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1. Introduction 
Although 18 months have been passed since the beginning 
of COVID-19 pandemic, an effective antiviral treatment 
still has yet to be found. The big achievement of finding 
highly effective vaccines was not repeated in the case of 
antiviral treatment. It is obvious that the success of mRNA 
vaccines mainly relies on nearly 30 years’ hard work of 
numerous scientists [1]. Despite warnings of scientists 
and policymakers in the field to be prepared for the next 
pandemic and develop and stockpile drugs that target 
a wide range of viral pathogens since the 2003 SARS 
epidemic, pharmaceutical companies, and researchers 
ignored the warns. 

After the SARS outbreak was taken under control, all 
of the antiviral studies terminated. If those researches had 
1Economic Times. Anti-Covid tablets by 2021 end? Fauci says US to spend $3.2bn for COVID antiviral pills. Website https://economictimes.indiatimes.
com/news/international/world-news/anti-covid-tablets-by-2021-end-fauci-says-us-to-spend-3-2bn-for-covid-antiviral-pills/videoshow/83627082.cms 
[accessed 19 June 2021].

been completed, we would have had something in the 
stockpile for the treatment of COVID-19 now [2]. But with 
the help of new huge investments, it is hoped that effective 
antivirals could be found by the end of 20211. 

Early efforts to identify effective antiviral for COVID-19 
have mainly focused on drug repurposing screens to 
identify drugs with antiviral activity against SARS-CoV-2 
in cell cultures.  But the cell types in the cultures were 
not always appropriate to predict the physiological and 
pathological events in the human cells. For example, a 
deeper understanding of the viral entry pathways revealed 
that agents affect only endosomal pathways but not 
fusional ones, for example hydroxychloroquine would be 
ineffective for the treatment of COVID-19. In addition to 
understanding the viral entry pathways of SARS-CoV-2 to 
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different cell types, consideration also should be given to 
the degree of nucleotide prodrug activation observed in 
the in vitro screening cell types [3]. 

The majority of COVID-19 patients will recover 
without any therapy. However, initiating therapy after 
patients are severely ill could not be effective as it is known 
that antiviral therapy is mostly useful when initiated 
earlier during the course of the disease. It is logical to start 
antiviral treatment immediately for COVID-19 patients 
especially in whom at high risk of severe disease [4]. 

In this review, we aimed to summarize the current 
knowledge on the antiviral treatment of COVID-19. 
Investigated antivirals for SARS-CoV-2 can be divided 
into 2 groups: agents that target proteins or RNA of 
the virus; S protein, viral proteases (nonstructural 
protein (NSP)-3 and NSP-5), viral RNA dependent 
RNA polymerase (NSP-12) are the main viral targets. 
Agents that target host proteins are host proteases, which 
can help entry of the virus into the cell (Angiotensin 
converting enzyme-2 (ACE-2), transmembrane protease 
serine 2 (TMPRSS2), furin, catepsin-L), heparin 
sulfate proteogylicans (HSPGs) that promote the 
viral cell attachment, eukaryotic translation proteins  
(translation initiation factor 4A (eIF4A), translation 
elongation factor 1a (eEF1A), endosplasmic reticulum 
chaperon protein (S1R, etc.)), transcription machineries 
(inosine monophospate dehydrogenase, dihydroorarate 

dehydrogenase, etc.), and host nuclear importer of viral 
proteins ( IMPα/β1) [2] (Figure).

Those are the drug groups that either laboratory or 
clinical studies are going to find as an effective antiviral 
against SARS-CoV-2:

1) Inhibitors of viral entry into the human cell: 
a. Inhibitors of S protein: Convalescent plasma, 

monoclonal antibodies, nano bodies, miniproteins, human 
soluble ACE-2.

b. Inhibitors of fusional entry:
i. TMPRSS2 inhibitors (camostat, nafamostat, 

gabexat, dutasteride, proxalutamide, bromhexin, 
nitazoxanid, niclosamide),

c. Inhibitors of endosomal entry: Catepsin L 
inhibitors (teicoplanin, SSAA09E1, K1777); furin 
inhibitors (dec-RVKR-cmk), NIP1 inhibitors (EG00229), 
hydroxychloroquine, nitazoxanide, niclozamide, 
umifenovir,

d. HSPG inhibitors (lactoferrin).  
2) Inhibitors of viral proteases: inhibitors of viral 

main protease (Mpro) (lopinavir/ritonavir, PF-07321332, 
PF-07304814, GC376); inhibitors of viral papain-like 
protease (PL pro).  

3) Inhibitors of viral RNA: inhibitors of RNA 
dependent RNA polymerase (RdRp) (remdesivir, 
favipiravir, molnupiravir, AT-527), inhibitors of host 
proteins supporting viral RNA synthesis (inhibitor of 

ERGIC

X
X X

X

X

X

X

X

X

X

X

X

Genomic replication

Subgenomic replication

Nucleus

Nucleocapsid

Spike

Membrane

Envelope

SARS-CoV-2

Host cell cytoplasmTMPRRS2NRP1 ACE2HSPG

Endosome

Translation

Ribosome

Mpropp1a/pp1ab

RTC including RdRp

E n d o p l a sm i c  Re t i c u l um

CatepsinL

X

X
X

X

Imp
Imp

X

Furin

1.Entry inhibitors
Spike inhibitors
Nanobodies

Spike Inhibitors 
Soluble ACE2
ACE2 Decoys

Spike Inhibitors
Monoclonal Antibodies, 
Convalescent Plasma 

Spike inhibitors
Miniproteins

HSPG 
Inhibitors
Lactoferrin

Endosome inhibitors: 
Hydroxychloroquine, 
Umifenovir, Nitazoxanide, 
Niclosamide, Catepsin-L 
inhibitors

TMPRS2 inhibitors
Camostat, Dutasteride,
Proxalutamide,
Bromexin Furin inhibitors

2. Viral Mpro protease inhibitors: 
Lopinavir/ritonavir PF-07321332, 
PF-07304814 , GC376

3a. RdRp inhibitors: 
Remdesivir, Favipiravir, Molnupiravir, 

AT-527

3b.Inhibitors of host proteins 
supporting viral RNA synthesis 
Merimepodib, PTC299

4a. Inhibitors of host’s 
eEF1A: Plitidepsin

3c. Cas13a

5. Inhibitors of viral
immunmodulation:
Imp𝛂𝛂𝛂𝛂/Imp𝛃𝛃𝛃𝛃1 inhibitor ivermectin

eEF1A

𝛂𝛂𝛂𝛂
𝛃𝛃𝛃𝛃1

X

X

4b. Hosts’ S1R agonist
Fluvoxamine X S1R

Figure. Drugs targeting various stages of life cycle of SARS-CoV-2. 



ŞİMŞEK YAVUZ and KOMŞUOĞLU ÇELİKYURT / Turk J Med Sci

3374

inosine monophospate dehydrogenase (merimepodib), 
inhibitor of dihydroorarate dehydrogenase (PTC299). 

4) Inhibitors of host proteins supporting viral 
protein synthesis: inhibitors of eEF1A (plitidepsin); S1R 
agonists (fluvoxamin).

5) Inhibitors of viral immunomodulation: Inhibitors 
of host importin α/β (ivermectin).

6) Agents supporting host natural immunity: 
interferons. 

2. Inhibitors of virus entry into the human cell  
The attachment and entry of SARS-COV-2 into the human 
cells is the first step in the COVID-19 pathogenesis. 
SARS-CoV-2 enters the host cells by binding its spike (S) 
protein to the cellular ACE2. In recent studies, cell surface 
HSPGs were reported to be a necessary cofactor for ACE2 
mediated SARS-CoV-2 entry [5,6]. The virion enters 
through endocytosis and/or direct fusion of cell and viral 
membranes. The SARS-CoV-2 spike (S) glycoprotein is a 
transmembrane homotrimer. The S protein is cleaved by 
various cellular proteases (e.g., TMPRSS2, furin, catepsin 
L, etc) into two subunits, S1 and S2, which is named as 
priming process, and S2 functions as fusion peptide [7]. 
As the entry of SARS-CoV-2 into host cells is critical for 
infection, it becomes an extremely attractive therapeutic 
interventional step [8].  
Viral entry inhibitors target either S protein (convalescent 
plasma, monoclonal antibodies, nanobodies, miniproteins 
and soluble human ACE-2) or host ACE-2 receptor, or 
host proteins including proteases and HSPGs that help 
viral entry (Figure).  
2.1. Inhibitors of S protein
2.1.1. Convalescent plasma 
Given the lack of effective treatment of COVID-19, 
classical interventions like convalescent plasma (CP) have 
remerged as treatment options. CP is a strategy of passive 
immunization and has been used in prevention and 
treatment of so many infectious diseases since early 20th 
century. The CP is obtained using apheresis in survivors 
with prior COVID-19 in whom neutralizan antibodies 
(NAbs) against the SARS-CoV-2 are developed. The 
efficacy of this therapy has been shown to be associated 
with the concentration of NAbs directed to the receptor-
binding domain (S1-RBD) and N-terminal domains (S1-
NTD) of S protein. Those NAbs inhibit the entry of SARS-
CoV-2 into the host cell and limit viral amplification [9].  

Several retrospective observational studies in 2020 
suggested a beneficial role of CP for patients hospitalized 
with severe COVID-19, and these initial reports led to 
Emergency Use Authorization (EUA) of CP all over the 
2 Investor/Lilly. Lilly’s bamlanivimab and etesevimab together reduced hospitalizations and death in Phase 3 trial for early COVID-19 Website https://
investor.lilly.com/news-releases/news-release-details/lillys-bamlanivimab-and-etesevimab-together-reduced  [accessed 16 June 2021].
3 Gupta A, Gonzalez-Rojas Y, Juarez E, Casal MC, Moya J, at al. Covid-19 Treatment With SARS-CoV-2 Neutralizing Antibody Sotrovimab. medRxiv 
preprint 2021;  doi: https://doi.org/10.1101/2021.05.27.21257096[accessed 16 June 2021].

World [10, 11]. But following randomized controlled trials 
(RCT)s did not confirm the positive findings of those 
preliminary observational studies [12].  

In a metaanalysis of randomized clinical trials (1060 
patients) with COVID-19 treated with CP versus control, 
it was concluded that treatment with CP compared with 
placebo or standard of care was not significantly associated 
with a decrease in all-cause mortality or with any benefit 
for other clinical outcomes [13].  

But in a recent randomized, double-blinded, placebo-
controlled trial of 160 older adult patients within 72 
h after the onset of mild COVID-19 symptoms, early 
administration of high-titer CP against SARS-CoV-2 
reduced the progression of COVID-19 significantly by a 
relative risk of 0.52 (95% confidence interval [CI], 0.29 to 
0.94; p = 0.03) [14].   

Also, in a retrospective study of 3082 patients 
hospitalized with COVID-19, transfusion of plasma 
with higher anti–SARS-CoV-2 IgG antibody levels were 
associated with a lower risk of death than transfusion of 
plasma with lower antibody levels with a relative risk of 
0.66 (95% CI, 0.48 to 0.91) among patients who had not 
received mechanical ventilation before transfusion [15].   

These studies suggested that CP against COVID-19 
work better when administered early (first 72 h of 
symptoms, etc.) in the course of the illness and a dose-
dependent IgG effect in CP infusions. Taking into account 
of extremely higher NABs titers among mRNA immunized 
persons [16], it will be quite possible that CP of those 
people could contribute to building a cheap and effective 
therapeutic option in the future with the help of additional 
RCTs.  

In conclusion, high-titer CP given within 72 h of 
symptom onset to high-risk adult outpatients (including 
≥65 years, obesity, with comorbidities diabetes mellitus, 
hypertension, chronic obstructive lung disease, 
cardiovascular disease, chronic renal failure) with mild 
illness seems to have efficacy in reducing the risk of 
progression to severe disease. However, high-titer CP 
therapy is still investigational and should be administered 
in the context of a clinical trial if possible. 
2.1.2. Monoclonal antibodies
In the case of SARS-CoV-2, S glycoprotein is the target of 
neutralizing antibodies [17]. 

In RCTs, bamlanivimab, bamlanivimab-etesevimab, 
casirivimab-imdevimab, and sotrovimab (VIR-7831) 
reduced the rate of hospitalization plus dead (visit to an 
emergency department for bamlanivimab) by 61%, 87%, 
72%, and 86%, respectively [18,19]2,3 among outpatients. 
In the global phase 2/3 trial of regdenvimab, it was reduced 

https://investor.lilly.com/news-releases/news-release-details/lillys-bamlanivimab-and-etesevimab-together-reduced
https://investor.lilly.com/news-releases/news-release-details/lillys-bamlanivimab-and-etesevimab-together-reduced
https://doi.org/10.1101/2021.05.27.21257096


ŞİMŞEK YAVUZ and KOMŞUOĞLU ÇELİKYURT / Turk J Med Sci

3375

the progression rate to severe COVID-19 by 54% for 
patients with mild-to-moderate symptoms [17]. But, in an 
interim analysis of an RCT, bamlivimab was found to be 
ineffective among hospitalized patients with COVID-19, 
and the study was stopped early for futility [20]. 

In the RECOVERY’s monoclonal antibody 
combination of casirivimab and imdevimab (REGEN-
COV) trial, 9785 patients hospitalised with COVID-19 
were randomly given usual care plus REGEN-COV or 
usual care alone, including 3153 (32%) seronegative and 
5272 (54%) seropositive patients. They found that, in 
patients hospitalised with COVID-19, the monoclonal 
antibody REGEN-COV combination reduced 28-day 
mortality among patients who were seronegative at 
baseline (rate ratio 0.80; 95% CI 0.70–0.91; 43 p = 0·0010)4.

Several mAbs received EUAs all over the world 
including, USA, Europe, South Korea, and India. As no 
dose response was observed in most of those clinical 
trials, it was thought that mAbs likely overdosed. Lower 
doses could be administered by more easy routes such 
as intramuscular or subcutaneous, and the shift to these 
different routes is underway and will possibly contribute to 
facilitated and larger access to these mAb [17]. In a RCT, 
subcutaneous (SC) REGEN-COV 1200mg was compared 
with placebo in SARS-CoV-2-positive cases.  REGEN-
COV 1200mg SC significantly prevented progression from 
asymptomatic to symptomatic disease compared with 
placebo (31.5% relative risk reduction; 29/100 (29.0%) 
versus 44/104 (42.3%), respectively; p = 0.0380)5. 

After getting encouraging results from the RCTs, 
COVID-19 treatment guidelines recommended 
bamlanivimab/etesevimab or casirivimab/imdevimab for 
ambulatory patients with mild to moderate COVID-19 
(not requiring supplemental oxygen) and at high risk 
for progression to severe disease. These risk factors 
include older age (≥65 years), obesity, pregnancy, chronic 
kidney disease, diabetes mellitus, immunosuppression, 
cardiovascular diseases, chronic lung disease, neurological 
development disorders, sickle cell disease, and other 
medically complex conditions6. 

As evidence from CP treatment show that benefit is 
maximized with early administration, mABs treatment 
should be given as soon as possible after the diagnosis and 
within seven days of symptom onset. 

All mAbs authorized or in development are directed 
to the RBD, which interacts with the target receptor ACE2 
4 RECOVERY Collaborative Group. Casirivimab and imdevimab in patients admitted to 4 hospital with COVID-19 (RECOVERY): a randomised, 
controlled, open-label, platform trial. medRxiv preprint 2021;  doi: https://doi.org/10.1101/2021.06.15.21258542. [accessed 16 June 2021].
5 O’Brien MP, Forleo-Neto E, Sarkar E,  Isa F, Hou P, et al. Subcutaneous REGEN-COV Antibody Combination in Early SARS-CoV-2 Infection. medRxiv 
preprint 2021; doi: https://doi.org/10.1101/2021.06.14.21258569. [accessed 16 June 2021].
6 Bhimraj A, Morgan RL, Shumaker AH, Lavergne V, Baden L, et al. Infectious Diseases Society of America Guidelines on the Treatment and Management 
of Patients with COVID-19. Infectious Diseases Society of America 2021; Version 4.3.0. Website https://www.idsociety.org/practice-guideline/covid-19-
guideline-treatment-and-management/. [accessed 16 June 2021]

and, as a result, could be susceptible to mutation of viral 
RBD. Immune-evading SARS-CoV-2 variants have been 
emerging from the beginning of the pandemic and may 
potentially continue to emerge with implications for mAb 
therapeutics. As a result, it is recommended that local 
variant susceptibility should be considered in the choice 
of the most appropriate neutralizing antibody therapy. In 
April 2021, Eli Lilly requested revocation of the EUA for 
bamlanivimab, because of an increase in variants resistant 
to bamlanivimab monotherapy. In any case, emergence of 
resistance to mAbs should be monitored for all variants 
[17]. Both high-titer CP and mAbs may be more important 
and efficient for subgroup of immunocompromised 
patients with B-cell depletion.
2.1.3. Nanobodies
The camelid family, which includes lamas and camels, 
produces only heavy chain antibodies that are composed 
of two heavy chains. Nbs have the ability to function as 
an independent antigen-binding domain with similar 
affinity as a conventional IgG. Nbs have been successfully 
humanized without significant alteration of biophysical 
properties. Caplacizumab, the first-in-class nanobody 
was approved recently for the treatment of thrombotic 
thrombocytopenic purpura [21], which boosters the 
therapeutic potential of Nb derivatives. Nbs that bind to 
the SARS-CoV-2 RBD and block the ACE2 interaction 
could be an attractive therapeutic option for the prevention 
and treatment of COVID-19. Nbs that primarily target 
the RBD of the SARS-CoV-2 S glycoprotein for virus 
neutralization were developed recently [22, 23, 24]. Highly 
selected Nbs and the multivalent forms obtain high 
neutralization potency comparable to, or even better than, 
some of the most successful SARS-CoV-2 neutralizing 
mAbs. One of the aerosolized Nbs is Pittsburgh inhalable 
Nanobody 21 (PIN-21), which efficiently blocked SARS-
CoV-2 infectivity at low doses in vitro [25]. Aerosol and 
intranasal delivery of PIN-21 was also shown to be effective 
to prevent and treat COVID-19 [26]. But before moving 
into human clinical trials, further preclinical analyzes are 
needed. 
2.1.4. Miniproteins 
Miniproteins, each with about 60 amino acids, are 
produced to block protein-protein interactions. Recently, 
miniproteins that can bind tightly to the SARS-COV-2’ 
S protein and block it from attaching to the ACE2 
receptor was described [27]. Potential advantages of these 

https://www.idsociety.org/practice-guideline/covid-19-guideline-treatment-and-management/
https://www.idsociety.org/practice-guideline/covid-19-guideline-treatment-and-management/
https://www.sciencedirect.com/topics/medicine-and-dentistry/immunocompromised-patient
https://www.sciencedirect.com/topics/medicine-and-dentistry/immunocompromised-patient
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miniproteins over antibodies are as follows: resistance 
to viral mutational escapes, not requiring a cold storage 
condition, possibility of a gel or aerosol formulation, and 
easier production steps [27,28]. But before clinical studies, 
miniproteins also need to be evaluated properly in the 
preclinical studies. 
2.1.5. Human soluble ACE-2  
Human recombinant soluble ACE2 (hrsACE2) 
theoretically should be of benefit in COVID-19 by 
binding S protein and thereby neutralizing SARS-CoV-2 
and by minimizing injury to multiple organs because of 
renin–angiotensin system hyperactivation and increased 
angiotensin II concentrations. In a phase 2 clinical trial, 
hrsACE2 has been tested in patients with acute respiratory 
distress syndrome (ARDS) and was shown to has an 
acceptable safety profile [29]. It was also shown to reduce 
SARS-CoV-2 load by a factor of 1000–5000 in-vitro cell-
culture [30]. Finally, a case of severe COVID-19 was 
treated successfully with hrsACE2 [31]. 

A phase 2 clinical trial of hrsACE2 compared to 
placebo (NCT04335136) in 178 patients with severe 
COVID-19 was completed (NCT04335136), and the 
results were shared via press release: It was reported that 
all-cause mortality or invasive mechanical ventilation was 
lower among patients treated with hrsACE2 compared to 
placebo, but the difference was not statisticaly significant. 
HrsACE2 also demonstrated a positive impact on 
biomarkers of the renin angiotensin system7.
2.1.6. ACE2 receptor trap molecules 
ACE2-like molecules like CTC-445.2d can be used as 
decoys for the S protein and could draw  SARS-CoV-2 
away from cells. CTC-445.2d which developed recently is 
a miniprotein that mimics ACE2, binds firmly to spike and 
neutralize SARS-CoV-2. It can simultaneously bind to all 
three RBDs of a single spike protein. CTC-445.2d potently 
neutralized SARS-CoV-2 infection of cells in vitro, and 
a single intranasal prophylactic dose of decoy protected 
Syrian hamsters from a subsequent lethal SARS-CoV-2 
challenge [32]. 

Another receptor trap molecule described by other 
researchers was also neutralized 

SARS-CoV-2 infections as effectively as high-affinity 
antibodies isolated from convalescent patients and also 
binds S proteins of other human coronaviruses. As ACE2 
receptor traps have large binding interfaces, they are able 
to block the entire receptor binding interface, which limits 
the impact of viral escape mutations [33].  
2.2. Inhibitors of fusional entry of virus
Host peptidases (furin, TMMPRS2, catepsin L) and some 
host proteins (NRP1) are critical for SARS-CoV-2 entry 
and act either as receptors for the attachment of the virion 
7 Apeiron Biologics. APEIRON’s APN01 shows clinical benefits for severely ill COVID-19 patients in phase 2 trial. Website https://www.apeiron-biologics.
com/apeirons-apn01-shows-clinical-benefits-for-severely-ill-covid-19-patients-in-phase-2-trial/[accessed 16 June 2021].

S protein to the target cell (like ACE2 and NRP1) or as 
facilitators of virion envelope fusion with the target cell 
membrane (like furin, TMPPRS2, and catepsin L). 

SARS-CoV-2 entry into host cells takes place either by 
receptor-mediated endocytosis or by membrane fusion. 
The binding of SARS-CoV-2 to the cellular receptor 
ACE2 can result in virion uptake into endosomes. The S 
protein is activated by cysteine peptidase cathepsin L in 
endolysosomes. In membrane fusion, precleavage of the 
spike at the polybasic S1/S2 sites by furin protease during 
viral egress is needed. Studies with SARS-CoV-2 show 
that this cleavage promotes subsequent virus infection. 
After that processing, TMPRSS2 cleaves spike at S2ʹ and 
facilitates early entry at or near the cell surface, as opposed 
to late entry through the endosome [34,35,36]. This route 
especially important for lung cells, which fail to express 
robust levels of cathepsin L. Furin cleavage at the S1-S2 
junction also exposes the C-end rule peptide on SARS-
CoV-2 S1 and allows binding to neuropilin-1 (NRP1), 
which may facilitate the entry of the SARS-CoV-2 into 
host cells and may act as a host cell mediator that can 
increase the infectivity and may, thus, contribute to the 
tissue/ organ tropism of this coronavirus [37,38]. Either 
way, the RNA genetic material of the virus is released, and 
the late stage of the life cycle subsequently takes place by 
RNA replication (Figure).

That’s why both host proteases furin and TMPRSS2 
and host protein NRP1 are regarded as a potential drug 
targets [39]. Whilst inhibition of TMPRSS2 protease 
activity would not prevent infection via the endosome, 
using this pathway is detrimental to virus replication in 
airway cells [40]. 
2.2.1.TMPRRS2 inhbitors
Camostate mesilate, nafomastat: Camostate mesilate 
originally developed in the 1980s in Japan and licensed 
for the treatment of chronic pancreatitis is an inhibitor 
of TMPRSS2.  It was shown to block SARS-CoV-2 entry 
into lung cells in vitro [39] and to be a potent antiviral 
agent against SARS-CoV in vivo [41]. In a case-series of 
severe COVID-19 patients, camostat showed a clinical 
benefit in reducing the SOFA score [42].  But in an RCT 
of 137 patients hospitalized with confirmed SARS-CoV-2 
infection, comparing the placebo, camostat mesilate 
200 mg three times daily for 5 days did not reduce the 
time regarding clinical improvement and mortality 
[43]. Another clinically approved TMPRSS2 inhibitor, 
nafamostat, requires intravenous dosing and has also 
shown effect SARS-CoV-2 in vitro [39], but there isn’t any 
clinical study about the effectiveness of nafamostat for 
treating COVID-19 at the moment.  

https://www.apeiron-biologics.com/apeirons-apn01-shows-clinical-benefits-for-severely-ill-covid-19-patients-in-phase-2-trial/
https://www.apeiron-biologics.com/apeirons-apn01-shows-clinical-benefits-for-severely-ill-covid-19-patients-in-phase-2-trial/
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As camostate mesilate or other TMPRSS2 inhibitors 
administered in higher doses or during the very early 
phase of COVID-19 might be effective in lowering the risk 
of disease progression, additional studies are needed.

2.2.1.1.Antiandrogens (dutasteride, proxolutamide)
Considering that the activated androgen receptor 

regulates transcription of TMPRSS2 gene, androgen 
hormone receptors signaling antagonists could be 
explored as treatment strategies against COVID-19 for 
their role in downregulating TMPRSS2. In this regard, 
it was assumed that men receiving androgen receptor 
signaling or androgen inhibitors for prostate cancer, 
prostate hyperplasia, or androgenic alopecia could have 
reduced risk of SARS-CoV-2 infection or severity [44]. 
Protection from more severe COVID-19 with the use of 
antiandrogens have shown in some observational studies 
[45].

In an RCT of 77 outpatients with mild/moderate 
confirmed COVID-19, 5-alpha-reductase inhibitor 
dutasteride, which is commonly prescribed antiandrogens 
for androgenic alopecia or benign prostatic hyperplasia was 
found to be related to higher virologic response, clinical 
recovery rate, and mean oxygen saturation compared to 
the placebo group on the seventh day of treatment [46].

An androgen receptor signaling inhibitor 
proxalutamide was also investigated in 3 RCTs for its 
effectiveness in treating COVID-19. In the first RCT, 
the rate of hospitalization and requiring mechanical 
ventilation were significantly lower in men treated with 
proxalutamide compared to standard of care among 214 
mild/moderate confirmed COVID-19 male outpatients8. 

 In the second RCT which included 236 mild to 
moderate confirmed COVID-19 patients, viral clearance 
rate on day 7 and clinical remission time was significantly 
lower in patients treated proxalutamide versus placebo 
[47].

In the third RCT, the results of which have not been 
published yet, comparing the placebo proxulatamide 
administration in the first 48 h of symptoms was found 
to be related significantly with quicker clinical remission, 
lower rate of hospitalization, and mechanical ventilation 
requirement and mortality among 588 confirmed 
COVID-19 outpatients9. 

But those encouraging findings should be confirmed 
with additional, larger scale RCTs. 
8 Cadegiani FA, McCoy J, Wambier CG, et al. Proxalutamide (GT0918) Reduces the Rate of Hospitalization and Death in COVID-19 Male Patients: A 
Randomized Double-Blinded Placebo-Controlled Trial.Research Square Preprint 2020. DOI: 10.21203/rs.3.rs-135303/v1. [accessed 16 June 2021].
9 Biospace, Kintor Pharmaceutical Announces Results from Investigator-Initiated Brazil Trial Demonstrating 92% Reduction in Mortality in Hospitalized 
COVID-19 Patients, March, 11, 2021. Website  https://www.biospace.com/article/releases/kintor-pharmaceutical-announces-results-from-investigator-
initiated-brazil-trial-demonstrating-92-percent-reduction-in-mortality-in-hospitalized-covid-19-patients/[accessed 16 June 2021].
10 Mikhaylov EN, Lyubimtseva TA, Vakhrushev AD, Stepanov D, Lebedev DS, , et al.  Bromhexine Hydrochloride Prophylaxis of COVID-19 for Medical 
Personnel: 2 A Randomized Open-Label Study. medRxiv preprint 2021; doi:https://doi.org/10.1101/2021.03.03.21252855; [accessed 16 June 2021].

2.2.1.2.Bromhexine
Bromhexine is another potent inhibitor of TMPRSS2. In 
a small open-label trial, a total of 78 hospitalized patients 
with probable COVID-19 were randomized to bromhexine 
and standard treatment arm; there was a significant 
reduction in ICU admissions and death in the bromhexine 
treated group compared to the standard group [48].

 But in another open label RCT of 100 hospitalized 
confirmed COVID-19 patients, there were no differences 
observed in the clinical improvement time, the mean 
intensive care unit stay, or risk of death by day 28 between 
the bromhexine and standard treatment arms [49].

Finally, in another RCT, bromhexine was found to be 
effective for protecting sypmtomatic COVID-19 among 50 
healthcare workers, the results of the study have not peer 
reviewed yet10. 

As the results of published studies are conflicting, more 
and larger scale RCTs are needed to define the place of 
bromhexin in COVID-19 treatment. 
2.3. Inhibitors of endosomal entry
2.3.1. Hydroxychloroquine
Hydroxychloroquine (HCQ) is an aminoquinoline, which 
has been used to treat malaria and autoimmune diseases 
for over 50 years. Despite preliminary in vitro studies 
in kidney-derived Vero E6 cells reported that HCQ is 
effective against SARS-CoV-2, probably by inhibiting viral 
transport in endosomes by alkalinizing the intra-organel 
compartment; later studies in the TMPRSS2-expressing 
human lung cell line Calu-3 did not replicate these results. 
This was because, instead of endosomal pathway that HCQ 
inhibits, SARS-CoV-2 primarly uses fusion pathway in 
which TMPRSS2 activates it for entry into lung cells [50].

HCQ has been the most studied drug for the treatment 
and prevention of COVID-19 since the beginning of the 
pandemic and more than 120 clinical RCTs using HCQ 
were registered in the trial registries [51].

Unfortunately, in a metaanalysis of 14 unpublished 
(including1308 patients) and 14 published (including 
9011 patients) RCTs, HCQ was found to be associated 
with increased mortality in  COVID-19 patients with a 
combined OR  of 1.11 (95% CI: 1.02–1.20; I² = 0%) for all-
cause mortality and no subgroup effects were found [52].

Additionally, in another metaanalysis of six RCTs 
of prophylactic hydroxychloroquine usage (n = 6059 
participants), it was found that compared with standard 
care or placebo, HCQ has no effect on suspected, probable, 

https://www.biospace.com/article/releases/kintor-pharmaceutical-announces-results-from-investigator-initiated-brazil-trial-demonstrating-92-percent-reduction-in-mortality-in-hospitalized-covid-19-patients/
https://www.biospace.com/article/releases/kintor-pharmaceutical-announces-results-from-investigator-initiated-brazil-trial-demonstrating-92-percent-reduction-in-mortality-in-hospitalized-covid-19-patients/
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or laboratory-confirmed SARS-CoV-2 infection or does 
not reduce the risk of laboratory-confirmed SARS-CoV-2 
infection [53]. 

As a result, current guidelines recommend against 
HCQ among hospitalized patients with COVID-19 with 
a strong recommendation and moderate certainty of 
evidence6. 
2.3.2. Umifenovir
Umifenovir is a broad-spectrum antiviral agent which 
could effectively inhibit the fusion of virus with host cells 
and is already licensed for prophylaxis and treatment of

influenza. Previous research has revealed that 
umifenovir is an efficient inhibitor of SARS-CoV-2 in 
vitro. Nevertheless, little is known about the actual clinical 
efficacy of umifenovir in vivo.

Umifenovir is an antiviral agent which could inhibit the 
fusion of the virus with host cells and is already licensed 
for prophylaxis and treatment of influenza in Russia and 
China. It was shown that umifenovir inhibits SARS-CoV-2 
in vitro with a 50% effective concentration (EC50) of 4.11 
μM [54]. 

But in a metaanalysis of 12 clinical studies with 1052 
patients, compared with the control group, umifenovir was 
not associated with lower risk of admission to intensive 
care unit or mechanical ventilation or death (RR:1.20; 95% 
CI: 0.61 to 2.37), a lower rate of symptoms alleviation on 
day 7, or lower hospital length of stay (MD: 1.34; 95% CI: 
–2.08 to 4.76) [55]. 

As a result, there is no evidence to support the use of 
umifenovir for patients with COVID-19.
2.3.3.Nitazoxanide
Nitazoxanide, a small-molecule anti-protozoal drug is 
currently recommended for treating diarrhea caused 
by Cryptosporidium spp. or Giardia spp. Nitazoxanide 
targets against numerous points of SARS-CoV-2 life cycle 
including an endosomal and fusional entry into the host 
cells [56].  In the analysis of the key secondary endpoint, 
treatment with NT-300 was associated with an 85% (0.5% 
of NT-300-treated patients versus 3.6% of patients treated 
with placebo) reduction in the progression to severe 
illness11. The number of clinical trials was registered using 
nitazoxanide as the only drug or in combination with other 
antivirals for the treatment of patients with COVID-19 
(NCT04486313, NCT04552483, NCT04348409), and 
results will be released soon. 
11 Romark, 2021. Romark announces ınıtıal results of phase 3 clınıcal trıal of nt-300 tablets for the treatment of covıd-19. Website  https://www.romark.
com/romark-announces-initial-results-of-phase-3-clinical-trial-of-nt-300-tablets-for-the-treatment-of-covid-19/[accessed 16 June 2021].
12 Weiss A, Touret[accessed 16 June 2021]. F, Baronti C, et al. Niclosamide shows strong antiviral activity in a human airway model of SARS-CoV-2 
infection and a conserved potency against the UK B.1.1.7 and SA B.1.351 variant. bioRxiv 2021. DOI: 10.1101/2021.04.26.441457. [accessed 16 June 
2021].
13 Prabhakara C,  Godbole R, Sil P, Jahnavi S, Zanten TS,  et al. Niclosamide inhibits SARS-CoV2 entry by blocking internalization through pH-dependent CLIC/
GEEC endocytic pathway. bioRxiv preprint 2020; doi: https://doi.org/10.1101/2020.12.16.422529; [accessed 16 June 2021].

2.3.4. Niclosamide
Niclosamide, which has been used to treat intestinal worms, 
also exhibits highly potent activity against SARS-CoV-2 in 
a Vero cell and human airway infection model [57]12 and 
inhibits SARS-CoV2 entry by blocking internalization 
through pH-dependent endocytic pathway13. The novel 
formulation demonstrates potent in vitro and in vivo 
activity against SARS-CoV-2 [58].  

Another investigator from Denmark also developed a 
formulation of niclosamide optimized for inhalation and 
intranasal application called UNI91104, which is well-
tolerated in healthy volunteers in phase1 clinical study 
[59].  

Inhaler and nasal formulation of niclosamide are 
promising candidates for the treatment of viral respiratory 
infections such as COVID19. Further phase 1 and other 
clinical trials are being planned [59].  
2.4. Heparan sulfate proteoglycan inhibitors: lactoferrin
It was shown in recent studies that in addition to ACE2, 
heparan sulfate proteoglycans (HSPGs) also has an 
important role in SARS-CoV-2 cell attachment [6, 59].  

geLactoferrin showed a broad-spectrum antiviral 
activity against SARS-CoV-2, HCoV-OC43, HCoV-NL63, 
and HCoV-229E in cell culture via binding HSPGs and 
blocking viral attachment to the host cell. In cell culture, 
combination lactoferrin with remdesivir was found to have 
a synergistic effect against SARS-CoV-2. [60]. Further 
studies are needed to define the place of lactoferrin in the 
treatment of COVID-19. 

3. Inhibitors of viral proteases
Proteases catalyze their own release and liberate other 
nonstructural proteins (Nsps) from the polyprotein, 
building a replicase–transcriptase complex (RTC) that is 
vital for viral transcription and replication [36].  Both Mpro 
and PLpro are essential for viral replication, making them 
attractive targets for drug development. The high level of 
structural conservation among the Mpros of 12 different 
CoVs could give a chance to design a pan-coronavirus 
inhibitor of viral proteases, and target-specific inhibitors 
also could be developed for the SARSCoV-2 Mpro [61].  
In addition, Mpro has no human homolog. The above 
features make it an attractive drug target against CoVs.
3.1. Lopinavir/ritonavir
Lopinavir and ritonavir were the first drugs used in the 
clinical trials to treat COVID-19 targeting Mpro. Although 
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lopinavir/ritonavir showed inhibitor effects against SARS-
CoV-2 in Vero E6 cells with an estimated EC50 of 26.63 
μM [62],  in three RCTs among hospitalized patients with 
COVID-19, treatment with lopinavir/ritonavir has failed to 
show any beneficial effect on mortality or need for invasive 
mechanical ventilation or 28-day hospital discharge 
rates [63, 64, 65]. Whether lopinavir-ritonavir has a role 
in outpatients with the nonsevere disease is uncertain, 
it should be used in outpatients only in the context of a 
clinical trial. Lopinavir-ritonavir is highly protein-bound 
and does not appear to achieve plasma levels close to the 
defined EC50 [66, 67].  

Current guidelines are against the use of the 
combination lopinavir/ritonavir among hospitalized 
patients with COVID-196. 
3.2. GC-376
A number of Mpro inhibitors are in different stages 
of preclinical and clinical development. GC-376 is a 
representative Mpro inhibitor that has shown antiviral 
activity against feline infectious peritonitis (FIP) CoV in 
experimentally infected cats. GC-376 showed promising 
antiviral activity against the SARS-CoV-2 virus with an 
EC50 of 3.37 µM [68] and was found to increase survival 
in MERS-CoV–infected mice [69].  

Antiviral activity of GC-376 was also shown in SARS-
CoV-2-infected K18hACE2 mice, although it was modest 
consisted with its moderate in vitro antiviral activity. In 
comparison, a GC-376 analog 6j was recently reported 
to improve survival in MERS CoV-infected mice, and 
the EC50 value of the in vitro cellular antiviral activity 
of 6j against MERS-CoV was 0.04±0.02 µM. This result 
suggests that in vitro cellular antiviral activity of GC-376 
against SARS-CoV-2 needs to be improved by 10–100-fold 
to achieve desired in vivo antiviral efficacy [70].  
3.3. PF-07304814 and PF-07321332 
PF-00835321 and its novel designed phosphate prodrug 
PF-07304814 are potent inhibitors of the coronavirus 
family Mpro in vitro, with selectivity over human host 
protease targets. 

It was first developed for SARS in 2003, but there wasn’t 
any chance to fully optimize it for clinical use because of 
the end of the epidemic. When SARS-CoV-2 came along 
and genomic analyses revealed that the virus’s Mpro 
protein was almost identical to that from the original 
SARS pathogen, studies were started for COVID-19, and 
preclinical studies revealed that PF-00835231 exhibits 
potent in vitro antiviral activity against SARS-CoV-2 with 
suitable pharmaceutical properties as a single agent and is 
additive/synergistic in combination with remdesivir [71]14. 
14 Boras B, Jones RM, Anson BJ, Arenson D, Aschenbrenner L, et al. Discovery of a novel inhibitor of coronavirus 3CL protease as a clinical candidate for 
the potential treatment of COVID-19. bioRxiv [Preprint]. 2020:2020.09.12.293498. doi: 10.1101/2020.09.12.293498;  [accessed 16 June 2021].
15 Kumar A. Network Pharmacology analysis of orally bioavailable SARS-COV2 protease inhibitor shows synergistic targets to improve clinical eficacy. 
https://www.researchsquare.com/article/rs-513595/v1[accessed 16 June 2021].

The oral form of intravenously administered PF-
07304814 was also developed, which is named PF-
07321332. PF-07321332 may have inhibitory effects 
against not only viral proteases but also host proteases, 
which could be resulted in synergistic effects with superior 
clinical efficacy15. 

The oral bioavailability of PF-07321332 will be a major 
advantage in the clinical management of COVID-19. 
PF-07304814 (IV) and PF-07321332 (oral) entered 
phase 1 clinical trials last September in hospitalized 
COVID-19 patients and healthy participants, respectively 
(NCT04535167, NCT04756531) [2].  

4. Inhibitors of viral RNA
4.1. Viral RdRp inhibitors
4.1.1.Favipiravir
Being a guanosin purin nucleotide analogue, favipiravir 
(T-705; 6-fluoro-3-hydroxypyrazine-2- carboxamine) is 
metabolized intracellularly into its active ribofuranosyl 
5’-triphosphate (favipiravir-RTP) metabolite. Favipiravir-
RTP is a potent inhibitor of RdRp of RNA viruses and 
induces lethal mutagenesis. It has shown broad-spectrum 
activity against variety of RNA viruses including influenza, 
arenaviruses, bunyaviruses, and flaviviruses. The only oral 
form of favipiravir is available and after taking orally, it is 
metabolized by aldehyde oxidase in the liver and excreted 
renally. Favipiravir is approved for the treatment of 
epidemic new influenza viruses in Japan. It has been used 
as an anti-COVID-19 drug in so many countries, including 
Turkey, India, Russia with a EUA since the beginning of 
the Pandemic.   

It was shown to be active against SARS-CoV-2 in vitro 
in Vero cells with (EC50) ranging from 62 to > 500 µM (10 
to > 78 µg/mL). Mechanism of actions of favipiravir against 
SARS-CoV-2 was shown to be through a combination of 
chain termination, reduced RNA synthesis and lethal 
mutagenesis in vitro. As it exerts stronger antiviral effect 
after reaching steady state serum concentration which 
takes 1 to 2 days, earlier treatment is expected to be more 
effective. Embryonic lethality and teratogenicity have 
been shown in animals, as a result, it should not be used 
in pregnant and nursing women. Also, abstinence or 
contraception should be recommended 7 days after the 
end of the favipiravir treatment for males.

Recommended dosage for influenza is 1600 mg, twice 
a day for the first day, 600mg twice a day for the day 2 
to 5 [72–76].  But the optimal dose of favipiravir for the 
treatment of COVID-19 has yet to be determined. In a 
hamster model of SARS-CoV-2 infection, while low dose 

https://www.uptodate.com/contents/covid-19-management-in-hospitalized-adults/abstract/8,74,138,139
https://www.uptodate.com/contents/covid-19-management-in-hospitalized-adults/abstract/8,74,138,139
https://www.uptodate.com/contents/covid-19-management-in-hospitalized-adults/abstract/8,74,138,139
https://www.researchsquare.com/article/rs-513595/v1
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of favipiravir resulted in no reduction in virus levels, high 
doses of it significantly reduced infectious virus titers in 
the lungs, markedly improved lung histopathology and 
decreased virus transmission by direct contact.  In that 
study, the decrease of infectious virus titers was more than 
the decrease of viral RNA copies. This discrepancy was 
shown to be due to the mutagenic effect of favipiravir, as 
the mean number of mutations in the viral RNA increased 
by a factor of more than three upon favipiravir treatment. 
Plasma trough concentrations to potently block virus 
infection as measured in the infected hamsters may be 
achievable in humans treated with favipiravir [77].  In a 
clinical trial in Ebola virus-infected patients, a favipiravir 
dosing scheme of 6.000 mg on day 0, followed by 1.200 
mg BID for 9 days, resulted in a median plasma trough 
concentration of 25.9 μg/mL at day 4 [78].  A favipiravir 
dosing of 1.800 mg twice on the first day, followed by 800 
mg orally twice a day achieves plasma concentration of 
approximately 60μg/mL and higher in healthy individuals 
[79]. But it has been reported that the trough concentrations 
in critically ill COVID-19 patients are lower than those in 
healthy persons and do not reach the in vitro obtained 
EC50 values against SARS-CoV-2 [80, 81]. 

In another hamster model study, high doses of 
favipiravir were found to be associated with antiviral 
activity against SARS-CoV-2 infection, and the better 
antiviral efficacy was observed using a preventive strategy, 
suggesting that favipiravir could be more appropriate for 
a prophylactic use. When treatment is initiated before or 
simultaneously to infection, favipiravir has a strong dose 
effect, leading to reduction of infectious titers in lungs 
and clinical alleviation of the disease. But the highest dose 
of favipiravir tested is associated with signs of toxicity in 
animals. Thereby, pharmacokinetic and tolerance studies 
are required to determine whether similar effects can be 
safely achieved in humans. Lung penetration of favipiravir 
in hamsters has been shown to be efficient, resulting in 
lung/plasma ratios of 35 to 44% after repeated dosing. 
However, it is not known whether the lung penetration in 
humans is similar to that in hamsters [82].

In an exploratory RCT, favipiravir didn’t demonstrate 
significant in vitro antiviral activity up to 100 μM and under 
a dosage of 1600 mg or 2200mg loading and 3X600 mg/
day maintenance, the insufficient exposure of favipiravir 
resulted in no additional antiviral benefit among patients 
with COVID-19 [83]. Low loading dose of favipiravir (≤45 
mg/kg/day) was identified as a poor prognostic factor for 
early clinical improvement in a clinical trial from Tailand16 
16 Rattanaumpawan P,  Jirajariyavej S,  Lerdlamyong K,  Palavutitotai N, Saiyarin J. Real-world Experience with Favipiravir for Treatment of COVID-19 
in Thailand: Results from a Multicenter Observational Study.  medRxiv 2020; preprint doi: https://doi.org/10.1101/2020.06.24.20133249[accessed 16 
June 2021].
17 FUJIFILM Toyama Chemical Co., Ltd. Anti- influenza drug Avigan® tablet meets primary endpoint in phase III clinical trial in Japan for COVID- 19 
patients. , June 5, 2021. Website https://www.fujifilm.com/jp/en/news/hq/5451?_ga=2.10224 8257.19488 31102.1612073055 - 48278 478.16120 73055. 
[accessed 16 June 2021].

as a result administration of appropriate loading and 
maintenance doses of favipiravir are of utmost importance.

The results of clinical studies of favipiravir for the 
treatment of COVID-19 were conflicting. In an earlier 
metaanalysis, the pooled analysis of five studies showed 
that favipiravir was associated with a higher clinical 
improvement rate than control group, but the difference 
was not statistically significant (odds ratio [OR], 1.54; 
95% CI, 0.78–3.04); viral clearance rate at day 4–5, 7-8 
and 10–12 was also not different between favipiravir and 
comparator, additionally the risk of adverse event was 
similar between groups [84].

But in another recent metaanalysis of 9 studies 
comparing the efficacy of favipiravir with other control 
groups revealed a significant clinical improvement in the 
favipiravir group versus the control group during seven 
days after hospitalization (RR = 1.24, 95% CI: 1.09–1.41; 
p = 0.001). Although viral clearance was more in 14 days 
after hospitalization in favipiravir group, this finding was 
not statistically significant (RR = 1.11, 95% CI:0.98–1.25; 
p = 0.094). The need for supplemental oxygen therapy 
was found to be 7% less in the favipiravir group than the 
control group, (RR = 0.93, 95% CI: 0.67–1.28; p = 0.664). 
ICU transfer and adverse events were not statistically 
different between the groups. Finally, the mortality rate 
was found to be 30% less in the favipiravir group, but, 
again, this finding was not statistically significant [85]. 

In another recent metaanalysi, among 5 studies 
included a comparator group, the favipiravir group 
showed significantly better viral clearance on day 7 after 
the initiation of treatment (odds ratio [OR] = 2.49, 95% 
confidence interval [CI] = 1.19–5.22), but there was no 
difference on day 14 (OR = 2.19, 95% CI = 0.69–6.95). 
Clinical improvement was significantly better in the 
favipiravir group on days 7 and 14 with an OR of 1.60, 95% 
CI = 1.03–2.49, and 3.03, 95% CI = 1.17–7.80, respectively 
[86]. 

Unfortunately, all of the studies included in those 
metaanalyses have varied designs and comparators and 
the low number of patients; as a result, their findings are 
based on the analysis of data with high heterogenicity. 
That’s why further large scale randomized, double blind 
trials are needed to be done to define the role of favipiravir 
in the treatment of COVID-19. 

In the single-blinded phase III RCT trial of Japan17, 156 
patients with COVID- 19 with nonsevere pneumonia were 
included, favipiravir met the primary end point, which 
was time to viral clearance and to alleviation of symptoms. 

https://doi.org/10.1101/2020.06.24.20133249
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The results were 11.9 days and 14.7 days for the favipiravir 
and the placebo groups, respectively (P =0.0136). But, after 
reviewing these data, favipiravir was not approved for the 
use for COVID-19 by the  Japan Pharmaceutical Affairs 
and Food Sanitation Council (PAFSC) because of the 
single-blinded design of the study, the uncertain primary 
outcome and the founded biases between the groups. 
Approval of favipiravir in Japan would be reevaluated 
after the results of forthcoming ongoing clinical trials 
conducted in Kuwait and United States [87].

Double- blind phase-III trial in Kuwait was terminated 
on January 27, 2021, because interim analysis of the 
study involving 353 patients hospitalized with moderate 
to severe COVID- 19, did not show a statistically 
significant difference for the clinical recovery between 
favipiravir and placebo (7 versus 8 days, p > 0.05). But, the 
subgroup analysis of the low-risk study cohort (n = 181) 
demonstrated a 3 day earlier discharge in the favipiravir 
group compared to the placebo group (8 days versus 11 
days; p = 0.0063) for time to hospital discharge. 

The subgroup analysis data during the initial interim 
analysis points towards the hypothesis with clinically 
significant insights from this study that an antiviral 
drug such as favipiravir may be effective as part of early 
treatment initiation in COVID-19 patients and not 
effective in the late-stage hospital treatment for moderate 
and severe COVID-19 patients18. Another phase III 
ongoing pivotal study of favipiravir (PRESCO study) for 
patients with COVID- 19 with mild to moderate symptoms 
in the United States are planned to include 826 patients19. 
After interim analysis of 600 participitants on May 17, 
2021, the Data and Safety Monitoring Board reported no 
safety issues; as a result, the study will continue without 
modification and is expected to be completed in the third 
quarter of 202120.  Favipiravir is also being investigated 
as a treatment option for COVID-19 among outpatients 
in an arm of PRINCIPLE (The Platform Randomised 
trial of Interventions against COVID-19 In older) RCT’s 
in the UK.  People aged 50 to 64 with certain underlying 
health conditions or shortness of breath from COVID-19, 
18 Dr. Reddy’s and GRA announce Avigan Pivotal Studies Update Study for hospitalized moderate to severe cases in Kuwait terminated, while study for 
out-patient mild to moderate cases continues in North America. June 5, 2021 . Website https://www.drreddys.com/media/928938/2021-01-avigan-trial-
update_v1.pdf. [accessed 16 June 2021].
19 Appili Therapeutics. First patient dosed in Appili therapeutics’ Phase 3 clinical trial of Avigan® Tablets (Favipiravir) for the treatment of COVID-19 in 
the United States. December 2, 2020. Website https://www.appilitherapeutics.com/newsf eed/First -Patient-Dosed-in-Appili-Therapeutics%E2%80%99-
Phase-3-Clinical-Trial-of-Avigan%C2%AE-Tablets-%28Favipiravir%29-for-the-Treatment-of-COVID-19-in-the-United-States. [accessed 16 June 
2021].
20 Appili Therapeutics. Independent Data Safety Monitoring Board Recommends Appili Therapeutics Complete Its Phase 3 Avigan®/Reeqonus™ 
Trial for Mild-to-Moderate COVID-19 Patients. Website https://finance.yahoo.com/news/independent-data-safety-monitoring-board-123100244.
html?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cucmVkZGl0LmNvbS8&guce_referrer_sig=AQAAAB2mYpnc8_rgfPV4dOAEl0acVlYeITGio0
aVEK7BI5OSVuUDLqEwdu8MeLP1VkSsfE0y6yJIygRaXOtI2mym4IdBKbGGG1K-DoPtyZfoDqRmh35fObEF3zp-2tM7q4xeoFkCm0QeNupCM06d
MubZUhzwlFz8L2vL2orEVfLjxfv4. [accessed 16 June 2021].
21 PRINCIPLE. Favipiravir to be investigated as a possible COVID-19 treatment for at-home recovery in the PRINCIPLE trial. 8 April 2021. Website 
https://www.principletrial.org/news/favipiravir-to-be-investigated-as-a-possible-covid-19-treatment-for-at-home-recovery-in-the-principle-trial. 
[accessed 16 June 2021].

or aged over 65, are eligible to join the favipiravir arm 
of PRINCIPLE within the first 14 days of experiencing 
COVID-19 symptoms21. 

With the results of these final studies, the effectiveness 
of favipiravir in the treatment of COVID-19 will be defined 
more clearly by the end of 2021.  

Additional clinical studies are needed to define the 
effectiveness of favipiravir at different dosages or at 
different stages of COVID-19 and PK of favipiravir should 
be thoroughly evaluated in those patients.  
4.1.2.Remdesivir 
Remdesivir is a prodrug of adenosine nucleotide 
analog that is intracellularly metabolized to an analog 
of adenosine triphosphate that inhibits viral RdRp. It 
was originally developed for the treatment of Ebola and 
Marburg virus infections. Remdesivir has broad spectrum 
activity against members of several virus families, 
including filoviruses (e.g., Ebola) and coronaviruses (e.g., 
SARS-CoV and MERS-CoV) and has shown prophylactic 
and therapeutic efficacy in nonclinical models of these 
coronaviruses. In vitro testing has also shown that 
remdesivir has an activity against coronoviruses including 
SARS-CoV, MERS-CoV and SARS-CoV-2 with an EC50 
value of 0.09 μM, 0.18 μM and 0.77 μM, respectively [88-
90]. Being a monophosphoramidate prodrug, remdesivir 
is metabolized to its active form, GS-441524 and is 
recognized as a substrate by RdRp and causing premature 
termination of viral RNA transcription. It shows resistance 
to exonucleases of coronaviruses [88] 

In a macaque model, unlike vehicle-treated animals, 
macaques treated early with remdesivir did not show 
signs of respiratory disease; they also showed reduced 
pulmonary infiltrates on radiographs and reduced virus 
titres in bronchoalveolar lavages 12 h after the first dose. 
But virus shedding from the upper respiratory tract was 
not reduced by remdesivir treatment [91].

A metaanalysis of 4 RCTs with 7333 participants about 
the effectiveness of remdesivir on COVID-19 [65, 92, 93, 
94] found no evidence that remdesivir improved outcomes 
that matter to patients such as reduced mortality, need 

https://www.drreddys.com/media/928938/2021-01-avigan-trial-update_v1.pdf
https://www.drreddys.com/media/928938/2021-01-avigan-trial-update_v1.pdf
https://finance.yahoo.com/news/independent-data-safety-monitoring-board-123100244.html?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cucmVkZGl0LmNvbS8&guce_referrer_sig=AQAAAB2mYpnc8_rgfPV4dOAEl0acVlYeITGio0aVEK7BI5OSVuUDLqEwdu8MeLP1VkSsfE0y6yJIygRaXOtI2mym4IdBKbGGG1K-DoPtyZfoDqRmh35fObEF3zp-2tM7q4xeoFkCm0QeNupCM06dMubZUhzwlFz8L2vL2orEVfLjxfv4
https://finance.yahoo.com/news/independent-data-safety-monitoring-board-123100244.html?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cucmVkZGl0LmNvbS8&guce_referrer_sig=AQAAAB2mYpnc8_rgfPV4dOAEl0acVlYeITGio0aVEK7BI5OSVuUDLqEwdu8MeLP1VkSsfE0y6yJIygRaXOtI2mym4IdBKbGGG1K-DoPtyZfoDqRmh35fObEF3zp-2tM7q4xeoFkCm0QeNupCM06dMubZUhzwlFz8L2vL2orEVfLjxfv4
https://finance.yahoo.com/news/independent-data-safety-monitoring-board-123100244.html?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cucmVkZGl0LmNvbS8&guce_referrer_sig=AQAAAB2mYpnc8_rgfPV4dOAEl0acVlYeITGio0aVEK7BI5OSVuUDLqEwdu8MeLP1VkSsfE0y6yJIygRaXOtI2mym4IdBKbGGG1K-DoPtyZfoDqRmh35fObEF3zp-2tM7q4xeoFkCm0QeNupCM06dMubZUhzwlFz8L2vL2orEVfLjxfv4
https://finance.yahoo.com/news/independent-data-safety-monitoring-board-123100244.html?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cucmVkZGl0LmNvbS8&guce_referrer_sig=AQAAAB2mYpnc8_rgfPV4dOAEl0acVlYeITGio0aVEK7BI5OSVuUDLqEwdu8MeLP1VkSsfE0y6yJIygRaXOtI2mym4IdBKbGGG1K-DoPtyZfoDqRmh35fObEF3zp-2tM7q4xeoFkCm0QeNupCM06dMubZUhzwlFz8L2vL2orEVfLjxfv4
https://www.principletrial.org/news/favipiravir-to-be-investigated-as-a-possible-covid-19-treatment-for-at-home-recovery-in-the-principle-trial
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for mechanical ventilation, time to clinical improvement 
and others. However, the low certainty evidence for 
these outcomes, especially mortality, does not prove 
that remdesivir is ineffective; rather, there is insufficient 
evidence to confirm that it does improve patient-important 
outcomes with an odds ratio (95%CI) 0.9 (CI 95% 
0.7–1.12); 0.89 (CI 95% 0.76–1.03); 1.06 (CI 95% 0.06–
17.56) and 1 (CI 95% 0.37–3.83), for 28 days mortality; 
mechanical ventilation;  viral clearance at day 7;   serious 
adverse events leading to discontinuation respectively22. As 
a result, WHO suggests against administering remdesivir 
in addition to usual care among hospitalized patients with 
COVID-19 infection, regardless of the severity of the 
disease22. 

But IDSA suggests treatment with 5 days of remdesivir 
only for patients with COVID-19 on supplemental oxygen 
but not on mechanical ventilation or ECMO or, without 
the need for supplemental oxygen and oxygen saturation 
>94% on room air, as a conditional recommendation and 
very low certainty of evidence5. In the pooled analysis of 
RCT’s about the effectiveness of remdesivir for patients 
with COVID-19  on supplemental oxygen but not on 
mechanical ventilation or ECMO [65, 92, 93], Infectious 
Disease Society of America   (IDSA) also could not find 
any statistically significant mortality (RR: 0.92; 95% CI: 
0.77, 1.10)  or clinical improvement benefit at day 28, but 
they find that patients receiving treatment with remdesivir 
trend toward greater clinical improvement at 28 days than 
patients not receiving remdesivir (RR: 1.13; 95% CI 0.91–
1.41). 

In addition, based on a post-hoc analysis of patients 
with severe COVID-19, they find that receiving treatment 
with remdesivir had a shorter median time to recovery 
(median 11 versus 18 days; Rate ratio: 1.31; 95% CI: 1.12, 
1.52) and decreased need for mechanical ventilation (RR: 
0.57; 95% CI: 0.42, 0.79)6.

Current findings of the effectiveness of remdesivir for 
the treatment of patients for COVID-19 are conflicting, 
additionally the IV route of administration of remdesivir 
prevents its widespread usage for the treatment of 
COVID-19. 
4.1.3. Molnupiravir
Molnupiravir (MK-4482/EIDD-2801) is the orally 
available pro-drug of the nucleoside analogue N4-
hydroxycytidine (NHC), which has broad-spectrum 
anti-RNA virus activity including influenza ebola, CoV, 
respiratory syncytial virus, and Venezuelan equine 
encephalitis virus (VEEV). Serial passaging in the presence 
of NHC led to low level resistance for VEEV but not RSV, 
22  WHO, Therapeutics and COVID-19: living guideline – World Health Organization (WHO), 31 March 2021. [accessed 16 June 2021].
23  Painter WP, Holman W, Bush JA, Almazedi F, Malik H, et al. Human Safety, Tolerability, and Pharmacokinetics of a Novel Broad-Spectrum Oral 
Antiviral Compound, Molnupiravir, with Activity Against SARS-CoV-2. medRxiv preprint 2020; doi: https://doi.org/10.1101/2020.12.10.20235747 
[accessed 16 June 2021].

influenza A virus, and bovine viral diarrhea virus, thus, 
indicating a high resistance barrier [95]. NHC was found 
to be potently antiviral with an IC50 of 0.08 mM and 
IC50 of 0.024 mM against SARS-CoV-2 in the Calu-3 cells 
and human airway epithelial cells, respectively. It was also 
shown to has a broad-spectrum antiviral activity against 
MERS-CoV, SARS-CoV, and related zoonotic group 
2b or 2c bat-CoVs, as well as increased potency against 
a CoVs bearing resistance mutations to the nucleoside 
analog inhibitor remdesivir. Its effect was found to be 
associated with increased transition mutation frequency 
in viral but not in host cell RNA.  Both prophylactic and 
therapeutic administration of molnupiravir improved 
pulmonary function and reduced virus titer and body 
weight loss in mice infected with SARS-Cov-2. The 
potency of molnupiravir against multiple CoVs and oral 
bioavailability highlights its potential utility as an effective 
antiviral against SARS-CoV-2 and other future zoonotic 
CoVs [96].  

In a ferret model, therapeutic treatment of infected 
animals with twice-daily molnupiravir significantly 
reduced upper respiratory tract SARS-CoV-2 load and 
completely suppressed spread to untreated contact 
animals, and it was seen that earlier treatment of ferrets 
with molnupiravir was more beneficial [97].

Single and multiple doses of molnupiravir were 
evaluated in a phase I randomized, double-blind, placebo-
controlled study in healthy volunteers, and demonstrated 
good tolerability and dose-proportional pharmacokinetics 
with relatively low variability following administration to 
healthy volunteers at clinically relevant doses23.

Based on a planned interim analysis of data from 
the Phase II/III trials, the decision has been made 
to proceed with the Phase 3 portion of the study in 
outpatients (MOVeOUT), but not in hospitalized patients 
(MOVeIN) with COVID-1. This is because the data from 
hospitalized patients indicate that molnupiravir is unlikely 
to demonstrate a clinical benefit in hospitalized patients, 
who generally had a longer duration of symptoms prior to 
study entry. In an interim analysis of MOVe-OUT study, 
the percentage of patients who were hospitalized and/or 
died was lower in the molnupiravir-treated groups versus 
the placebo arm, but the difference was not statistically 
significant. Nasopharyngeal SARS-CoV-2 clearance 
rate was higher in molnupiravir treated patients than in 
placebo group (6/25 versus 0/47) at day 5 of treatment (p = 
0.001). These differences in virology endpoints were more 
pronounced in participants enrolled <5 days following 

https://doi.org/10.1101/2020.12.10.20235747
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symptom onset. After enrolment of 1850 patients, the final 
results of MOVeOUT study are expected by Agust, 202124. 

In addition to Phase-3 RCT, it is planned to initiate 
a clinical trial to evaluate molnupiravir for postexposure 
prophylaxis in the second half of 2021.
4.1.4. AT-527
AT-527 is an orally available prodrug of a guanosine 
nucleotide analog that has demonstrated potent in 
vitro activity against clinical isolates of hepatitis C virus 
(HCV) and found to be effective in the treatment of 
HCV-infected patients [98]. AT-511, the free base of 
AT-527 also has potent antiviral activity in vitro against 
several human coronaviruses, including SARS-CoV-2. 
The active triphosphate metabolite of AT-527, AT-
9010, which cannot penetrate to cell membranes and is 
formed only after intracellular delivery of the prodrug, 
is produced in substantial amounts in primary human 
cells of the respiratory tract incubated with AT-511. In 
normal human airway epithelial cells, the concentration 
of AT-511 required to inhibit replication of SARS-CoV-2 
by 90% (EC90) was 0.47mM, very similar to its EC90 
against human coronavirus (HCoV)-229E, HCoV-
OC43, and SARS-CoV in Huh-7 cells. After oral dosing, 
the predicted concentration of the active metabolite in 
pulmonary tissue suggests that AT-527 may be an effective 
treatment option for individuals infected with COVID-19 
[99]. AT-9010 simultaneously binds to both NIRAN and 
RdRp active site of nsp12 and blocking their respective 
activities, which should attenuate the chance of resistance 
mutations25.  

The ongoing phase II and III clinical trials 
(NCT04709835, NCT04396106, NCT04889040) of AT-
527 for the treatment of both out and in patients with 
COVID-19 are expected to be completed at the end of 
2021. 
4.2. Inhibitors of host proteins supporting viral RNA 
synthesis 
4.2.1. Inhibitors of inosine monophospate dehydrogenase 
(IMPD): Merimepodib

IMPD is an enzyme responsible for de novo synthesis 
of guanosine nucleotides that SARS-CoV-2 needs it 
during transcription in the host cell. Merimepodib 
noncompetitively inhibits IMPD and, inhibited SARS-
CoV-2 with concentrations as low as 3.3 μM in Vero cells 
[100].  But a phase 2 RCT of merimepodib in combination 
with remdesivir in adult patients with severe COVID-19 
was terminated because of the failure to meet the primary 
endpoint (NCT04410354). 
24  Ridgeback Biotherapeutics and Merck Announce Preliminary Findings from a Phase 2a Trial of Investigational COVID-19 Therapeutic Molnupiravir.
Website https://www.businesswire.com/news/home/20210305005610/en/. [accessed 16 June 2021].
25  Shannon A , Fattorini V, Sama B , Selisko B , Feracci M , et al.  Protein-primed RNA synthesis in SARS-CoVs and structural basis for inhibition by 
AT-527. bioRxiv preprint 2021; doi: https://doi.org/10.1101/2021.03.23.436564.

4.2.2. Inhibitor of dihydroorarate dehydrogenase: 
PTC299 
Human dihydroorotate dehydrogenase (DHODH) is a 
key enzyme of pyrimidine de novo biosynthesis pathway.  
SARS-CoV-2 hijacks that pathway to replicate. A DHODH 
inhibitor, PTC299 which was originally designed as oral 
drug for acute myeloid leukemia- manifested robustly, 
dose-dependent, inhibition of SARS CoV-2 replication 
with an EC50 range of 2.0 to 31.6 nM  on Vero-cells [28, 
101].
4.3. Cas13a
A gene-editing enzyme Cas 13a could seek out and cuts 
RNA in to pieces. A Cas13a enzyme targeted to 2 SARS-
CoV-2 genes encoding the RdRp and the N protein has 
been developed and was reduced SARS-CoV-2 replication 
and reduced symptoms in a hamsters models of the 
COVID-19 [102]. 

5. Inhibitors of host proteins supporting viral protein 
synthesis (Inhibitors of eEF1A (plitidepsin); inhibitors 
of ER chaperon protein (S1R) (fluvoxamin))
There are important advantages of targeting the host 
proteins, which include creating a higher barrier for 
viruses to develop resistance and broader protection 
against diverse viral strains [103].

Among numerous host proteins that play a role in the 
viral life cycle of SARS-CoV-2, those targeted the eukaryotic 
translation machinery demonstrated particularly potent 
antiviral activities. Zotatafin, an inhibitor of eukaryotic 
translation initiation factor 4A (eIF4A); plitidepsin, an 
inhibitor of eukaryotic translation elongation factor 1a 
(eEF1A), and ternatin-4, also an inhibitor of eEF1A show 
antiviral activity against SARS-CoV-2. Among those 
plitidepsin is the most effective. 
5.1. Plitidepsin
Plitidepsin was found to be more potent than remdesivir 
tested in the human pneumocyte-like cells line by a factor 
of 27.5 and treatment of mice with plitidepsin reduced viral 
lung titers and lung pathology upon infection to a similar 
degree as remdesivir [104]. There are concerns about the 
use of translation inhibitors, because of potential toxicities 
arising from the systemic inhibition of host translation. 
But plitidepsin was evaluated in many cancer clinical trials 
and the safety profile is well established [105].

A phase I/II clinical study of plitidepsin for the treatment 
of COVID-19 has been completed (NCT04382066), 
and zotatifin, is also in clinical trials for the treatment of 
COVID-19 (NCT04632381). Results of plitidepsin’s Phase 
I/II has not been published yet but promising results 

https://www.businesswire.com/news/home/20210305005610/en/
https://doi.org/10.1101/2021.03.23.436564
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were released [105]. The ongoing phase III clinical trial 
(NCT04784559) will show whether plitidepsin is effective 
for COVID-19. The study is expected to be completed in 
November, 2021. 
5.2. Fluvoxamin
It was previously suggested that antidepressants may 
be associated with decreased plasma levels of some 
inflammatory mediators [106]. A selective serotonin 
reuptake inhibitor, fluoxetine was shown to have antiviral 
activity against SARS-CoV-2 with an EC50 level off 0.387 
µg/ml in Vero and Huh7 cell and to inhibit SARS-CoV-2 
in human lung tissue [107]. 

In an observational study, antidepressant use was 
found to be associated with reduced risk of intubation and 
death in patients hospitalized for COVID-19 [108]. 

In a preliminary RCT of 52 COVID-19 patients, clinical 
deterioration rate was lower in the fluvoxamine group 
than in the placebo group (absolute difference, 8.7% [95% 
CI, 1.8%–16.4%], p = 0.009) [109]. Potential mechanisms 
suggested for the effect of fluvoxamine in COVID-19 were 
ER chaperon protein sigma-1 receptor (S1R) agonism and 
functional inhibition of acid sphingomyelinase activity 
(FIASMA), which were shown to prevent the infection of 
epithelial cells with SARS-CoV-2 [110].

The larger randomized trials with more definitive 
outcome measures are required to define the role of 
fluvoxamine in the treatment of COVID-19. 

6. Inhibitors of viral immunomodulation (Inhibitors of 
host importin α/β (ivermectin)
6.1. Ivermectin
Ivermectin is an FDA-approved broad-spectrum 
antiparasitic agent, it has shown to have antiviral activity 
against a broad range of viruses in vitro in recent years. 
Ivermectin has been shown to inhibit the nuclear import 
of host and viral proteins.  In an in vitro study, ivermectin 
was found to be an inhibitor of the SARS-CoV-2, with a 
single addition to Vero-hSLAM cells 2 h postinfection 
with SARS-CoV-2 able to effect ~5000-fold reduction in 
viral RNA at 48 h. Authors hypothesize that this was likely 
through inhibiting IMPα/β1- mediated nuclear import of 
viral proteins (as shown for other RNA viruses), and this 
inhibition disrupts the immune evasion mechanism of the 
virus [111]. But, after analyzing published pharmacokinetic 
data from clinically relevant and excessive dosing studies, 
it was concluded that the SARS-CoV-2 inhibitory 
concentrations are not likely to be attainable in humans 
[112, 113]. 

16 RCTs with 2407 patients having either severe or 
non-severe COVID-19 were evaluated in a systematic 
review of WHO, and it was seen that only five studies 
directly compared ivermectin with standard care and 
reported mortality. While pooled estimate of those five 

RCTs suggests a reduction in mortality with ivermectin, 
this effect was not apparent if only the trials at low risk of 
bias were considered. In addition to concerns about the 
risk of bias, serious concerns related to imprecision for 
the outcome of mortality were noticed. Furthermore, the 
evidence informing this comparison was from multiple 
small trials, adding to the risk of unrecognized imbalances 
in study arms. Given the strong likelihood that chance 
may be playing a role in the observed findings, the WHO 
panel suggest that there was very serious imprecision, 
further lowering the overall certainty in findings. They 
concluded that there was insufficient evidence about the 
effectiveness of ivermectin in treating Covid-19; there 
was a large degree of uncertainty in the evidence about 
ivermectin on mortality, need for mechanical ventilation, 
need for hospital admission, time to clinical improvement, 
and other patient-important outcomes, and  there was 
potential for harm with an increased risk of adverse 
events leading to study drug discontinuation. As a result, 
WHO  recommends not to use ivermectin in patients with 
Covid-19 except in the context of a clinical trial, regardless 
of disease severity or duration of symptoms21. 

In line with the WHO’s analysis and recommendation, 
IDSA also suggested   against ivermectin for the 
treatment of hospitalized patients with COVID-19, 
unless in the context of a clinical trial. They also suggest 
against ivermectin for the treatment of outpatients with 
COVID-19, unless in the context of a clinical trial and 
concluded that well-designed, adequately powered, and 
well-executed clinical trials are needed to inform decisions 
on treating COVID-19 with ivermectin 5.  

One metaanalysis about the efficacy of ivermectin 
in prophylaxis of COVID-19 included 3 studies; 2 
with ivermectin alone (n = 540), and 1 with ivermectin 
combined with iota-carrageenan (n = 234), all compared 
with standard care or placebo. Again, serious risk of bias 
and very serious imprecision, and, thus, very low certainty 
of evidence was determined about the effects of ivermectin 
combined with iota-carrageenan on laboratory confirmed 
Covid-19 (52 fewer per 1000, 58 fewer to 37 fewer), 
ivermectin alone on laboratory confirmed infection (50 
fewer per 1000, 59 fewer to 16 fewer) and suspected, 
probable, or laboratory confirmed infection (159 fewer 
per 1000, 165 fewer to 144 fewer). They concluded that 
because of serious risk of bias and very serious imprecision, 
it was highly uncertain whether ivermectin combined with 
iota-carrageenan and ivermectin alone reduces the risk of 
SARS-CoV-2 infection [114].

7. Agents supporting host natural immunity
7.1. Interferons
All viruses trigger an antiviral response that relies 
on the immediate production of IFNβ in the host. 
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The binding of IFNβ to its receptor then triggers the 
production of IFN-α. Both IFNs trigger the expression 
of hundreds of interferon-stimulated genes (ISGs). If the 
production of IFNα/β occurs immediately and is intense 
enough, the infection can be stopped. This is probably 
what happens for SARS-CoV-2- infected individuals 
who remain asymptomatic or have mild disease, as in 
almost all children. However, the virus-induced IFNα/β 
response may be weak, due to immunosenescence, 
comorbidities, and anti-IFN mechanisms that most 
viruses have developed through evolution [7]. Recent 
studies reveal that IFN dysregulation is key to determine 
COVID-19 pathogenesis. Inborn errors of TLR3- and 
IRF7-dependent type I IFN immunity were found to be 
related to life-threatening COVID-19 pneumonia [115]. 
Additionally, neutralizing IgG auto-antibodies against 
IFN-α2 or IFN-ω, or both were determined in 10% of 
patients with life-threatening COVID-19 pneumonia, and 
all of these patients tested had low or undetectable serum 
IFN- α levels during acute disease [116]. In situations 
of inefficient IFN response, the virus replicates and this 
triggers a second inflammatory/ immune response, which 
may become explosive and potentially result in a cytokine 
storm and ARDS. Prophylactic administration of IFNs at 
the early stage may elicit an autonomous antiviral state and 
prevent COVID-19 progression [117]. But, contrary to this 
hypothesis, in SOLIDARITY clinical trial, death occurred 
in 243 of 2050 patients receiving interferon and in 216 of 
2050 receiving control (rate ratio, 1.16; 95% CI, 0.96 to 
1.39; P=0.11), and IFN did not reduce mortality, overall 
or in any subgroup, or reduced initiation of ventilation or 
hospitalization duration [65]. Several factors seem to affect 
IFNs efficacy, including disease severity and treatment 
onset time. As nearly ¾ of patients were on supplemental 
oxygen at the time of randomization in the SOLIDARITY 
trial, IFN treatment may be delayed for this group of 
patients. 

In another RCT in adults with confirmed COVID-19, 
clinical recovery rate was greater in patients who received 
inhaled nebulised interferon beta-1a (SNG001) placebo 
(odds ratio 2·32 [95% CI 1·07–5·04]; p = 0·033) [118]. 

In a three-armed, RCT of IFNβ1a and IFNβ1b in patients 
with confirmed SARS-CoV-2 infection, as compared with 
the standard care, the benefit of a significant reduction 

in clinical improvement time was observed only in the 
IFNβ1a arm. This finding needs further confirmation in 
larger studies [119]. 

Finally, in a metaanalysis of five RCT’s about the 
effectiveness of IFN- β for treatment of COVID-19, the 
average mortality rate was reported as 6.195% and 18.02% 
in intervention and control groups, respectively. Likewise, 
the median days of hospitalization were found to be lower 
in the intervention group (9 days) than the control group 
(12.25 days), and IFN-β was found to increase the overall 
discharge rate (RR = 3.05; 95% CI: 1.09-5.01) [120]. 

In conclusion, IFN β could have a role in the treatment 
of COVID-19, especially if started earlier in the course of 
the disease, but further RCTs including a larger number of 
patients are needed. 

8. Conclusion
Taking into account the results of  all the available 
laboratory and clinical trials on the subject, monoclonal 
antibodies seem to be the most effective treatments for 
COVID-19 at the moment and high-titer convalescent 
plasma also could be effective when administered  during 
the early phase of the disease.  As lopinavir/ritonavir, 
hydroxychloroquine, merimepodib, and umifenovir were 
found to be ineffective in RCTs, they should not be used  
for the treatment of  COVID-19.  Additional clinical trials 
are needed to define the role of remdesivir, favipiravir, 
interferons, ivermectin, dutasteride, proxulutamide, 
fluvoxamine, bromhexine, nitazoxanide, and  niclosamid 
in the treatment of COVID-19. Finally, the results of 
phase trials are waited to learn whether or not the newer 
agents such as molnupiravir, PF-07321332, PF-07304814, 
plitidepsin, and AT-527 are effective in the treatment of 
COVID-19. 
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