 
in which a long single-stranded DNA is being folded by 
hundreds of distinct complementary short ‘staple’ strands 
[2–5]. It is employed in numerous applications such as 
biosensors [6,7], advanced drug delivery [8], synthetic ion 
channels [9], molecular size electronic circuits [10] and 
plasmonic nanostructures [11]. 

In addition, these structures are highly suitable for 
nanomedicine applications thanks to their size (10–
100nm). They are inherently biocompatible, nontoxic, 
biodegradable, have low immunogenicity and can enter 
cells without transfection agents [12–17]. Numerous 
smart drugs carriers have developed so far to deliver 
molecules include fluorescent dyes [18], anticancer drugs 
[19, 20], CpG (unmethylated cytosine-phosphate-guanine 
dinucleotides) [14], siRNA [21], enzymes [22]. Despite 
these unique properties of DNA nanostructures, there are 

still 2 key challenges to overcome the limiting factors of 
their extensive usage. Firstly, due to negatively charged 
hydrophilic nature of DNA origami it shows low cell-
transfection rates [23]. Secondly, these structures are often 
sensitive to cellular medium and depletion of salt ions; 
although they are slightly stable in cell lysates [24] and can 
resist nuclease action [25], an efficient method to improve 
their stability in vivo is urgently needed. 

In order to increase the stability and transfection rates 
of DNA nanostructures, various materials and protection 
techniques suggested such as liposome encapsulation [26] 
and polymer coating [27–31], backbone modification 
[32], spermidine stabilization [33]. It has been shown 
that transfection rates can be improved by utilizing DNA 
intercalators as surface modification agents [34], virus 
protein [35] and specific proteins studied so far [36]. 
However, taking into account the accessibility, selectivity 
and immune responseserum albumin is an easily accessible 
candidate for coating. Serum albumin is the most abundant 
blood protein, and has long serum half-life and widely 
used in clinically approved applications in drug delivery 
[37,38]. The thiol-maleimide chemistry is frequently used 
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for specific conjugation utilizing cysteine residue in serum 
albumin [39–42]. Many techniques used to synthesize 
polymers with protein reactive groups [43–45]. Grafting 
from approach is the more recent method for synthesizing 
polymeric biomaterials [46]. By creating specific sites on 
biomacromolecules, living radical polymerization can be 
initiated and broad range of protein-polymer conjugates 
can be achieved. Consequently, by coating DNA 
nanostructures with serum albumin, can these structures’ 
stability and transfection rates to the cells be increased? 

In this study, BSA transformed into macroinitiator for 
atom transfer radical polymerization (ATRP) by targeting 
the free cysteine residue as reactive towards the maleimide. 
This initiator can be used for having cationic polymer 
and utilized as a binding domain that can be further 
attached to the negatively charged DNA origami surface. 
It is believed that this method will broaden applications of 
DNA origami in nanomedicine as a novel alternative to the 
nanoparticle and lipid based drug delivery carriers.

2. Materials and methods
In this study by coating DNA nanostructures with cationic 
polymer armed albumin protein it is expected to increase 
these structures’ stability and transfection rates to the 
cells. The procedure is as follows: using maleimide as 
a starting material and modifying it to have hydroxyl 
group. Then from this functional group, a-bromoisobutyrl 
bromide covalently bonded by esterification. After that 
bromine functional  maleimide conjugated with bovine 
serum albumin (BSA) by cysteine-maleimide bond. Then 
ATRP was performed from this macroinitiator by using 
2-(dimethylamino) ethyl methacrylate (DMAEMA) as 
monomer. 60 Helix bundle DNA origami prepared by 
thermally annealing the scaffold by 141 distinct short 
staple strands. 

Maleimide supplied from Alfa Aesar [Thermo Fisher 
(Kandel) GmbH, Kandel, Germany]. Formaldehyde, 
α-bromoisobutyrl bromide (BiBB), bovine serum albumin,  
2-(dimethylamino) ethyl methacrylate (DMAEMA) 
monomer, ethidium bromide (EthBr) and agarose 
were purchased from Sigma-Aldrich Chemie GmbH 
(Taufkirchen, Germany). Milli-Q purified water was used. 

Scaffold for 60 Helix bundle DNA origami was purchased 
from TilibitNanosystems (München, Germany) and 
staple strands from Integrated DNA Technologies Inc. 
(Coralville, IA, USA). 10x TAE buffer supplied from 
USB Corporation (Cleveland, OH, USA). Proton nuclear 
magnetic resonance (1H NMR) spectra were recorded with 
Bruker Avance 400 MHz (Bruker BioSpin Corporation, 
Billerica, MA, USA). The chemical shift calibration 
performed using residual CDCl3 peaks. MALDI-TOF 
analyses were performed with an UltrafleXtreme 2000 Hz 
(Bruker Daltonics, Bremen, Germany) with a SmartBeam 
II laser (355 nm) and operated in positive mode.
2.1. Synthesis of N-substituted maleimide derivative
N-methylolmaleimide was synthesized according to 
the method Tawney et al. proposed (Figure 1) [47]. At 
room temperature 90 mL of 5% sodium hydroxide was 
added to a suspension of 2.910 g of maleimide in 5.559 
g of 37% formaldehyde (final pH » 5). Within 10 min 
all of maleimide was dissolved and a mildly exothermic 
reaction occurred. Separation of the product was begun 
promptly. After leaving for 2.5 h at room temperature, 
the solution was filtered. One recrystallization from ethyl 
acetate ended 1.12 g of product and it was dried under 
vacuum to remove solvent.

Bromine functional maleimide was prepared 
by esterification of N-methylolmaleimide with 
a-bromoisobutyrl bromide according to the method 
of Çakır et al. (Figure 2) [48]. Under nitrogen, 1.24 mL 
(2.307 g, 10 mmol) a-bromoisobutyrl bromide was added 
dropwise to a stirring mixture of NMM (1 g, 8 mmol) and 
triethylamine (1.37 mL, 10 mmol) in 23.3 mL of CHCl3 
in an ice bath for 1 h. After complete addition of the acid 
bromide, the reaction was stirred at room temperature 
for 3 h. A dark red reaction mixture observed and it was 
washed with water (3 × 23.3 mL) and then dried over 
MgSO4. After filtration and evaporation of CHCl3, it was 
dried under vacuum and recrystallized from ethanol.
2.2. BSA-macroinitiator
Synthesis of  BSA-macroinitiator targeted the free cysteine 
residue (Cys-34) as reactive towards the maleimide, 
described earlier by Nicolas et al. (Figure 3) [49]. BSA 
(34 mg, 0.52 μmol) was dissolved in 4.6 mL of 100 mM 

Figure 1. Methylolation of maleimide.
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phosphate buffer (pH = 7.0). A solution of 12.2 mg of 
N-substituted maleimide derivative in 0.2 mL of DMSO 
was added to this slowly. The mixture was gently stirred 
during 24 h at ambient temperature and the solid residue 
was then removed by centrifugation. The supernatant was 
diluted with deionized water and dialyzed with a 12,000–
14,000 Da molecular weight cut-off (MWCO) membrane 
against deionized water for 3 days. The solution was then 
lyophilized to isolate the BSA-macroinitiator. 
2.3. Atom transfer radical polymerization (ATRP)
BSA-polymer conjugate achieved via ATRP from BSA 
macroinitiator, by using modified method of Välimäki 
et al. (Figure 4) [50]. CuBr (53 mg, 0.37 mmol) was 
placed in a round-bottom flask with a stirring bar. BSA 
macroinitiator (25 mg, 0.37 mmol) and ligand HMTETA 
(170 mg, 0.74 mmol) dissolved in 10 mL of water and 
purged with nitrogen gas for 15 min. Then the solution 
transferred to the flask by cannula. The same procedure 
repeated for DMAEMA (5.8 g, 37 mmol) and the 
polymerization was performed for 4 h in a sealed flask at 

room temperature with magnetic stirring. For 240 min, 
every 30 min sample was taken from the flask to vials, 
then they were opened to air and placed in an ice bath 
to stop the reaction. The solid residue was removed by 
centrifugation, and the supernatant was lyophilized to 
give blue product.
2.4. Preparation of DNA origami nanostructure 
60 Helix bundle DNA origami nanostructure was 
prepared, purified and characterized as described earlier 
[51,52]. Briefly, folding solution obtained by mixing 
following substances:

20 mL M13mp18 scaffold (100 nM)
40 mL staples (500 nM)
40 mL folding buffer containing 2.5  TAE, 12.5 mM 

NaCl and 50 mM MgCl2
Then final solution was annealed by G-Storm 

thermocycler (Gene Technologies Ltd., Melbourne, 
Australia). The excess amount of staples was removed by 
PEG-based purification. Folding and purification of DNA 
origami is characterized by agarose gel electrophoresis. 

Figure 2. Esterification of N-methylolmaleimide with BiBB.

Figure 3. Thioether bond formation between cysteine-maleimide derivative.

Figure 4. ATRP of BSA-polymer conjugate.
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3. Results and discussion
Similar results observed with the literature in the methylolation 
of maleimide, maleimide quickly dissolved, and gave an 
exothermic reaction [47]. Thin layer chromatography of 
maleimide and methylolation step product confirmed the 
proper methylolation of maleimide. Maleimide runs faster 
than N-methylolmaleimide and was observed under UV 
light (Figure 5).The structure of N-methylolmaleimide was 
confirmed by 1H NMR recorded in CDCl3 as well. 1H NMR 
spectrum displays signals corresponding to hydrogens of 
methylene group and hydroxyl group thus proves the proper 
methylolation of maleimide (Figure 6). 1H NMR (CDCl3), d 
(ppm): 3.01–3.05 (t, 1H), 5.00–5.04 (d, 2H), 6.70–6.72 (s, 2H). 
To validate the structure of bromine functional maleimide 
(MBr), 1H NMR spectrum recorded in CDCl3. The resonance 
signals and relative intensities corresponding to methylene 
(-CH2) and methyl (-CH3) groups evidenced successful 
esterification, denoted in b and c respectively and it is found 
compatible with the results reported earlier (Figure 7) [48]. 
1H NMR (CDCl3), d (ppm): 1.82–1.85 (s, 6H), 5.56–5.57 (s, 
2H), 6.77–6.78 (s, 2H). Conjugation of bromine functional 
maleimide (MBr) to BSA was demonstrated by MALDI-TOF. 
Incubation of BSA with MBr showed a shift to position 68413 
m/z (Figures 8A and 8B). This corresponds to a change of 
1780 Da and proves proper conjugation of bromine functional 
maleimide (MBr) to BSA (Figure 8). Polymerization from 
BSA macroinitiator was followed by 1H NMR.  In order to be 
ensure the complete dissolution of the sample, 0.7 mL CDCl3 
mixed with 0.3 mL CD3OD and used as solvent. The resonance 
signal corresponding to repeating unit (methylene) group of  
PDMAEMA was searched around 1.0 ppm, however no peak 
observed in after 30 min (Figure  9A), 240 min.  (Figure  9B), 

240 min and dilution with water 1:1 volumetric ratio (Figure 
9C). This can be attributed to side reaction between functional 
groups on amino acid residues and DMAEMA monomer. 
Moreover, the mechanism can be slow due to the big structure 
of BSA, and 240 min is not enough to observe the polymer 
peak on 1H NMR spectrum. To overcome this issue, different 
polymerization medium and ratios of the substances will be 
tried.  Gel electrophoretic mobility shift assay (EMSA) verified 
that folded and compact 60HB runs faster than the scaffold as 
shown in (Figure 10). Besides, PEG purification step removed 
the excess staples efficiently. However there may be some 
possible limitations in the study such asin MALDI-TOF 
analysis chemical shift between BSA and BSA macroinitiator 
comparison, it is unclear the ratio of one to one chemical 
conjugates to the electrostatically gathered structures.

4. Conclusion
As a conclusion, we demonstrated a facile and widely 
applicable method to prepare BSA macroinitiator that can 
be further used in preparation of polymeric biomaterials. 
Characterization stages have given valuable information 
about transformation of maleimide to bromine functional 
initiator and thioether formation by Michael addition of 
maleimide end to thiol of cysteine residues. Though the weak 
polymer peak for backbone in 1H NMR spectrum, a clear shift 
in MALDI-TOF spectra has provided an evidence for protein-
initiator binding. In this method, any cysteine containing 
proteins can be selectively conjugated with bromine 
functional ATRP initiator, however polymerization medium 
should be taken into account to avoid denaturation of protein. 
Therefore, this approach offers notable opportunities which 
can be extended not only for DNA origami coating but also 
for responsive biohybrid material development. This method 
makes considerable contribution for attracting the attention 
to DNA origami studies and to future studies with BSA-like 
biocompatible proteins and polymers.
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Figure 6. 1H NMR spectrum of N-methylolmaleimide.

Figure 7. 1H NMR spectrum of bromine functional maleimide (MBr).
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Figure 8. MALDI-TOF spectra of A) BSA and B) BSA macroinitiator.

Figure 9. Resonance signals of according to chemical shifts shown in ppm in NMR spectra of samples taken from  polymerization 
medium after  A) 30 min, B) 240 min C) 240 min and dilution with water 1:1 volumetric ratio.
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Figure 10. Electrophoretic mobility shift assay (EMSA) results for folded and purified 
60HB DNA origami.
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