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1. Introduction
High dose chemotherapy with autologous hematopoietic 
stem cell transplantation (HSCT) could not achieve the 
expected treatment success in patients with solid tumors 
[2–12]. The ongoing clinical need formore durable 
responses hasled to the search of novel approaches 
focusing on the graft-versus-tumor (GvT) effect via 
allogeneic HSCT (allo-HSCT) with reduced intensity 
conditioning (RIC) and haploidentical HSCT [1, 9–11, 
13–18]. Allo-HSCT has been used for the treatment 
of various refractory solid tumors during the last two 
decades. GvT effect in a solid tumor after allo-HSCT 
has also been reported in a murine model in 1984 after 
the demonstration of graft-versus-leukemia (GvL) effect 
in a leukemic murine model following allo-HSCT from 
other strains of mice [19, 20]. Phase I and II trials using 
allo-HSCT with RIC conducted by the European Society 
for Blood and Marrow Transplantation Solid Tumors 
Working Party (EMBT-STWP) have reported the presence 
of a GvT effect in patients with various refractorysolid 
tumors,including renal, ovarian and colon cancers,as 

well as soft tissue sarcomas[1].The growing data on 
haploidentical transplants also indicate GvT effect in some 
pediatric refractory solid tumors [21–25].

The standard chemotherapy-based approaches have 
been shifting towards immunotherapy-based modalities, 
which aim at inducing an allo-reactivity against the 
metastatic solid tumor via a GvT effect [13, 26–33]. The 
acceptable toxicity profile has enabled allo-HSCT with 
RIC to be an alternative for the elderly and medically 
fragile patients with refractory metastatic solid tumors[13, 
26].The evolving evidence has also indicated the potential 
role of recipient derived immune effector cells (RDICs) in 
the antitumor reactivity following allo-HSCT, which has 
been considered as an emerging therapy for advanced 
refractory solid tumors[1, 34].

This review summarizes the background, rationale, 
and clinical results of immune-based strategies using 
GvT effect for the treatment of various metastatic and 
refractory solid tumors, as well as innovative approaches 
such as haploidentical HSCT, CAR-T cell therapies and 
tumor infiltrating lymphocytes (TIL).
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2. Cytotoxic adoptive T-cell therapy
Novel approaches including adoptive T-cell therapy 
(ATCT), targeted therapies and allo-HSCT with RIC are 
able to induce more durable responses via the advantage of 
a GvT effect [1, 13]. Better understanding the mechanisms 
behind the adoptive immune system has enabled the 
establishment of new targets for the treatment of various 
solid tumors [35]. The GvT effect and tumor response 
after allo-HSCT with RIC depend on the activity and 
interaction of RDICs, leukocyte-activated killer cells 
(LAKs) and cytokine-induced killer cells (CIKs). Thus, 
it may also be regarded as a nonspecific ATCT. ATCT 
involves the expansion of cytotoxic immune effector 
cells of either donor or recipient type [36]. According to 
results of some early phase trials, ATCT may be a potent 
immunotherapeutic approach in refractory solid tumors 
[35]. There remains much more to be discovered regarding 
the interactions of T-cell subsets, mechanisms of GvT 
effect and differences between GvL effect of hematologic 
malignancies and GvT effect in refractory solid tumors.

3. Graft-versus-tumor effect
Graft-versus-host disease (GvHD) and therefore GvL 
effect occurring after allo-HSCT contributes to and 
maintains an antileukemic feature [37, 38]. Chronic 
GvHD generally leads to a more potent GvL effect than 
acute GvHD [39]. The duration of remission is reported 
to be higheramong patients with GvHD when compared 
to ones without GvHD [40]. Indirect evidences for the 
presence of an immune-mediated GvL effect include 
the lower risk of relapse among patients undergoing 
allo-HSCT when compared to autologous HSCT and an 
increased risk of relapse among patients receiving T-cell 
depleted transplants [41, 42]. The direct evidence of GvL 
effect can be interpreted from the posttransplant studies 
reporting an augmentation of GvL effect following donor 
lymphocyte infusions (DLI) after allo-HSCT [43]. DLI 
without cytotoxic therapyis associated with a high rate 
and durability of remissionwhen used for the treatment of 
relapse after allo-HSCT [44–46].

The activation of Fas-dependent killing and perforin 
degranulationvia the GvL effect, which  is mediated by 
donor T-cells (CD4+, CD8+ and natural killer – NK-
cells), eradicates malignant cells [47, 48]. Interferon-C, 
interleukin-2 and tumor necrosis factor-αare the main 
cytokines that potentiate the GvL effect [49]. Posttransplant 
ATCT against human cancer-associated antigens, T-cell 
receptor genes or minor histocompatibility antigens (e.g.; 
HA-1,HA-3, etc.) may also induce antitumor effects [50].

The development of acute and chronic GvHD after 
allo-HSCT, which is an immuno-modulatory therapy 
aiming at exploiting a GvT effect for solid tumors, has 
been linked to a better response rate[1]. The identification 

of antigen targets of donor and RDICs and development of 
targeted therapies may further increase the GvT effect of 
allo-HSCT for solid tumorsandalso reduce the treatment 
toxicity[1]. However, the critical balance between effective 
immunosuppression, GvHD and relapse still remains as 
amajor concern.
3.1. GvT effect in renal cell carcinoma
Although RCC is sensitive to immunotherapy, interferon-α 
with or without interleukin-2 (IL-2) yields unsatisfactory 
response (10%–20%) and long-term progression-free 
survival (PFS) rates of 4%–15% [51–53].Although the 
introduction of novel immunotherapeutic agents, such 
as anti-PDL-1 antibodies (nivolumab and ipilimumab) 
provided some improvement in overall survival rates of 
RCC patients, none of the current drugs have a curative 
potential in RCC [54].

Allo-HSCT with RIC has been considered as a 
promising option on the basis of GvT effect in this setting 
[27, 28, 55, 56]. The first series of allo-HSCT with RIC 
reported a 53% response rate for cytokine-refractory 
RCC[27].In the largest series of allo-HSCT with RIC in 
RCC patients by the EBMT-STWP, in which a fludarabine-
based conditioning was administered to all 124 patients, 
TRM at the end of first year was 16% and mostly 
associated with acute GvHD [56]. A complete response 
was achieved in 4 patients at a median of 150 (42–600) 
days posttransplant with an overall response rate of 22.5%. 
Another trial with 75 metastatic RCC patients receiving 
allo-HSCT with RIC reported a sustained engraftment in 
74 out of 75 patients [57]. The frequency of chronic GvHD 
was 50% and associated with a significant tumor response.

As a result, a reasonable GvT effect in RCC patients 
receiving allo-HSCT with RIC was documented especially 
in the presence of chronic GvHD, which led to an increase 
in survival rates.
3.2. GvT effect in refractory and resistant colorectal cancer
The median survival in refractory and resistant colon 
cancer still remains as low as 9 to 12 months after second-
line treatment [58]. The addition of monoclonal antibodies, 
such as cetuximab or bevacizumabto combination 
chemotherapiesmay partially increase remission and 
survival rates. However, durable remission usually 
cannot be achieved, especially in the presence of resistant 
disease [59, 60]. Allo-HSCT with RIC has been studied 
as animmunotherapy-based therapeutic strategy for the 
management of metastatic colorectal cancer (mCRC)
[15, 16, 61]. Hentsschke et al. reported 6 mCRC patients 
receiving allo-HSCT with RIC, which yielded 1 complete 
response and 1 mixed response [62]. In amulticenter trial 
by EBMT, 39 patients with mCRC had allo-HSCT with RIC 
and all patients engrafted (mediandonor T-cellchimerism 
of 90% at day +60). Transplant-related morbidities were 
limited. Grades II-IV acute GvHD occurred in 14 patients 
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(35%) and chronic GvHD in 9 (23%). TRM occurred 
in 4 patients (10%). The best tumor responses were: 1 
complete  response (CR) (2%), 7 partial response (PR) (18 
%) and 10 stable disease (SD) (26%), leading to an over 
all disease control in 18 of 39 patients (46%)[63,64]. The 
exploitation of GvT effect with allo-HSCT in refractory 
mCRC might be an alternative to conventional strategies 
and may sometimesyield favorable outcomes, especially in 
the presence of chronic GvHD, among young patients with 
refractory mCRC.
3.3. GvT effect in refractory ovarian cancer
Bay et al. reported 5 refractory ovarian cancer (OC) 
patients receiving allo-HSCT with RIC. Tumor regression 
were observed in 4 patients during acute or chronic 
GvHD and relapse occurred in 1 patient treated with 
methylprednisolone for chronic GvHD [65]. EBMT-STWP 
also evaluated 17 heavily pretreated refractory OC patients, 
retrospectively. Mortality was reported in 11 patients, 8 of 
whom died of tumor progression at a median follow-up 
of 296 days (range 51–599) [66]. Grades 2–4 acute GvHD 
was seen in 8 patients, 7 (41%) of whom had a partial 
response. DLI was associated with a tumor regression in 
1 out of 3 patients. These data support the presence of a 
GvT effect associated with the severity of GvHD. Another 
retrospective multicenter study including 30 OC patients 
receiving allografts reported that the presence of chronic 
GvHD was associated with a significantly higher overall 
survival (OS) rate (17.6 months vs. 6.5 months, P < 0.05).
An objective response rate of 50% and TRM of 20% were 
reported at the end of first year [67]. Median OS was 10.4 
months with a median follow-up of 74.5 months (range 
16–148 months).
3.4. GvT effect in breast cancer
Morecki et al. demonstrated a GvT effect in mice implanted 
with 4T1 mammary carcinoma cell line and given minor 
histocompatibility mismatched DBA/2 spleen cells [68]. 
This direct GvT effect mediated by the alloreactive donor 
splenocytes in the absence of any anticarcinoma agents 
has also been demonstrated by direct inhibition of liver 
metastases through intraportal inoculation of allogeneic 
splenocytes, but not syngeneic splenocytes [69].

The first report of allo-HSCT in metastatic breast 
cancer (BC) was published by Eibl et al. in 1996 [13].  
The advantages of allo-HSCT over autologous HSCT for 
metastatic BC are i) cancer-free graft and ii) immune-
mediated GvT effects mediated by human leukocyte 
antigen compatible donor T-cells [1, 33, 70].After the 
demonstration of tumor regression in metastatic BC via 
allogeneic T-cell mediated GvT effects in several murine 
models [71, 72], a study by the National Cancer Institute 
including 16 metastatic BC patients investigated whether 
a clinical graft-versus-BC effect existed via allogeneic 
lymphocytes after allo-HSCT from HLA-matched 

siblings following a RIC regimen. In order to avoid the 
overlap of immunological GvT effect and antitumor effect 
of cytotoxic chemotherapy used in the pretransplant 
conditioning regimen, allogeneic T-lymphocytes were 
removed from the stem cell graft and were subsequently 
administered at escalating doses after allo-HSCT (on +42, 
+70, and +98 days). Objective tumor regression occurred 
in 6 patients 28 days after allo-HSCT. Disease progression 
following allo-HSCT was observed before subsequent 
tumor regression in 2 patients. Tumor regressions obtained 
simultaneously with the accomplishment of complete 
donor T-lymphoid engraftment were associated with 
the development of GvHD and abrogated after systemic 
immunosuppression[32].

A study by Ueno et al. reported that patients who 
developed acute GvHD after a RIC regimen had lower 
relapse or progression risk than those who did not (P < 
0.03). However, this did not translate into a relapse-free 
survival advantage [33]. Immune manipulation such as 
DLI for persistent or progressive disease were performed 
in 9 out of 33 patients (27%) and led to disease response 
or stable disease. Authors concluded that preclinical and 
clinical studies are needed in order to facilitate targeted 
adoptive immunotherapy and to explore the benefit of a 
GvT effect in BC [33, 36].
3.5. GvT effect in soft tissue sarcomas
Immune-mediated effect against soft tissue sarcomas 
(STS) has been shown in experimental animal models of 
allo-HSCT [20, 73]. Most of the evidence comes from case 
reports and small series of patients transplanted from HLA-
matched siblings. Despite several reports ofthe presence of 
a graft-versus-sarcoma effect, [74, 75] tumor regression 
following allo-HSCT with RIC regimens has not been 
reported among patients with various histologic subtypes 
[76]. A retrospective study by Secondino et al. evaluated 
14 adult patients with advanced STS receiving allo-HSCT 
with RIC in the EBMT database. Overall, acute GvHD was 
reported in 9 patients (64%). Grades 3–4 acute GvHD was 
observed in 4 (28%) and grade 2 in 5 cases (36%). Chronic 
GvHD occurred in 4 out of 9 evaluable patients (44%) 
and was extensive in 2. Four patients experienced durable 
disease stabilization following allo-HSCT [77]. A well 
designed phase 2 study, enrolling patients with limited 
tumor burden and slow growing tumors, may help to 
define the possible role of allo-HSCT with RIC in patients 
with STS in whom conventional treatments have failed.
3.6.GvT effect of haploidentical stem cell transplantation 
in refractory solid tumors
Innovative allo-HSCT approaches such as haploidentical 
HSCT, which takes advantage of GvT effects in order to 
control disease, while minimizing the treatment related 
mortality or scale of GvHD, are being studied in many 
recent clinical trials [21–24]. The evidence of haploidentical 
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HSCT in solid tumors are mainly limited to pediatric solid 
tumors such as neuroblastoma and sarcomas [21–23]. 
A pilot study by Lang et al. evaluated the feasibility and 
toxicity of transplantation of haploidentical T and B-cell 
depleted grafts with high numbers of NK cells. Since grade 
2 acute GvHD was observed in 4 patients andchronic 
GvHD in 2, it was concluded that haploidentical HSCT 
is feasible with low toxicity even in intensively pretreated 
patients with neuroblastomas and sarcomas [21]. Llosa 
et al. also reported the results of haploidentical stem cell 
transplantation with RIC in 16 pediatric and adolescent, as 
well as young adult patients with solid tumors. A limited 
GvHD was seen in 3 patients and non-relapse mortality 
in 1 patient. This approach may serve as a platform for 
posttransplant strategies to prevent relapse and optimize 
PFS[22].

4. The role of recipient derived immune effector cells in 
the antitumor effects
The anticancer effect of RDICs was first time suggested 
by Alexander et al. in 1996. They reported that 
xenogeneic lymphocytes from tumor immunized sheep 
reduced fibrosarcoma growth in immuno competent 
rats. The observed anticancer effect was not mediated 
via direct antitumor activity of donor T-cells as these 
were rapidly rejected in the xenogeneic setting, rather a 
“messengersignal” created by the infused xenogeneic donor 
cells in directly boosted recipient’s immune reactions[78]. 
Ellman and Katz et al. also suggested that host ant-tumor 
immunity is involved in the antitumor effect[79]. They 
reported that host antitumor immunity could be achieved 
even when the all ogeneic cells are already fully rejected 
and continuous tumor protection had been observed in 
50% of rechallenged long-term survivors of allogeneic 
lymphocyte-infused animals [80]. These initial findings 
suggest that a GvH reaction is a prerequisite for a host-
anti tumor activity to occur in thesetting of DLI, where 
RDICs are stimulated to elicit antitumor responses. In 
concordance, RDICs are presented as key players in the 
anticancer activity after allo-HSCT. Symons et al. reported 
that the transfer of CD8+ T-cell-depleted DLI graft into 
cyclophosphamide-treated A20 leukemia/lymphoma-
bearing mice increased the survival directly through 
a GvH anti-tumorreaction of donor CD4+ T-cells and 
indirectly through stimulation of recipient CD8+ T-cell 
antitumor immunity [81].

Recipient derived antigen presenting cells (APCs) 
also play an important role during GvH reactions. In 
the early postallo-HSCT period, conditioning-induced 
tissue inflammation stimulates recipient APCs and they 
in turn prime alloreactive donor T-cells [82, 83]. Cross-
presentation of recipient antigens by donor APCs may also 
occur after allo-HSCT. However,  it still not clearly defined 

to what extent it occurs in human beings [83]. The role of 
recipient APCs in eliciting effective anticancer responses 
is very important and it is reflected in clinical studies 
reporting the outcome of DLI in advanced solid tumors. 
RDICs may have a principal effector role in the anticancer 
effect against renal cell carcinoma (RCC), as a significant 
tumor regression occurred despite a gradual decrease 
in donor chimerism[84]. This observation, reported by 
Harano et al., suggests that a temporary presence of donor 
cells is enough to create a GvH reaction and may provide 
inflammatory signals that facilitate the loss of tolerance 
of recipient CD8+ T-cells to the recipient’s tumor [84]. 
Similarly, Omazic et al. also showed a durable remission 
among patients with advanced refractory solid tumors in 
the presence of donor graft rejection [37].

As the preclinical and clinical evidences suggest that 
donor cells may only be needed in the initial induction 
phase of a GvT effect [37, 81], the research has focused on 
exploiting the potential of RDICs without increasing the 
risk of GvHD. Inmouse models of leukemia, Rubio et al. 
and De Somer et al. intentionally created graft rejection 
via “recipient leukocyte infusion” (RLI) [85, 86]. A host-
versus-graft (HvG) reaction created by RLI into mixed 
chimer as triggered a reaction of RLI-derived donor-
reactive recipient T-cells and resulted in full donor graft 
rejection and an important antileukemic response without 
increasing the GvHD risk.

In summary, these findings support the initial reports 
suggesting that RDICs may act as key effectors in the 
anticancer effect after allo-HSCT. These results also 
strongly suggest that the effective anticancer responses 
mediated byRDICs are not solely through a GvHr eaction 
[81, 84], but also a HvG reaction [81, 84, 87, 88].

5. Chimeric antigen receptorT-cell (CAR-T) therapy for 
solid tumors 
Chimeric antigen receptor modified T-cell (CAR-T) 
therapy has achieved encouraging breakthroughs in the 
treatment of hematological malignancies. Nevertheless, 
this success has not yet been extrapolated to solid tumors 
[89]. Infact, the vast majority of cancers, in particular the 
more common solid cancers, including the breast, colon and 
lung, failed to respond significantly to CAR-T treatment. 
The suppression of T-cell function and inhibition of T-cell 
localization are some formidable barriers of solid cancers 
to adoptive cell transfer [90].

However, some promising results have also been 
reported in some early phase studies [91]. Phase 1 studies 
of GD2-specific CAR-T cells for neuroblastoma, CAR-T 
cells specifically targeting HER2, EGFR and IL-13 for 
glioblastoma multiforme, mesothelin-specific CAR-T 
cells for advanced malignant pleural mesothelioma or 
pancreatic cancer, CAR-T cells specific for epidermal 
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growth factor receptor (EGFR) for advanced nonsmall-
cell lung cancer and cholangiocarcinoma, CEA specific 
CAR-T cells for metastatic CRC have reported positive 
initial results [92–99].

Despite some promising results, the ultimate success 
of CAR-T therapies in solid tumors may require some 
adjustments and improvements. The combination of 
CAR-T cells with chemotherapy to treatmet as tatic 
tumors, local delivery of CAR-T cells,using CAR-T cells 
targeting two different antigens, combined therapy with 
CAR-T and immune check point inhibitors and finally the 
use of CAR-T as a strategy to prevent tumor recurrence and 
metastasis after curative resection are current questions to 
be further studied [89].

6. Tumor infiltrating T-cells in refractory solid tumors
The infiltration of the tumor tissue with T cells targeting 
tumor associated antigens has been shown to be associated 
with a favorable prognosis in several solid tumors. Upon 
this observation ongoing studies have been investigating 
the idea of extraction, ex vivo expansion with homeostatic 
cytokines and reinfusion into the patients as a novel 
treatment strategy [91]. Tumor infiltrating lymphocytes 
(TILs) were first reported by Rosenberg et al. in 1988 
and they demonstrated the antimelanoma effects of 
IL-2 induced TILs [100]. The treatment with TILs and 
high-dose IL-2 has proven a 34% objective response rate 
[101–103]. TIL therapy has been reported to have lower 
response rates in patients progressed on anti-PD-1 therapy. 
However, TIL therapy remains an important treatment 
strategy in refractory malignant melanoma, as durable 
complete responses can still be induced after progression  
on anti-PD-1 [104].

Despite the demonstration of TILs in other solid 
tumors, their expansion and in vivo efficacy have not been 
a great success as in melanoma [101]. However, there are 
promising preliminary data with cholangiocarcinoma 
and cervical cancer [105, 106] and some clinical trials in 
gastrointestinal, gynecological, head and neck, breast and 
lung cancers are currently ongoing [91].

TIL therapy in melanoma is an advanced therapy 
medicinal product and its clinical implementation is 
challenging. Thus, it has not been widely recognized. It has 
been availablein the Europe since 2011 as an experimental 
therapy. Reimbursement procedures and organization of 
knowledge transfer could improve clinical translation of 
TIL therapy [107].

7. Summary
Current evidence suggests the presence of graft-versus-
cancer effect in various solid tumors. Allo-HSCT with 
RIC may provide some degree of response in some 
refractory metastatic solid tumors, such as renal, ovarian, 

breast and even colon cancers. Lower toxicity profile 
and lower nonrelapse mortality rate make RIC regimens 
a plausible treatment modality.  To date, the results of 
this treatment modality in refractory solid tumors are 
associated with lower CR and PR rates with few long-term 
survivors, which is similar to CAR-T Cell experiences in 
refractory solid tumors.  Current literature data imply that 
mechanisms of GVT effect and interaction of T-cells and 
their subsets with main mediators may be highly different 
in solid tumors compared to hematologic malignancies. 
Therefore, further studies are needed shedding light upon 
these mechanisms in order to exploit this valuable effect in 
refractory solid tumors. 

Despite its great potential, the use of ATCT for cancer 
control yet has a marginal role in the management of 
patients with solid tumors. However, it has recently come 
into attraction in melanoma treatment [36]. Indeed, the 
extensive infrastructure needed for exploiting ATCT 
effects still restrict its use to academic centers with specific 
programs in the field. It should be emphasized that the 
major obstacle for a wider application of ATCT to treat 
human cancer is the personalized nature of the approach 
[36].

Although donor T-cells are accepted as the main 
mediators of the anticancer effect following allo-HSCT, 
recent findings also point out a key role for RDICs. Recent 
experimental studies appointed RLI as an important tool to 
reinforce anticancer effects after allo-HSCT by exploiting 
RDICs, both in leukemia and solid tumor models with an 
advantage of lower rates of GvHD. These results supporting 
the contribution of RDICs in the anticancer effect of allo-
HSCT are mainly observed in murine models, and the 
experience in human is limited. Future clinical trials may 
explore the emerging role and anticancer effects of RDICs 
in patients receiving allo-HSCT.

Further studies and experience are warranted 
regarding the use of haploidentical HSCT, CAR-T cell 
therapies, posttransplant immunomodulatory agents 
and tumor infiltrating T-cells in patients with refractory 
solid tumors [89, 90, 108–114]. Future studies should 
include patients with better performance status and 
chemotherapy responsive disease before transplant in 
order to obtain the maximal benefit from GvT effect in 
solid tumors. Well-designed trials are needed for a clear-
cut understanding of the interactions of donor T-cells and 
their subsets, mechanisms of GvT effects, which possibly 
use different mechanisms in solid tumors and hematologic 
malignancies, in order to optimize the efficacy of such 
treatment modalities in patients with refractory solid 
tumors.
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