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1. Introduction
Parkinson’s disease (PD) is the second most common 
neurodegenerative disorder after Alzheimer’s disease 
(AD), and it is distinguished by classic cardinal motor 
symptoms such as tremor, rigidity, and bradykinesia [1]. 

PD affects about 1% of people over the age of 60 [2]. 
Nonmotor symptoms of PD include depression, anxiety, 
emotional and cognitive disabilities [3]. Dementia, 
working memory, and learning deficits are examples of 
cognitive dysfunctions [4]. In the early stages of PD, a 
mean of 26.7% (range, 18.9%–38.2%) of patients have mild 
cognitive impairment and 20 years after the diagnosis of 
PD, 80% of these patients have dementia [5,6]. Depression, 
which is considered a risk factor for cognitive dysfunction 
in Parkinson’s disease, has a clinical significance of 
approximately 40% in patients with early PD [7].

In PD, neurodegeneration is observed in the 
hippocampus, entorhinal and prefrontal cortex, as well 

as substantia nigra (SN) [8]. Changes in neurotransmitter 
systems such as gamma-aminobutyric acid (GABA) and 
glutamate have been linked to the symptoms (cognitive 
impairment and depression) occurred in PD [9–11]. 

The neurotoxin methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP), which selectively damages 
dopaminergic cells in the substantia nigra pars compacta 
(SNpc), is widely used to induce PD models in mice and 
rats [12]. In a previous study, it was observed that MPTP 
causes impairments in associative memory and elements 
of affective behavior [13]. MPTP also has an impact on 
the glutaminergic system and the other neurotransmitter 
systems [14].

Neuropeptide-S (NPS) is a 20 amino acids peptide 
neurotransmitter present in the central nervous system 
(CNS) of vertebrates such as primates, rodents, birds, and 
amphibians [15–17]. NPS precursor protein has a similar 
sequence with other sequences including Neuromedin 
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U (NMU) and Neuromedin S (NMS) [18]. The NPS 
precursor mRNA and Neuropeptide-S receptor (NPSR) 
mRNA are highly expressed in locus coeruleus (LC), 
lateral parabrachial nucleus, hypothalamus, thalamus, 
cortex, and amygdala [15,17]. NPSR couples to Gs and 
Gq proteins and potently increases intracellular calcium 
levels and cyclic adenosine monophosphate (cAMP) 
accumulation [15,19]. As a result, this receptor may have 
an excitatory effect [20]. 

NPS has an anxiolytic-like effect and is critical in 
controlling arousal which is expressed in a neuronal cluster 
of cells in the LC [15]. Furthermore, NPS administration 
elevates locomotor activity while decreasing paradoxical 
(REM) sleep, slow-wave sleep and anxiety-related 
behaviors [15] as well as food consumption and fear [21–
23].

NPS contributes to learning, spatial and contextual 
memories by mediating glutamatergic neurotransmission 
enhancement [24]. Zhao et al. found that NPS treatment 
reversed cognitive deficits in a mouse model of AD by 
upregulating the levels of postsynaptic density protein 95 
(PSD95) and synapsin 1 in hippocampal CA1 neurons 
[25]. 

To our knowledge, no research has been conducted 
into the impact of NPS on cognitive disorders and 
depression in PD. Therefore, the aim of this study was 
to examine into the impact of NPS administration on 
working memory and depression-like behaviors in MPTP 
induced Parkinsonian mice. The second goal of our study 
was to investigate and explain the function of glutamate, 
glutamine, and dopamine in the impairment of working 
memory in PD. 

2. Materials and methods 
2.1. Animals
In this study, three-month-old male C57Bl/6 mice 
(25–30 g) were used. The animals were purchased from 
the Akdeniz University Research Unit and were kept 
in a standard laboratory setting with a temperature of 
22 ± 2 °C and a 12-h light-dark cycle. They were given 
unlimited amounts of food and water. The current study’s 
experimental protocols were specifically approved by 

the Institutional Animal Care and Use Committee at 
Akdeniz University Medical School in Antalya, Turkey 
(B.30.2.AKD.0.05.07.00/103).
2.2. Experimental design 
The central NPS injection was applied through 
intracerebroventricular (icv) cannula implanted 
chronically. Mice were randomly divided into three groups: 

(i) Control group (received intraperitoneal (i.p.) 
injection of saline, 0.9% NaCl solution), 

(ii) MPTP group (received intraperitoneal (i.p.) 
injection of MPTP and intracerebroventricular (icv) 
injection of saline),

(iii) MPTP-injected + NPS treated (received 
intraperitoneal (i.p.) injection of MPTP and 
intracerebroventricular (icv) injection of NPS, 0.1 nmol 
for 7 days, dissolved in 0.9% NaCl solution). 

To create the PD model, MPTP was administered 
4 times (2 times every day for two days, 4 × 20 mg/kg 
MPTP) (M0896, Sigma, St. Louis, MO), and the control 
group received saline with a 12-h interinjection period for 
two days [26]. 

Mice were habituated to the laboratory and implanted 
with a cannula in the lateral ventricle. After recovery period, 
MPTP was administrated for two days and chronic NPS 
injection (0.1 nmol) was applied for seven days. The radial 
arm maze test was carried out for four days. At the end 
of the NPS injection, the pole test and sucrose preference 
test were performed on day 0. Animals were euthanized 
and brain samples were collected for biochemical analysis. 
Figure 1 showed details of the experimental procedure. 
2.3. Icv cannulation
For the icv injections, the cannula was inserted into the right 
lateral ventricle (–0.5 mm AP; 1,4 mm ML; 4 mm DV from 
the bregma). It was fixed by cement and a dummy cannula 
was placed into the guide cannula to prevent material 
from entering. To verify that the cannula was located in 
the correct coordinates, 150 ng human angiotensin-II was 
administered by icv injection and allowed to access the 
water. The amount of water consumed by the mice was 
recorded [27]. Animals that did not consume water within 
120 s were eliminated from experimental procotols. 
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Figure 1. Experimental design. RAM: Radial arm maze, SPT: Sucrose preference test, NPS: Neuropeptide-S.
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2.4. Behavioral test
2.4.1. Pole test
We performed the pole test on the seventh day after the last 
MPTP injection to assess bradykinesia in the experimental 
groups. Mice were placed on the top of a pole (diameter 
8 mm, height 50 cm, with a rough surface) and allowed 
to freely explore the pole before falling to the ground 
(pretrial). After the animals were habituated to the test 
system, the time it took the mice to completely turn down 
(T-turn) and descend to the floor (time to descend) was 
recorded (real trial) [28]. 
2.4.2. Radial arm maze (RAM)
To measure spatial learning and memory, the radial 
arm maze (RAM) task was used in mice. The RAM tool 
consisted of eight arms which have a food region at the end 
of the arm. The numerous visual objects were fixed on the 
wall of the maze to orientate itself. Mice were familiarized 
by exploring the maze for 5 min per day for 3 days. On 
the first day of habituation, mice were allowed to access 
food (5 mg chocolate pellet for mice) from all arms before 
being gradually restrained. Following habituation, each 
trial was applied twice per day for 4 days. Arms 2, 3, 5, 
and 7 were consistently baited with one food pellet during 
each trial, whereas arms 1, 4, 6, and 8 were never baited 
with food. Each animal was placed in the center of the 
maze during each trial and testing day, and the working 
and reference memory tasks were assessed [29]. The maze 
was thoroughly cleaned and dried before each trial with 
70% ethanol. 

Three parameters were measured by a video tracking 
system (Noldus EthoVision XT) in RAM; (i) the number 
of reference memory errors (RME) (visits to unbaited 
arms), (ii) the number of working memory errors (WME) 
(visits to arms already visited in the same trial), and (iii) 
the accuracy index (number of first entries into the baited 
arms/total entries into all arms). Reference memory 
is associated with long-term memory for information 
that stays consistent through repeated trials (memory 
for the positions of unbaited arms), while working 
memory is correlated with short-time memory, in which 
the information to be recalled changes with each trial 
(memory for the positions of arms that had already been 
visited in each trial).
2.4.3. Sucrose preference test (SPT)
Mice were given access to both water and a sucrose 
solution and their preference for the sucrose solution was 
quantified [30]. Briefly, the mice were exposed to a 1% 
sucrose solution for 24 h. After habituation, the water and 
sucrose bottles were then reintroduced to the mice for 24 
h. Before and after the test, the bottles were weighed. The 
total drinking was calculated as the sum of the water and 
sucrose bottle consumptions. The sucrose preference was 

expressed as a percentage of total liquid consumption of 
sucrose.

After the behavioral tests were completed on the 
seventh day, the mice were sacrificed, and hippocampal 
samples were collected for mass spectrometry and SN 
tissues were taken for western blot analysis.
2.5. Protein measurements
A modified Bradford assay with Coomassie Plus reagent 
was used to determine protein concentration at 595 nm 
(Pierce Chemical Company) [31].
2.6. Western blot analysis
Proteins were extracted from SN tissues with lysis buffer 
(0.1 M Tris at pH 7.4, 100 × Na-orthovanadate, pH 7.4) 
supplemented with a protease inhibitor cocktail (P2714; 
Sigma-Aldrich). The same amount of proteins from each 
sample were separated on a 10% SDS-PAGE gel, transferred 
to a nitrocellulose membrane (HATF00010; Millipore) at 
4 °C overnight blotting, and hybridized with the primary 
antibodies tyrosine hydroxylase (TH) (1:1000 dilution; 
AB113, Abcam, Cambridge, MA, USA) and β-actin 
(1:1000 dilution; ab16039, Abcam, Cambridge, MA, USA). 
The membranes were then incubated for 1 h at room 
temperature with horseradish peroxidase-conjugated 
secondary antibodies. According to the manufacturer’s 
instructions, an ECL system (RPN2232; Amersham 
Biosciences, Buckinghamshire, United Kingdom) was 
used to detect antibody-bound proteins, which were then 
analyzed using ImageJ, 1.37v software.
2.7. Quantification of dopamine, glutamine and glutamic 
acid
2.7.1. Sample preparation
The hippocampal tissues were homogenized in a 20-fold 
volume of a formic acid solution (0.1 M). Homogenates 
were centrifuged at 18,000 × g for 20 min at 4 °C. The 
supernatants were collected and kept at  – 80 °C until 
analysis.
2.7.2. Mass spectrometry
The dopamine, glutamine, and glutamic acid standards 
were provided by Sigma-Aldrich (St. Louis, MO, USA). As 
previously described, a ultra-fast liquid chromatography 
(UFLC) combined with mass spectrometry (MS/MS, 
LCMS-8040, Shimadzu Corporation, Japan) was used 
[32]. Gradient elution with a flow rate of 0.4 mL/min was 
used to detect dopamine, glutamine, and glutamic acid. 
Mobile phase solvent A was water containing 0.1% formic 
acid and 1% acetonitrile, while solvent B was acetonitrile 
containing 0.1% formic acid. In positive electrospray 
ionization (ESI), multiple reaction monitoring (MRM) 
transitions and responses were automatically optimized 
for dopamine, glutamine, and glutamic acid. Dopamine, 
glutamine, and glutamic acid responses were optimized 
to a linear calibration range of 50 to 1000 ng/mL and a 
sample analysis time of 4 min [33].
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2.8. Statistical analysis
The data was presented as the mean ± SEM, and statistical 
analyses were carried out with the GraphPad Prism 
software. For the suit with normal distribution, the 
differences in the pole test, SPT, and mass spectrometry 
were analyzed using ANOVA followed by Tukey’s posthoc 
test; the differences in the Western blot were analyzed using 
Kruskal–Wallis followed by the Mann–Whitney U test. 
Two-way ANOVA (repeated measure) was used to analyze 
the RME and WME in RAM, followed by Bonferroni 
correction. The corresponding p values are shown in 
the figure legends. The asterisk sign denotes statistical 
significance between the control and MPTP groups, while 
the # pound sign indicates statistical significance between 
the MPTP and MPTP plus NPS groups. 

3. Results
3.1. Pole test
Motor deficits were expressed using the pole test to 
investigate the effect of NPS on the behavioral deficits 
caused by MPTP administration. MPTP administration 
induced an increase in the descending time and T-turn 
of mice (p < 0.0001), which was restored by NPS 
treatment (p < 0.0001). These findings suggest that NPS 
has neuroprotective properties against MPTP-induced 
behavioral deficits (Figure 2).

3.2. Radial arm maze
Figure 3 illustrates reference and working memory errors 
in different groups. Our observation reveals that the NPS 
treatment leads in a significant decline in RME when 
compared to the MPTP group. Altogether, when mice 
were injected with MPTP, the number of WME increased 
significantly when compared to controls. As a result of the 
RAM behavior data analysis, NPS treatment has a positive 
effect on the MPTP-induced PD model in learning and 
memory. 
3.3. Sucrose preference test 
When compared to control animals in the SPT, the 
MPTP group showed a decreased preference for sucrose 
(p < 0.05). This effect was significantly reversed by NPS 
treatment (p < 0.01) (Figure 4). 
3.4. Western blot
On day 7, there was an increase in the expression of tyrosine 
hydroxylase (TH) in the SN tissues. MPTP administration 
caused dopaminergic neuronal death in the SN, but NPS 
administration suppressed it (p < 0.05) (Figure 5). 
3.5. Quantitative mass spectrometric measurements 
dopamine, glutamine and glutamic acid
After mice were sacrificed and hippocampal samples were 
obtained, mass spectrometry was used to determine the 
levels of dopamine, glutamine, and glutamic acid. MPTP 
caused a remarkable decrease in the levels of dopamine, 
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glutamine and glutamic acid in hippocampal tissues. When 
compared to the MPTP animals, NPS treatment resulted 
in a significant increase in glutamine and glutamic acid 
levels, but not in dopamine level (Figure 6).

4. Discussion
As an important endogenous neuropeptide, NPS has been 
indicated to play an effective role in working memory and 
depression in a mouse model of MPTP-induced PD. The 
current study demonstrated that NPS treatment improved 
the working memory and reduced the depression-like 
behaviors as measured by RAM and SPT, respectively. 
Western blot and mass spectrometry techniques were used 
to support these findings.

Although a variety of neurotoxins, including 
6-hydroxydopamine (6-OHDA), paraquat, maneb, and 

rotenone, are used to mimic the pathological features of 
PD, MPTP is one of the best models that is most similar to 
human PD [34]. MPTP is oxidized to MPP+, which alters 
the permeability of the mitochondrial inner membrane, 
inhibits complex I of the mitochondrial electron transport 
chain, and causes ATP depletion in dopaminergic neurons 
[35]. The C57BL/6 mouse strain is more vulnerable 
to systemic MPTP than other mouse strains [36]. We 
preferred to inject MPTP (i.p.) at a dose of 4 × 20 mg/kg 
every 12 h for 2 days [26]. The primary reason for selecting 
this dose and method of administration is to reduce the 
mortality of mice.

Bradykinesia, which is the common symptom and 
indicator of motor activity in PD, was assessed using a pole 
test in the current study. According to the findings, MPTP 
injection increased the descending time and T-turn. 
However, 0.1 nmol NPS administered centrally has been 
shown to reduce the severity of bradykinesia. Okamura 
and colleagues discovered that NPS (icv) treatment 
reduced inactivity in a dose-dependent manner [37]. 
Furthermore, in our recent study, we have reported that 
administration of NPS restored the locomotor activity in 
6-OHDA induced PD model of rats [33]. These findings 
explain why central NPS treatment reverses behavioral 
deficits. 

The marker in the identification of dopaminergic 
neurons is TH, the rate-limiting enzyme in dopamine 
synthesis, which is known to be diminished in PD and in 
PD animal models [38, 39]. In our study, in the SN, TH 
expression levels were noticeably reduced in the MPTP 
group relative to the control group while NPS treatment 
attenuated the decrease in TH. 

In a study conducted by Zhu et al., the levels of DA 
and 3,4-dihydroxyphenylacetic acid (DOPAC) in the 
hippocampal tissues were found to be significantly lower 
in the MPTP-intoxicated PD group [40]. In line with Zhu 
et al.’s findings, in our study, the levels of dopamine in the 
hippocampal tissue reduced with MPTP injection; whereas, 
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chronic NPS administration caused an increase but did not 
reach a significant level. MPTP administration increases 
glutamate efflux in the brain and causes hyperactivity of 
the glutamatergic system. When glutamate and glycine 
bind to N-methyl-d-aspartate (NMDA) receptors, they 
open the channel and cause calcium influx, resulting in 
neuronal excitation. Therefore, MPTP administration 
causes neuronal death by increasing glutamate release. In 
chronic MPTP intoxication, glutamatergic transmission 
shifts from hyper- to hypoactivity [10]. Although no 

changes in glutamate and glutamine levels have been 
observed in PD [5, 11], one study found that they differed 
between PD and control patients [9]. In this study, the 
MPTP administration caused a remarkable decrease in 
glutamate and glutamine levels. The NPS induced increases 
in glutamate and glutamine levels were observed but 
only glutamine levels showed a significant improvement. 
However, NPS-mediated augmentation of glutamatergic 
neurotransmission in the amygdala was observed in two 
previous studies [41, 42].

Ex
pr

es
si

on
of

TH
(T

H
/β

-a
ct

in
)

Contr
ol

MPTP

MPTP+NPS 0.1
nm

ol
0

50

100

150

200
p < 0.005

p < 0.02 TH

β-actin

Contr
ol

MPTP

MPTP+NPS 0.1
nm

ol
0

5

10

15

D
op

am
in

e
(n

g/
m

g
pr

ot
ei

n) p<0.01

Contr
ol

MPTP

MPTP+NPS 0.1
nm

ol
0

100

200

300

400

500

G
lu

ta
m

ic
A

ci
d

(u
g/

m
g

pr
ot

ei
n)

p<0.01

p<0.05

Contr
ol

MPTP

MPTP+NPS 0.1
nm

ol
0

500

1000

1500
G

lu
ta

m
in

e
(u

g/
m

g
pr

ot
ei

n)
p<0.05

p<0.05

a) b) c)

Figure 5. The expression of TH. All data are shown as the means ± standard error mean (n = 
6 in each group).  

Figure 6. The effect of central NPS treatments on the dopamine, glutamine and glutamic acid 
concentrations in hippocampal tissues.  (a) Dopamine (n = 6), (b) Glutamic acid (n = 6), (c) Glutamine 
(n = 5).  One-way ANOVA followed by Tukey posthoc was used to test the effect of NPS treatments.
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According to our knowledge, SN is the most affected 
region in PD. Dopaminergic projections are sent to the 
hippocampus by the SN and the ventral tegmental area 
(VTA) [43]. On the other hand, cognitive disorders such as 
attention, spatial memory, and learning are observed in PD 
patients and animal models [44]. The robust impairment 
of habit learning and spatial working memory were 
observed in the MPTP model of rats [45,46]. MPTP causes 
dopaminergic neurodegeneration and neuroinflammation 
in the hippocampus. Neuroinflammation, characterized by 
microglial activation and cell loss in the hippocampus, leads 
to cognitive dysfunction associated with dopaminergic 
degeneration [47]. Cognitive deficits in MPTP-treated 
mice were associated with decreased autophosphorylation 
of calcium/calmodulin-dependent protein kinase II 
(CAMKII) in the hippocampus [48]. RAM is commonly 
used to determine cognitive function in rodents [49]. Our 
RAM results revealed a significant difference in reference 
memory errors on the third day between the control and the 
MPTP group. While in the MPTP group, WME increased 
significantly on the second, third, and fourth days. Previous 
studies have shown that intranasal MPTP administration 
led to significant working memory impairments [50, 51]. 
Thus, these memory deficits observed in PD patients are 
largely the result of a learning deficit [52]. The underlying 
mechanism of cognitive disorders is the alteration of 
synaptic plasticity as a result of altered hippocampal LTP. 
However, LTP is a cellular indicator of synaptic plasticity, 
learning, and memory. LTP and LTD, two forms of synaptic 
plasticity, are modulated by endogenous dopamine 
[53]. Moreover, the decrease of NR2A/NR2B subunit 
ratio in synaptic N-methyl-D-aspartic acid receptors 
affects hippocampal LTP [54]. Working memory, which 
is assessed by RAM, is impaired in PD, and this deficit 
damages the synaptic integrity of the hippocampus [55]. 
However, disruptions in other neurotransmitter systems 
beyond the dopamine underlie some non-motor symptoms 
of PD [56]. Crabbe and colleagues have reported that the 
levels of dopamine, serotonin and glutamine were altered 
in experimental PD [14]. Similarly, our present findings 
confirm that, when compared to control animals, MPTP 
significantly decreased glutamate and glutamine levels. 

On the third and fourth days, NPS treatment 
significantly reduced RME. Besides, there was a statistically 

significant difference in the number of WME between 
MPTP and the MPTP + NPS 0.1 nmol groups on all days. 
As a result, both parameters were found to be decreasing 
with chronic NPS administration. NPS plays an important 
role in the recall and consolidation of various types of 
memory, which induces memory enhancement. Retention 
of recognition memory was significantly prolonged by 
NPS [23]. NPS also stimulates glutamatergic synaptic 
neurotransmission [20]. Therefore, all of these findings 
explain how NPS affects behavioral parameters.

The SPT is used to assess the depression-like behaviors 
[30]. The depressive-like behavior in animal models of PD, 
observed in the SPT, was correlated with a reduction in 
striatal dopamine and hippocampal serotonin content. 
In this way, the dopaminergic deficit may be linked to 
this behavior [57, 58]. These noradrenergic, serotonergic 
and dopaminergic changes in the striatal system lead 
to depression-like behavior in PD [59]. In this study, 
compared to controls, dopamine level was reduced 
significantly in mice injected with MPTP. MPTP induced 
reduction in the sucrose preference ratio was increased in 
mice received 0.1 nmol of NPS treatment. Therefore, NPS 
seems to be effective in antidepressant-like behaviors. To 
regulate behavioral parameters, the NPS system interacts 
with other neurotransmitter systems. The anatomical 
distribution of the NPS in the brain determines this 
interplay [37]. As a result, this study demonstrates that NPS 
treatment affects cognitive impairments and depression-
like behaviors in the experimental mouse model of PD. 

5. Conclusion
In conclusion, our findings show that NPS has a protective 
effect in the MPTP-induced Parkinson’s disease mouse 
model. Impairments of cognitive parameters and 
behavioral deficits in Parkinsonian mice were recovered 
by NPS treatment. However, more research is needed to 
determine the protective mechanism involved in the effect 
of NPS on cognitive dysfunction and depression in an 
MPTP-induced mouse model of PD.
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