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1. Introduction
Glioblastoma (GBM) is the most common primary 
brain tumor with a poor prognosis (47.1%) [1]. GBMs 
are fatal tumors with a median survival time of 12 
months. Approximately 3%–5% of cases live more than 
3 years [2]. Many studies are showing the importance of 
genetic susceptibility, exogenous factors, age and clinical 
parameters at the time of diagnosis, as the reason for 
aggressive behavior [3–6]. Other important factors are 
surgical procedures and multimodal treatment options. 
Immunotherapy is a promising treatment method that 
shows a synergistic effect with radiotherapy [7].

Immune checkpoints can be grouped into two main 
groups as immunostimulating and blocking. The main 
molecules that inhibit immune checkpoints are the 
cytotoxic t-lymphocyte-associated protein-4 (CTLA-4), 
programmed death-1 (PD-1) receptor, and its two ligands 
(PD-L1 and PD-L2). These molecules block control signals 

that lead to the T cell response against the tumor. New 
treatments are aimed at inhibiting PD-L1 on the tumor 
cell or PD-1 receptor on the T cell which will produce an 
antitumoral response. These treatment agents are called 
immune checkpoint inhibitors (ICIs). CTLA-4, one of 
the major inhibitory molecules in GBMs, is released from 
T cells, binding to its ligands (CD80, CD86) reduces 
the activation and proliferation of effector T cells and 
increases the activation of regulatory T cells (Treg) in the 
GBM microenvironment [8,9]. 

PD-1 is released from T cells and other immune cells. 
One of its ligands, PD-L1 is found in Tregs in the GBM 
microenvironment, tumor-associated macrophages, and 
other cells in the tumor microenvironment, including 
tumor cells [8,10]. The predictive markers in PD-1/PD-
L1 antibody therapy are mainly the number of cytotoxic 
T-lymphocytes inside tumor tissues and the expression 
level of PD-L1 in cancer cells [11,12]. In extensive studies, 
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PD-L1 expression levels in GBMs were found between 
61%–88% [13–15]. High PD-L1 mRNA expression level 
was found to be associated with shorter overall survival in 
glioma patients [12,16,17]. 

Treating recurrent GBMs is more difficult and 
resistance develops more frequently to treatment. These 
tumors have been treated several times (radiotherapy and 
temozolomide) and therefore contain a greater number 
of mutations. Due to the presence of potential new 
antigens, these tumors are assumed to be more suitable 
for the recognition and attack of the immune system. In 
contrast to the hypothesis that the tumor assumes that it 
will increase the release of PD-L1 with the immune-escape 
mechanism developed to protect itself from stronger 
immune response, in some studies, this rate was found to 
be significantly lower in recurrent tumors [13,14,18]. 

PD-1/PD-L1 expression, tumor mutation load, and 
DNA mismatch repair (MMR) defects are thought to be 
related to the treatment response. Some clinical studies 
revealed that defective MMR is associated with clinical 
responses to immune checkpoint inhibitors (ICI) [5,19]. 
Tumors with high microsatellite instability (MSI) and high 
immunogenicity benefit from immunotherapy more and 
have a better clinical course. Therefore, it is recommended 
to use MSI status as a marker for response to PD-1/PD-L1 
blockade in cancer patients [20]. 

In the last 6 years, significant results have been obtained 
in immunotherapy in various tumors (melanoma, renal 
cell cancer, lung cancer, head, and neck cancers) with 
anti-PD-1/PD-L1 antibodies. While the response to PD-1 
inhibitors is significantly high in lymphoma subtypes 
(87% in Hodgkin’s lymphoma), this rate ranges from 
15% to 40% in solid organ cancers [21,22]. There are 
several studies showing that PD-1 inhibition increases 
the antitumor responses and survival rate on animal 
glioma models [23,15]. Especially combined immune 
checkpoint blockade resulted in 100% long survivors [23]. 
However, there is insufficient clinical evidence to support 
its effectiveness in GBM patients. There are some “case 
reports” in the literature showing that anti-PD-1 therapy 
(nivolumab) have significant therapeutic effects on GBM 
patients [19,24,25].

2. Material and methods
2.1 Patients and clinical information
In our study, 74 cases (recurrent and nonrecurrent GBM) 
diagnosed in our department between 2007–2019 were 
selected. Twenty-seven of these cases showed recurrence. 
Hypercellular tumors including palisading necrosis 
and vascular endothelial proliferation were accepted as 
‘original tumor’. Diffuse necrosis, vascular hyalinization, 
gliosis, and the presence of rare atypical cells were 
accepted as ‘radiotherapy effect’. High-grade glioma with 

mitosis and minimal evidence of radiation effect is defined 
as ‘recurrent tumor’ [26]. The first resection materials of 
the recurrent cases were defined as “Group 1”, the 2nd 
resection materials were “Group 2” and the nonrecurrent 
cases were defined as “Group 3”. When calculating rates 
in recurrent cases, cases were considered “positive” if any 
of the cases in group 1 or 2 were positive. The results of 
recurrent and nonrecurrent GBM patients were compared. 
In addition, in recurrent cases, the expression rates in 
the 1st and 2nd resection materials were compared. For 
each case, the patient’s age at the time of diagnosis, sex, 
time for recurrence, and survival were recorded. Clinical 
information was obtained from patient files on the 
computer.
2.2 Immunohistochemical study
Immunohistochemically, the relationship between MLH1 
(MutL Homolog 1), MSH2 (MutS Homolog 2), MSH6 
(MutS Homolog 6), and PMS2 (PostMeiotic Segregation 
increased 2) results and immune checkpoint inhibitors 
PD-1 and PD-L1 were examined and compared with 
the clinicopathological features. Sections stained with 
immunohistochemical antibodies were examined under 
a light microscope (Olympus BX50). Normal colon tissue 
was used as a control of the immunohistochemical MLH1, 
MSH2, MSH6, and PMS2 markers. Expressions of MMR 
proteins were evaluated as follows: Nuclear staining in 
more than 80% neoplastic cells was accepted as score 4; 
51%–80% staining score 3; 10%–50% staining score 2; 
less than 10% staining score 1 and no nuclear staining 
score 0 [27]. Expressions of MMR proteins were shown in 
Figure 1 (Figure 1: a) Loss of nuclear staining with MLH1 
(×200), b) Nuclear staining with MLH1 (×100), c) Loss of 
nuclear staining with MSH2 (×200), d) Nuclear staining 
with MSH2 (×100), e) Loss of nuclear staining with MSH6 
(×200), f) Nuclear staining with with MSH6 (×200), 
g) Loss of nuclear staining with with PMS2 (×100), and 
h) Nuclear staining with PMS2 (×100)). Loss of nuclear 
expression of one or more MMR proteins was accepted as 
deficient mismatch repair [28].

SP263 clone of the PD-L1 antibody was used. Diffuse 
fibrillar/membranous staining in tumor tissue was 
evaluated. According to previous studies, no staining 
in nonnecrotic tumor tissue was accepted as score 0; 
<25% staining score 1; 25%–50% staining score 2; 50%–
75% staining score 3 and > 75% staining score 4 [13]. 
Membranous staining in epitheloid tumor cells was 
defined as (+) if > 5% staining in tumor cells as in previous 
studies [13].

PD-1 expression was seen in lymphocytes in tumor 
tissue, and perivascular space. It was scored as sparsely, 
moderately and intensively according to the staining rates 
in large magnification (200×–400×). The staining patterns 
of PD-L1 and PD-1 were shown in Figure 2 (Figure 2: a) 
Diffuse fibrillary PD-L1 staining in tumor matrix (×200), 
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b) Membranous PD-L1 staining on tumor cells (×400), c) 
Diffuse fibrillary and membranous PD-L1 staining (×200), 
d) PD-1 staining on tumor infiltrating lymphocytes 
(×400)).
2.3 Statistical analysis
Descriptive analyses of the study group were given as 
numbers and percentages. SPSS Statistics v: 22.0 (IBM SPSS, 
2013, Armonk, NY, USA) was used for statistical analysis. 
Comparisons between recurrent and nonrecurrent cases 
were made using the Chi-square and Fisher’s Exact test, 
and the comparison of the Group 1 and Group 2 with 

the Mc Nemar test. The mean and standard deviation 
values were compared with student t test. In all analyses, 
the statistical significance level was taken as p = 0.05. The 
effects of recurrence, PD-L1 expression, MMR status, and 
loss of PMS2 on survival in patients were examined using 
log-rank test. Survival rates were calculated using the 
Kaplan–Meier survival analysis.

3. Results
Of the 74 GBM patients, 29 (39.2%) were female and 
45 (60.8%) were male with a median age of 58.4 (range, 

Figure 1. Expressions of MMR proteins.
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4–85). However, the mean age of diagnosis in recurrent 
cases was 52.1 (4–75) and 62.1 (42–85) in nonrecurrent 
cases and was significantly lower in recurrent GBM cases 
(p = 0.007). Twenty-seven cases (36.5%) recurred, 62 
cases (83.8%) died, and 12 cases (25.5%) are still alive. The 
mean recurrence time was 8.2 months (0.8–39.7). Median 
survival was 9.9 months (6.1–13.8) in all cases from the 
time of diagnosis, and 12.5 months in recurrent cases; 6 
months for nonrecurrent ones. The clinicopathological 
characteristics of the patients are given in Table 1.

On immunohistochemical study, PD-L1 expression 
was observed in 36 (48.6%) of the 74 cases. Expression was 
detected in 12 (44.5%) of the recurrent cases and 24 (51.0%) 
of the nonrecurrent cases. Median survival was 7.1 months 
in patients with PD-L1 (+) and 10 months in patients with 
PD-L1(-). The effect of PD-L1 expression on survival was 

not significant (p = 0.300), shown in Figure 3 (Figure 3: 
a) Recurrent cases b) Nonrecurrent cases c) All cases). 
Thirteen (17.6%) patients exhibited loss of expression for 
at least one MMR protein and they were considered to 
MSI. Nine of the cases with MSI were recurrent (33.3%) 
and 4 were nonrecurrent GBM (8.5%). The details of the 
immunohistochemical expression of MMR proteins are 
given in Tables 2 and 3. Median survival for tumors with MSI 
was 7 months, and 10 months for those with MSS. However, 
MMR status did not have a significant effect on survival 
(p = 0.953). Among the MMR proteins, loss of PMS2 was 
noted in 9 recurrent cases (33.3%) and in 4 nonrecurrent 
cases (8.5%). Median survival was 7 months in patients with 
PMS2 loss and 10 months in patients without loss. However, 
there was no significant effect of PMS2 loss on survival (p = 
0.953). Loss of PMS2 was found to be significantly effective 

Figure 2. The staining patterns of PD-L1 and PD-1.

Table 1. The clinicopathological characteristics of the recurrent and nonrecurrent cases.

Clinical parameters Recurrent cases
(n = 27)

Nonrecurrent cases
(n = 47)

Total
(n = 74)

Sex (female/male) n (%) 11 (40.7)/16 (59.3) 18 (38.3)/29 (61.7) 29 (39.2)/45 (60.8)
Mean age (± SD) 52.1 (± 15.349) 62.1 (± 10.693) 58.4 (± 13.392)
Mean recurrence time (month) (95% CI) 8.2 (0.8–39.7) - -
Median survival time (month) (95% CI) 12.5 (7.4–17.5) 6.0 (3.7–8.2) 9.9 (6.1–13.8)
Death n (%) 27 (100) 35 (74.5) 62 (83.8)

Student t test: p = 0.02.
Median survival time: Kaplan–Meier. 
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in relapsed cases (p = 0.003). The median recurrence time 
was 10.1 months in those with PMS2 loss, and 39.7 months 
in those without. PD-1 expression was observed in 6 cases 

(8.1%). It was observed in 3 recurrent cases (11.1%) and 3 
nonrecurrent cases (6.3%). The expressions of PD-L1, PD-1 
and presence of MSI are given in Table 4.

Figure 3. The effect of PD-L1 expression on survival.
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Clinical features of Group 1 and 2 (recurrent) cases: 
11 (40.7%) were female and 16 (59.3%) were male with 
the median age was 52.1 (range, 4–75). All of them died. 
The number of cases with PD-L1 (+) in Group 1 was 8 
(29.6%). MSI was detected in 6 of 27 cases (22.2%). The 
number of the cases with PD-1 (+) in Group 1 was 1 
(3.7%). Loss of PMS2 was observed in 5 cases (18.5%). 
The number of cases with PD-L1 (+) in Group 2 was 8 
(29.6%), of which 4 were the same cases in Group 1. MSI 
was detected in 6 of 27 cases (22.2%). Three of these cases 
were the same as Group 1. The number of cases with PD-1 
(+) was 2 (7.4%), both cases were different from Group 1. 
Six cases had PMS2 loss (22.2%). Two cases were the same 
as Group 1 and PMS2 loss was observed in 9 cases totally. 
Clinical characteristics of Group 3 cases: 18 (38.3%) were 

women and 29 (61.7%) were men with the median age 
was 62.1 (42–85). Thirty five cases (74.5%) died and 12 
cases (25.5%) are still alive.

The relationship between MMR status and PD-L1 
expression in recurrent and nonrecurrent cases was 
shown in Figure 4 (p = 0.448 and p = 0.348, respectively, 
Chi-square Fisher’s exact test). There was no significant 
difference between PMS2 and PD-L1 expression in 
patients with or without recurrence (p = 1.000 and p = 
0.348, respectively, Chi-square Fisher’s exact test). There 
was no significant difference between PD-L1 expression 
and survival in patients with or without recurrence (p = 
0.136, log rank (Mantel Cox) test). There was no significant 
difference between MMR status and survival in patients 
with or without recurrence (p = 0.133, log rank (Mantel 
Cox) test). There was no significant difference between 

Table 2. Loss of MMR proteins in the recurrent cases (n = 27, p 
< 0.05).

MMR proteins Resection material n % p

MLH1
1st resection 1 3.7

-
2nd resection 0 0

MSH2
1st resection 0 0

-
2nd resection 0 0

MSH6
1st resection 0 0

-
2nd resection 2 7.4

PMS2
1st resection 5 18.5

1.000
2nd resection 6 22.2

MMR: Mismatch repair.
McNemar Exact test.

Table 3. Loss of MMR proteins in all cases (n = 74, p < 0.05).

MMR proteins Cases n % p

MLH1
Recurrent 1 3.7

0.635
Nonrecurrent 1 2.1

MSH2
Recurrent 0 0

   -
Nonrecurrent 0 0

MSH6
Recurrent 2 7.4

0.530
Nonrecurrent 2 4.3

PMS2
Recurrent 9 33.3

0.011*
Nonrecurrent 4 8.5

 MMR: Mismatch repair.
*Statistically significant.
Chi-Square Fisher’s Exact test.

Table 4. The expressions of PD-L1, PD-1, and presence of MSI in 
the recurrent and non-recurrent cases (n = 74, p < 0.05).

Protein expression Cases n % p

PD-L1
Recurrent 12 44.5

0.060
Nonrecurrent 24 51.0

PD-1
Recurrent 3 11.1

0.536
Nonrecurrent 3 6.4

MSI
Recurrent 9 33.3

0.011*
Nonrecurrent 4 8.5

 MSI: Microsatellite instability.  
*Statistically significant.
Chi-Square Fisher’s Exact test.

Figure 4. The relationship between MMR status and PD-L1 
expression in recurrent and nonrecurrent GBM
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loss of PMS2 and survival in patients with or without 
recurrence (p = 0.133, log rank (Mantel Cox) test).

4. Discussion
The ability of GBM to cause local and systemic 
immunosuppression limits the innate defense and adaptive 
immunotherapy effect against the tumor, and thus 
prevents the development of new therapies. The process 
of immunosuppression is not only related to abnormal 
PD-L1 expression in GBM cells, but also to the tumor 
microenvironment.

In one of the most recent studies to elucidate 
immunotherapy resistance mechanisms in GBM, it was seen 
that low PD-L1 expression, low tumor mutation burden and 
T lymphocytes, which are largely depleted in the tumor, are 
indicators of decreased antitumor immunity [21]. 

However, PD-L1 expression levels are observed in 
a highly variable range in GBMs. Although it was seen 
between 61% and 88% in two studies with large patient 
groups, the median percentage of PD-L1 expression on 
tumor cells in the study of Nudom et al. was 2.7% [13–15]. 
Berghof et al. said that the rate of PD-L1-positive cases in 
GBM was quite higher (72% in recurrent; 88% in newly 
diagnosed GBM) than melanoma cases (30%) and nonsmall 
cell lung cancer cases (25%–36%) [13]. In recurrent GBM 
cases with higher mutations and where immunotherapy 
resistance is expected less, we also found PD-L1 expression 
lower than those which are nonrecurrent (44.5% and 51.0%, 
respectively), similar to the studies of Berghof, Heynckes, 
and Ndom [13,14,18].

While low PD-L1 expression levels are associated with 
treatment resistance, some studies have shown that high 
PD-L1 levels are associated with shorter overall survival in 
glioma patients [12,17,29]. On the other hand, in several 
other studies no significant relationship was found between 
PD-L1 expression and survival [12,13,16,30]. In our 
study, no significant difference was found between PD-L1 
expression level and survival.

In tumors with deficient MMR, 10 to 100 times more 
somatic mutations were found compared to those which 
are proficient [21,31]. Microsatellite instability is not 
high in GBM. Patients with MSI are generally young and 
have colorectal cancer at the same time [32]. In a study 
conducted with 30 different tumors, it was stated that the 
neontigen burden in GBM was in the lower third section 
[21,33]. In GBM, mutations in MMR genes are thought to 
be associated with resistance to therapy and thus tumor 
recurrence [8]. Martine et al. observed that the presence 
of MSI was at a significantly higher rate in patients with 
recurrent GBM and stated that this may be associated with 
malignant progression [34]. We have also found the rate 
of MSI significantly higher in recurrent patients than the 
nonrecurrent ones (33.3%, and 8.5% respectively).

GBM specimens containing MSH6 mutations have 
been described as hypermutator phenotypes [35,36]. 
Shinsato et al. found reduced levels of MLH1 and PMS2 
related to therapy resistance and recurrence [37]. We have 
also found a significant elevation in PMS2 loss in all groups 
(Table 2–3). PMS2 loss, which was observed more clearly 
in recurrent cases, suggested that this change might be a 
marker for malignant progression. However, we could not 
find a significant relationship between the loss of PMS2 
neither with survival nor PD-L1 expression.

In one of the studies on the role of the status of MSI 
in predicting immunotherapy response, it was observed 
that colorectal cancers with MMR deficiency had a high 
response to PD-1 inhibitor therapy [30]. In another study, 
the research was expanded and the effectiveness of PD-1 
blockade was evaluated in 12 different tumor types with 
MMR deficiency at an advanced stage and it was seen that 
21% of the patients had a complete response and 53% of 
the patients had an an objective radiological response [38]. 
In high-grade urothelial carcinomas, it was shown that 
MMR deficiency (loss of MSH2 and MSH6) is associated 
with increased PD-L1 expression [8,39]. PD-L1 and PD-L1 
expressions were found high in colorectal and endometrial 
cancers with microsatellite instability (MSI) [8,40]. 

In conclusion, MMR status is suggested as a marker for 
response to PD-1/PD-L1 blockade in other cancer types. 
However, we found that PD-L1 expression was low and 
MSI rate was higher in recurrent GBM than nonrecurrent 
cases and we could not find a significant relationship 
between these two entities. The presence of higher 
MSI in the patients with recurrent GBM in this study 
indicates the importance of these proteins as a predictive 
markers. However, low PD-L1 expression levels suggest 
that this antibody may not be a good predictive marker 
for determining the group of patients who will receive 
immunotherapy.

In recent years, an increasing number of clinical 
trials are available to try different combinations in GBM 
treatment. We also think that different combinations with 
other immune checkpoint proteins can be tried in GBM 
patients to determine both prognostic and therapeutic 
efficacy.

The limitation of our study was that the clinical data 
about treatment modalities are incomplete and, therefore, 
were not included in the article. 
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