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1. Introduction
In December 2019, almost two years ago, in the 
Wuhan province of China, the novel Coronavirus 
2019 (COVID-19) has caused an outbreak with severe 
involvement of the lower respiratory tract leading to 
a new acute life-threatening respiratory syndrome. 
Subsequently, coronavirus 2 (SARS-CoV-2) rapidly 
expand to other continents causing a pandemic, which 
affected every single person on the earth either directly 
or indirectly with destroying all facets of social life and 
economy. Since the announcement of COVID-19 as a 
global pandemic, we have witnessed tremendous scientific 
work on all aspects of COVID-19 across the globe, which 
has never been witnessed before. The most remarkable 
achievement would be the introduction of vaccines, which 
provide protection from severe infection and is the only 
premise for the control of the disease. However, despite 
the tremendous work, the number of treatments either 

antiviral or immunomodulatory for infected patients is 
considerably limited, yet the disease is causing substantial 
morbidity and mortality. 

COVID-19 follows a heterogenous disease course 
among infected individuals and dysregulated immune 
system is primarily responsible for the worse outcomes 
[1]. According to the disease progression, patients may be 
roughly divided into two groups; asymptomatic or mild 
cases that usually recover and severe cases (approximately 
15%) that develop serious lung inflammation, acute 
respiratory distress syndrome (ARDS), cardiac and renal 
injury, multiorgan failure and thromboembolic events, 
especially in patients with older age, comorbidities, 
and yet little known genetically susceptible individuals 
[2–5]. Immune deficiency, being on corticosteroids for 
inflammatory diseases, delayed interferon response, 
and advanced age are adverse prognostic factors that 
impair viral clearance [6]. On the other hand, exuberant 
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immune response with features of Cytokine Storm (CS) 
or Multisystem Inflammatory Syndrome (MIS-) is the 
leading cause of death which can be alleviated by use of 
either general immunosuppression with corticosteroids 
or selective neutralization of potent pro-inflammatory 
cytokines such as interleukin (IL)-1 and IL-6. However, 
neither approach has achieved high clinical success rates 
in patients with severe COVID-19 necessitating urgent 
development of more effective agents. 

An efficient immune response against SARS-CoV-2 
may be considered fundamental for the resolution of 
COVID-19. However, studies have shown a significant 
relationship between the disease severity and the 
dysregulated immune system, including exhausted T 
cell response, lymphopenia, neutrophilia, dysregulation 
(overactivation) of macrophages, impaired type I interferon 
(IFN-I) response, antibody-dependent enhancement, and 
especially, cytokine storm (CS) [3, 7]. It has been suggested 
that, during the response to SARS-CoV-2, the immune 
dysregulation and the high level of pro-inflammatory 
cytokines are the main cause of tissue injury. Eventually, 
the exact immunopathogenesis of COVID-19 remains 
to be elucidated, but, in brief, overactivated innate and 
impaired adaptive immune responses characterize severe 
COVID-19.

The main challenge at current is the identification 
of patients who would progress into critical disease and 
whether a specific subset of patients might benefit most 
from the immunomodulatory treatments. Several well-
designed clinical trials demonstrated the efficacy of certain 
drugs in COVID-19 that are used in daily rheumatology 
practice, including corticosteroids, tocilizumab, anakinra, 
Janus Kinase (JAK) inhibitors, colchicine, and intravenous 
immunoglobulin. Herein, we discussed altered immune 
responses in COVID-19 patients and current treatment 
options for severe COVID-19, particularly emphasizing 
the rational use of drugs, on the basis of either the timing 
of the therapy, relevant inflammatory characteristics of the 
patient, or both. 

2.The origin and structural features of SARS-CoV2
SARS-CoV-2 has nonsegmented, single-stranded 
positive-sense RNA (+ssRNA) with 5’-cap structure and 
3’-poly-A tail, which is the typical genomic structure of 
the betacoronaviruses like SARS-CoV and MERS-CoV 
[8]. The genome of CoV contains six major open reading 
frames (ORFs) and numerous accessory genes. First ORFs 
(ORF1a/b), which encompasses the two-third of viral 
RNA, encode two large proteins of CoVs, polyprotein 1a 
(pp1a) and pp1ab. These polyproteins are divided into 
16 nonstructural proteins (nsps), responsible for viral 
RNA replication and transcription, by virally encoded 
chymotrypsin-like protease (3CLpro) or main protease 

(Mpro) and papain-like protease (PLpro) [9, 10]. The 
remaining OFRs on the one-third of the genome encode 
major structural proteins, including spike (S), envelope 
(E), membrane (M), and nucleocapsid (N) proteins, all of 
which are crucial for the viral infectivity. CoVs possess a 
lipid bilayer envelope with S, M, and E proteins. 

Viral N protein acts as an antagonist to the interferon 
pathway by regulating the signaling and synthesis of type I 
interferon (IFN), which is one of the most critical responses 
in the innate immunity to viral infection [11]. The M protein 
is the most abundant component of the viral envelope that 
gives the shape of the virus and promotes the membrane 
curvature and the virus assembly by interacting with the S 
protein and the ribonucleoprotein [12–14]. The E protein 
is a small integral membrane protein that facilitates the 
assembly, the budding, and the envelope formation as well 
as the M protein [15]. Moreover, the E protein has an ion-
channel activity and activates inflammasomes [16].

The S glycoproteins on the surface of CoVs are the 
receptor binding proteins, which are responsible for the 
attachment to host cells, viral-host cell membrane fusion, 
and the internalization of the virus. The S glycoprotein 
consists of two domains: S1 domain, which includes 
receptor-binding domain (RBD), interacting with 
angiotensin converting enzyme 2 (ACE2) on the human 
host cells as SARS-CoV, and S2 domain, which mediates 
virus-cell membrane fusion and viral entry [17, 18]. After 
attachment of SARS-CoV-2 with S protein to ACE2 on 
the host cells, S protein is cleaved by host cell proteases to 
reveal the S2 domain for viral-host membrane fusion and 
viral entry, which is coupled with TNF-α production  [8, 
19, 20]. 

3. The immune response and cytokine storm in 
COVID-19
The effective antiviral responses of the host innate and 
adaptive immunity, including the production of various 
proinflammatory cytokines, the activation of T cells, CD4 
and CD8+ T cells, are essential for inhibition of viral 
replication, resolution of virus-induced inflammation, 
and clearance of infected cells [21, 22]. Nevertheless, the 
tissue injury caused by the virus could stimulate abnormal 
production of proinflammatory cytokines, the recruitment 
of proinflammatory macrophages and granulocytes. This 
results in the CS with shared features with macrophage 
activation syndrome (MAS) or secondary hemophagocytic 
lymphohistiocytosis (sHLH), thus leading to extensive 
tissue damage [23–25]. Data obtained from SARS-CoV-2 
infected patients have shown that severe cases may be 
characterized by a cytokine storm inexorably progressing 
to ARDS [26–29]. Several features of COVID-19, such 
as the cytokine profile, serological markers, and clinical 
symptoms, resemble viral infection triggered sHLH 
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[3, 24]. Furthermore, severity of COVID-19 is closely 
associated with the level of the proinflammatory cytokines 
and subsets of immune cells [3, 30].

COVID-19 possesses different levels of various 
cytokines and chemokines through the mild to severe stage 
of the disease. The retrospective analysis has demonstrated 
that initial plasma levels of IL-1β, IL-1RA, IL-7, IL-8, IL-
10, IFN-ɣ, monocyte chemoattractant peptide (MCP)-1, 
macrophage inflammatory protein (MIP)-1A, MIP-1B, 
granulocyte-colony stimulating factor (G-CSF), and 
tumor necrosis factor-alpha (TNF-α) are increased in 
patients with COVID-19. The further analysis has shown 
that the plasma concentrations of IL-2, IL-7, IL-17, IL-
10, MCP-1, MIP-1A, and TNF-α in intensive care unit 
(ICU) patients are higher than that of non-ICU patients 
[26]. Moreover, the plasma levels of IL-2, IL-6, IL-8, IL-10, 
and TNF-α, observed in severe infection, are prominently 
greater than those with nonsevere infection [27]. Few 
retrospective studies have revealed that the lung injury 
is strongly associated with the levels of IL-1α, IL-1ra, IL-
2, IL-7, IL-10, IL-17, IFN-ɣ, inducible interferon protein 
(IP)-10, G-CSF, and MCP-3 and all of these cytokines and 
chemokines excluding MCP-3 are positively related to 
SARS-CoV-2 viral load [7, 28]. The plasma level of IL-6, a 
notorious cytokine contributing to MAS, increases both in 
mild and severe patient groups of COVID-19 with being 
remarkably higher among the latter group of patients 
[3, 27, 29, 31]. Furthermore, based on the assessment of 
pulmonary infiltration in patients with ARDS, the large 
area of lung injury (≥ 50%) is closely correlated with the 
increased level of IL-6 and the subgroup of lymphocytes in 
the peripheral blood [32]. 

During the infection, both innate and adaptive 
immune cells synergistically participate in the antiviral 
response [33]. The important increment in the number of 
neutrophils, leukocytes, and the neutrophil-lymphocyte-
ratio (NLR) has been observed in severe COVID-19 
compared to mild cases. The prominent lymphopenia, 
indicating an impairment of immune system, develops in 
most COVID-19 patients, especially in severe ones [3, 27]. 
Therefore, it seems that neutrophils and leukocytes might 
reinforce the CS rather than lymphocytes in COVID-19. 

The level of lymphocytes and subsets of T cells, which 
play a significant role in the balancing of the immune 
response, varies according to the type of the virus due to 
possible viral pathogenetic mechanisms. Data from recent 
studies have suggested that SARS-CoV-2 infection can 
lead to immune dysregulation by affecting the subsets of 
T cells. In patients with COVID-19, the levels of T helper 
cells (CD3+, CD4+), cytotoxic suppressor T cells (CD3+, 
CD8+), and regulatory T cells are below normal levels 
while T helper cells and T regulatory cells in severe patients 
are remarkably lower than nonsevere patients. Regulatory 

T cells are responsible for the maintenance of the immune 
homeostasis by suppressing the activation, proliferation, 
and proinflammatory function of most lymphocytes, 
including CD+4 T cells, CD+8 T cells, NK cells, and B 
cells [34, 35]. Furthermore, the percentage of naïve helper 
T cells amplifies, while the percentage of memory T helper 
cells and CD28+ cytotoxic suppressor T cells decreases 
in severe COVID-19 [3, 27]. The equilibrium between 
the naïve T cells and memory T cells is fundamental 
for maintaining an efficient immune response [36]. In 
addition to T cells, the reduction of B cells and NK cells 
are seen in COVID-19. Another important result is the 
confirmed strong relationship between inflammatory 
markers, including erythrocyte sedimentation rate 
(ESR), C-reactive protein (CRP) and IL-6, and the subset 
of lymphocytes  [30]. However, there is no significant 
correlation between IL-6 with subsets of lymphocytes [3] 
and CD+4/CD+8 T cell ratio in SARS-CoV-2 infection 
is similar to the healthy group,  the increase in this ratio 
and the decline of CD+8 T cells and B cells are considered 
poor predictors for the assessment of post-treatment 
clinical follow-up [3, 30]. Taken together, these results 
indicate that SARS-CoV-2 is responsible for an immune 
dysregulation with the induction of aberrant cytokine and 
chemokine response, alteration in levels of the lymphocyte 
subsets, all of which result in cytokine storm and sharpish 
tissue damage. 

4. Antiinflammatory treatments used for combatting 
COVID-19  
CS is an acute life-threatening dynamic inflammatory 
condition resulting from chaotic activation of a wide array 
of cytokines from initiation, immune hyperactivation, 
and eventually progressive multiorgan dysfunction/failure 
(MODS/MOF). Prompt diagnosis and effective therapeutic 
interventions are crucial for halting CS. Treatment is 
directed at controlling chaotic inflammatory response 
with specifically or nonspecifically targeting inflammatory 
cytokines or associated effector signaling pathways for 
restoring the host immune system (Table). Herein, we 
reviewed the role of the potential immuno- suppressive 
and immuno-modulatory treatments currently used in 
rheumatology practice to control hyper-inflammation 
encountered in COVID-19.
4.1. Corticosteroids
Initial case-based observations and, thereafter, the report 
of COVID-19 Global Rheumatology Alliance (GRA), 
which showed adverse outcomes in those patients receiving 
corticosteroids, precluded use of these drugs which is 
deemed to accelerate viral replication [37]. However, 
with a better understanding of the pathogenesis of severe 
COVID-19, corticosteroids are employed for their broad-
spectrum antiinflammatory actions on production of 
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Table. Anti-rheumatic drugs with proven efficacy in the treatment of COVID-19.

Drug Regimen When to consider Recommendations/precautions 

Corticosteroids

For 10 days (or until discharge, if earlier)
with daily doses of
· Dexamethasone 6 mg IV or PO or 
· Prednisone 40 mg or
· Methylprednisolone 32 mg 
Alternatively, 250 to 500 mg pulses for 3 
consecutive days 

Hospitalized patients with severe 
COVID-19 who require respiratory 
support (SpO2 ≤94% on room air) 
or with end organ dysfunction as 
seen in sepsis

· Concomitant use of antivirals is recommended
· Beware of secondary viral, bacterial, fungal (i.e. Mucor mycosis) infections
· Beware of reactivation of latent viral (i.e. Hepatitis B) and mycobacterial infections
· Blood glucose monitoring
· Steroid myopathy

Colchicine 0.5 mg PO BID for the first 3 days, and then 
once per day for 27 consecutive days

PCR positive outpatients with at 
least one adverse prognostic factor 

· Evidence is weak for the use of colchicine
· Bone marrow suppression, liver toxicity, diarrhea, myopathy, and serious drug 
interactions may occur with Cyp3A4 metabolites.  

Anakinra

Not well determined, 
varied between 100 mg daily subc to 5 mg/
kg twice a day IV. Doses used to treat HLH 
would be a reasonable approach
(doses >4 mg per kg of body weight)

· Patients with obvious 
hyperinflammation (CRP >100 
mg/L) who could not tolerate 
corticosteroids such as uncontrolled 
diabetes and with liver disease,
· Refractory MIS-C and MIS-A

· Evidence is weak for the use of anakinra
· Low subcutaneous doses (less than 200 mg/day) might not be effective
· Not effective in advanced disease, ie in those who need ventilatory support on 
admission 
· More effective if used early before organ dysfunction
· Not effective when co-administered with dexamethasone
· Risk of neutropenia 

Tocilizumab
400 mg iv single infusion, in case of 
respiratory decline a repeat dose of 400 mg 
12–24 h after the first infusion   

On top of corticosteroids when 
hypoxemia progressively worsens 

· More effective if administered promptly at the time of rapidly progressive severe 
hypoxemia 
· Benefit might be unlikely if patients have received ventilatory support for several days 
or more
· Beware of secondary infections and bowel perforation 

Baricitinib 4 mg for 14 days or until hospital discharge

· Hospitalized patients requiring 
respiratory support
· Should not be used for whom do 
not require oxygen support and for 
the COVID-19 prophylaxis

· 2 mg once daily for patients with estimated glomerular filtration rate of less than 60 
ml/min  
· Greater efficacy if combined with corticosteroids 
· Beware of increased risk of thromboembolic events
· Beware of secondary infections, particularly in patients who co-administered 
corticosteroids 
·  Might increase the risk of a worse outcome if used for prophylaxis

Intravenous immuno-
globulin (IVIg)

· 1–2 g per kg of body weight for up to 4 days, 
· MIS-C 2 g/kg single day along with pulse 
methyl prednisolone

· MIS-C & MIS-A patients 
· Refractory patients that meet 
WHO definition of critical 
COVID-19   

· Low quality of evidence for its efficacy
· Limited drug supply and extensive cost limits its use
· Cardiac function and fluid status should be assessed before infusion. If abnormal, the 
rate of IVIg infusion may be slowed, or the treatment may be given in divided doses 
over 2 days, and/or diuretics may be considered to avoid volume overload 
· Increased risk of hemolytic anemia
· A second dose of IVIg is not recommended in patients with refractory MIS-C

CRP: C reactive protein, HLH: Hemophagocytic lymphohistiocytosis, IV: intravenous, MIS-A: Multisystem Inflammatory Syndrome in Adults, MIS-C: Multisystem Inflammatory 
Syndrome in Children, Subc: subcutaneous, PCR: polymerase chain reaction, PO: per oral, WHO: World Health Organization.
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proinflammatory cytokines and activation of immune 
cells, including T cells, monocytes and macrophages. 
Several well-designed clinical trials investigated the role 
of corticosteroids on various stages of the disease with 
different application regimens.

The largest corticosteroid trial is the open-label 
RECOVERY trial in which hospitalized COVID-19 
patients were randomized to receive either standard 
of care (SOC, n=4321) or 6 mg/day dexamethasone 
(n=2104) for up to 10 days [38]. Dexamethasone 
reduced 28-day mortality rate by 20% (age-adjusted 
rate ratio 0.8, 95% CI 0.75–0.93) in patients requiring 
respiratory support as nasal, high-flow oxygen or invasive/
noninvasive mechanical ventilation. However, a trend 
towards harm was noted with the use of dexamethasone 
in those patients who did not need respiratory support 
at the time of randomization. Therefore, guidelines1 do 
not recommend the use of corticosteroids in patients 
with nonsevere COVID-19 (SpO2 >94%, not requiring 
supplemental oxygen). Studies regarding the effects of 
corticosteroids on viral clearance are conflicting, but there 
is a possibility that early administration of corticosteroids 
in nonseverely ill patients might be deleterious due to an 
increase of viral shedding or a delay in viral clearance [39, 
40]. There is also evidence showing that impaired viral 
clearance is associated with severe disease and increased 
age rather than early use of corticosteroids [40].   

Efficacy of intravenous dexamethasone was also 
investigated in COVID-19 patients with moderate to severe 
ARDS who required ICU admission. The CoDEX trial 
randomly allocated patients to receive either SOC alone 
(n=148) or 20 mg daily dexamethasone intravenously for 
5 days, 10 mg of dexamethasone daily for 5 days or until 
ICU discharge plus SOC (n=151)[3, 41]. Dexamethasone 
provided more ventilator-free days during the first 28 days 
(6.6; 95% CI, 5.0-8.2 days vs. 4.0; 95% CI, 2.9–5.4 days; 
difference 2.26; 95% CI, 0.2–4.38 days) compared with 
SOC. However, all-cause mortality at 28 days was found 
similar between groups (56.3% in the dexamethasone 
group vs 61.5% the SOC group; hazard ratio, 0.97; 95% CI, 
0.72–1.31). Dexamethasone was well-tolerated without 
increasing the rate of serious infections or hyperglycemia 
[3, 41]. 

Despite there were numerous clinical trials and 
several meta-analyses, the optimal corticosteroid type, 
dose, and treatment duration in patients with COVID-19 
remains unclear. Dexamethasone is preferred over 
other corticosteroids for its shown efficacy in HLH but 
there are several other trials reporting positive results 
with the use of other agents like methylprednisolone in 
equivalent total daily doses of dexamethasone 6 mg/day 
(methylprednisolone 32 mg daily or prednisone 40 mg 
1 https://www.idsociety.org/covid-19-real-time-learning-network/therapeutics-and-interventions/corticosteroids/

daily) [42–44]. Methylprednisolone 250 to 500 mg daily 
pulses for 3–6 consecutive days has also been shown to 
improve survival in severe COVID-19 patients [45, 46]. 
Hydrocortisone would be one of the options although its 
efficacy seemed to be lower than dexamethasone[46]. The 
open-label STOIC trial showed that, an inhaled steroid, 
budesonide 400 μg twice a day until symptom resolution, 
decreased the need for urgent medical care in mild patients 
with early COVID-19 [47].

Another possible role of corticosteroids would be the 
treatment of post-COVID inflammatory lung diseases, as 
suggested by preliminary data from small observational 
studies that report symptomatic and radiological 
improvement in a subset of patients with organizing 
pneumonia and lung fibrosis [48]. 
4.2. Chloroquine and hydroxychloroquine 
Chloroquine (CQ) and hydroxychloroquine (HCQ) 
are 4-aminoquinoline derivatives that are approved by 
the U.S. Food and Drug Administration (FDA) for the 
treatment of systemic lupus erythematosus, rheumatoid 
arthritis (RA), and they have been used for these disorders 
for decades. HCQ does not increase the risk of infection 
and has lipid-lowering, antithrombotic and antineoplastic 
properties [49]. CQ and HCQ may prolong QT interval 
constituting potential risk of fatal arrhythmia in higher 
doses or if combined with QT prolonging medications as 
well as those with cardiac diseases [50]. 

It has been known that CQ and HCQ have nonspecific 
antimicrobial activity against Coxiella burnetii, 
plasmodium, and many viruses, including hepatitis 
B, HIV, H1N1, and Zika virus [51]. Therefore, it had 
rapidly attracted attention at the beginning of COVID-19 
pandemic. However, several randomized controlled 
trials clearly demonstrated that HCQ neither protected 
nor improved the outcomes of COVID-19 patients [52], 
leaving some important messages for the future pandemics. 
First, some trials showed a trend towards harm with use of 
HCQ [53]. Second, massive demand for HCQ caused drug 
shortage leading to the flare of disease in patients with 
lupus. Third, in-vitro studies and animal models do not 
necessarily mean in vivo efficacy of drugs when used for 
unapproved indications. 
4.3. Intravenous immunoglobulin (IVIg) 
IVIg is a blood product containing polyclonal 
immunoglobulin G isolated and pooled from healthy donors 
used to treat Immune Thrombocytopenic Purpura (ITP), 
Kawasaki disease and various inflammatory neurologic 
and myositis syndromes. It has immunomodulatory 
functions with unknown mechanisms of action. One of 
the proposed mechanisms is the interaction of IgG-Fc 
with Fc gamma receptors located on almost all immune 
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cells, resulting in pleiotropic functional consequences 
including the expansion of regulatory T cell population, 
phagocytosis, antibody-dependent cellular cytotoxicity 
(ADCC), immune cell differentiation and maturation, 
apoptosis, expression of pro-inflammatory cytokines, 
chemokines, and antigen-presentation [54, 55]. 

Studies on efficacy of IVIg are largely retrospective 
cohort studies, and IVIg was utilized as a rescue medication 
following other medications like corticosteroids and 
tocilizumab [56, 57]. Prospective RCTs are scarce and 
included a small number of patients with conflicting results 
[56, 58, 59]. Metaanalyzes of published studies suggest 
survival advantage in only critical COVID-19 patients 
characterized by ARDS, sepsis, septic shock that require 
intensive care admission [60]. Moreover, its costliness and 
limited supply restrict its general use. The methodological 
limitations of all the studies preclude the extraction of 
any definitive conclusion about when and how to use 
IVIg in the context of COVID-19. However, patients with 
transplantation, pregnancy, secondary infections, immune 
thrombocytopenia, muscular, myocardial, and neurologic 
manifestations would be suitable candidates for IVIg 
treatment. It should be remembered that the efficacy of 
IVIg comes from immunomodulatory actions rather than 
viral neutralizing actions [61] which can be obtained at 
higher doses than neutralizing doses such as 1 g per kg 
body weight daily for up to 4 consecutive days [62]. 

American College of Rheumatology recommends 
the use of IVIg as the first-line treatment in patients 
complicated with Multisystem Inflammatory Syndrome in 
Children and Adults (MIS-C and MIS-A). In these patients 
IVIg is given 2 gr of per kg body weight for a single dose 
along with 1–2 mg/kg methylprednisolone, aspirin, and 
anti-coagulants [63–66].
4.4. IL-6 antagonists 
IL-6 receptors are expressed in almost all immune cells, 
and IL-6 acts as a master player inducing proliferation and 
differentiation of immune cells. IL-6 exerts pleiotropic 
effects on immune cells, which are manifested as promoted 
differentiation of T-helper type 17 (Th17), CD8+ T, 
and B cells, increased migration of neutrophils, and 
reduced development of Tregs. Moreover, IL-6 modulates 
endothelial cells and vascular smooth muscle cells leading 
to increased vascular permeability and leakage, endothelial 
activation, and accelerated atherogenesis, which are 
manifested clinically as cardiovascular events, hypotension, 
and pulmonary dysfunction in COVID-19.  Collectively, 
IL-6 promotes both immune cell hyperactivation and 
target organ dysfunction in severe COVID-19 [67].

In healthy individuals, the IL-6 levels in circulation 
are extremely low and are in the range of 1–5 pg/mL, 
2 FDA. Actemra (tocilizumab) injection, for intravenous or subcutaneous use: highlights of prescribing information.2010.www.accessdata.fda.gov/drug-
satfda_docs/label/2017/125276s114lbl.pdf

marked elevations reported in many inflammatory 
conditions including cytokine release syndrome [68]. 
Several therapeutic agents have been developed to 
inhibit the cytokine itself (sirikumab, siltuximab, 
clazakizumab, and olokizumab), the signaling via the 
IL-6 receptor (tocilizumab, sarilumab, levilimab), or 
its postreceptor downstream signaling pathways (JAK/
STAT). Tocilizumab (TCZ) is approved for the treatment 
of rheumatoid arthritis (RA), juvenile idiopathic arthritis, 
giant cell arteritis, cytokine release syndrome, idiopathic 
multicentric Castleman’s disease (iMCD)2. 

COVID-19 patients have high plasma IL-6 levels, 
especially those with a more severe disease presentation 
[27]. IL-6 production can be stimulated by SARS-CoV-2 
itself or by stimulation of other immune cells [69]. Indeed, 
it has been shown that, during COVID-19, CD4+T 
lymphocytes are rapidly activated to differentiate into 
pathogenic Th1 cells, generating GM-CSF and other pro-
inflammatory cytokines, which further induce activation 
of monocytes with high expression of IL-6 [70]. In clinical 
point of view, there is striking correlation between serum 
IL-6 levels and SARS-CoV-2 RNAaemia, which strongly 
indicates worse outcome [71]. Hence, blocking IL-6 would 
potentially reduce the detrimental immune response 
caused by SARS-CoV-2. There are dozens of clinical 
trials assessing the efficacy of IL-6 antagonists in patients 
hospitalized for COVID-19 that variously reported benefit, 
no effect or harm, probably due to different study designs 
and enrolled patient characteristics. 

A recent metaanalysis evaluated 27 clinical trials 
performed on almost 11,000 patients with diverse disease 
characteristics at different dosages of IL-6 antagonists, 
either alone or combined with corticosteroids [72]. IL-6 
antagonist use, compared to usual care or placebo, was 
associated with lower 28-day all-cause mortality, lower 
progression to invasive mechanical ventilation (IMV), 
or death without increasing the risk of infection at the 
same time period. Concurrent administration of IL-6 
antagonists and corticosteroids at randomization provided 
greater benefit than either drug given individually. The 
association of IL-6 antagonists with lower mortality was 
more marked in those patients requiring oxygen flow rate 
of ≤15 L/min and noninvasive ventilation and who did not 
receive IMV at randomization (70). 

TCZ is the most widely studied IL-6 antagonist for the 
treatment of severe COVID-19, and its efficacy seemed 
to be more prominent than sarilimumab, while data are 
limited for other IL-6 antagonists [72]. Similarly, due to 
limited data, associations could not be determined for the 
efficacy of low-dose IL-6 antagonists, those who did not 
require respiratory support, use of concomitant antiviral 
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treatment, and the risk of secondary infections in advance. 
Hence, it is prudent to monitor patients for the incidence 
of secondary/opportunistic infections and the other 
well-known complications such as bowel perforation. 
After accumulated data, FDA issued an emergency use 
authorization for the tocilizumab for the treatment 
of hospitalized adults and pediatric (≥2 years of age) 
COVID-19 patients who are requiring respiratory support 
and receiving systemic corticosteroids in June 2021.  
4.5. Janus kinase (JAK) inhibitors
JAK inhibitors are potent inhibitors of one or more of 
the JAK family of enzymes (JAK1, JAK2, JAK3, TYK2), 
interfering with the JAK-STAT signaling pathway, which 
mediates the effects of many interleukins (IL-2, IL-3, IL-
4, IL-5, IL-6, IL-7, IL-9, IL-10, IL-12, IL-15, IL-21, IL-
23), IFN-(α, β, γ) and growth factors (GM-CSF, TGF-β, 
erythropoietin and thrombopoietin) [73]. Like the other 
respiratory viruses, SARS-CoV-2 triggers inflammation 
via the JAK/STAT pathway leading to the recruitment of 
inflammatory cells, including macrophages, monocytes, 
lymphocytes, natural killer cells, and dendritic cells, as well 
as activation of pneumocytes and endothelial cells [74]. 

JAK inhibitors are currently approved for the treatment 
of RA, psoriatic arthritis, ulcerative colitis, polyarticular 
juvenile arthritis, and their use in other inflammatory 
disorders are continuously expanding [75]. Idea in 
COVID-19 treatment is that many pro-inflammatory 
cytokines involved in cytokine storm of COVID-19 might 
be inhibited by a single agent, JAK inhibitors (tofacitinib, 
baricitinib, ruxolitinib). Besides, these shared properties of 
JAK inhibitors, baricitinib blocks host Numb-associated 
kinases (AP-2-associated protein kinase 1, AAK1; cyclin 
G-associated kinase, GAK; BMP2 inducible kinase, BIKE), 
which all mediate viral entry [76]. This effect is only 
restricted to baricitinib among other JAK inhibitors with 
theoretic potential of blocking viral entry and assembly 
of virus particles into pneumocytes in therapeutic doses 
used to treat RA [77]. Given this hypothesis, baricitinib 
was tested in a large multi-center RCT, the Adaptive 
COVID-19 Treatment Trial 2 (ACTT-2)[78]. In this trial, 
a combination of remdesivir with baricitinib (4 mg/day 
for 14 days or until hospital discharge) showed improved 
outcomes (days for recovery, clinical status at day 15, and 
the 28-day mortality) compared to remdesivir used alone 
in hospitalized COVID-19 patients [78]. These clinical 
benefits were consistent across different age groups, sexes, 
and ethnic groups, as well as independent of the duration 
of symptoms and severity of disease at enrollment, though 
benefits of baricitinib combination were greater in moderate 
to severe COVID-19 patients requiring respiratory support 
as nasal, high flow oxygen or noninvasive ventilation. 
Although combination did not reveal a significant 28-
day mortality difference (5.1% with remdesivir plus 
baricitinib vs. 7.8% with remdesivir alone), the composite 

outcome progression to mechanical ventilation and death 
was prevented in one third of patients (HR 0.69; 95% CI, 
0.50–0.95). Moreover, remdesivir plus baricitinib reduced 
the mechanical ventilation or extracorporeal membrane 
oxygenation (ECMO) requirements by median of 11 
days among patients who required these interventions 
after enrollment [78]. With the results of this trial, FDA 
issued an emergency use authorization for remdesivir plus 
baricitinib in hospitalized patients with COVID-19 who 
required oxygen supplementation in November 2020. 

COV-BARRIER study investigated the role of baricitinib 
on a heterogenous group of patients [79]. Patients were 
randomly assigned to receive either baricitinib 4 mg 
14 days (n=764) or placebo (n=761) on top of standard 
of care determined by local clinical practice. Only %20 
of patients co-administered remdesivir and more than 
90% of patients received concomitant dexamethasone. 
Although baricitinib did not reach the composite primary 
endpoint (the proportion of patients who progressed 
to high-flow oxygen, noninvasive ventilation, invasive 
mechanical ventilation, or death by day 28), the 28-day all-
cause mortality was 8% for baricitinib and 13% for placebo 
(HR 0.57; 95% CI, 0.41–0.78) revealing a 38% relative 
reduction in mortality. Consistently, the 60-day all-cause 
mortality was 10% for baricitinib vs 15% for placebo 
(HR 0.62; 95%CI, 0.47–0.83). According to intention to 
treat analysis, one additional death was prevented per 20 
baricitinib-treated patients, a number like ACTT-2 trial. 
Benefits were consistent across different age groups, sexes, 
and ethnic groups, duration of symptoms and baseline 
corticosteroid use. Observed benefits were greater in 
patients with severe disease and who did not receive 
remdesivir at baseline. After the result of this trial, FDA 
has revised the Emergency Use Authorization, authorizing 
baricitinib alone for the treatment of COVID-19 in 
hospitalized adults and pediatric patients (≥2 years of age), 
requiring respiratory support or ECMO in July 2021 [79]. 

Efficacy of another JAK inhibitor, tofacitinib in 
COVID-19 pneumonia was investigated an industry-
supported trial in 289 patients in Brazil (STOP-COVID)
[80]. Tofacitinib was administered 10 mg twice daily for up 
to 14 days or until hospital discharge to patients requiring 
respiratory support. Although the STOP-COVID trial 
was not powered to detect a difference in mortality, it has 
reached the composite primary endpoint, which was the 
reduction of death or respiratory failure at 28 days (18.1% 
of the tofacitinib vs 29.0% of the placebo, risk ratio 0.63; 
95% CI, 0.41–0.97). Of note, while 20% of the patients 
were co-administered corticosteroids in the ACTT-2 trial, 
almost 90% of patients received them in STOP-COVID 
trial, suggesting the superiority of combination. Studies 
for another JAK inhibitor, ruxolitinib, are ongoing and 
preliminary results are promising [81].
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JAK inhibitors increase the risk of secondary infections 
and thromboembolic events, particularly in patients with 
underlying cardiovascular disease. However, compared 
to placebo, baricitinib and tofacitinib had a significantly 
lower incidence of severe/nonsevere adverse events 
including infections [78, 80], though patients who received 
concomitant glucocorticoids after randomization had a 
higher rate of incident infections [78]. COVID-19 Global 
Rheumatology Alliance reported a two-fold increased risk 
of mechanical ventilation and death in RA patients who 
were under treatment with JAK inhibitors compared to 
TNF inhibitors[82]. In the same study, investigators also 
find more than 4-fold increased risk of worse outcomes for 
rituximab, whereas IL-6 inhibitors and abatacept did not 
increase adverse outcomes compared to anti-TNF users 
[78]. Hence, timing of JAK-inhibitor initiation during 
COVID-19 might have pivotal importance in determining 
the outcome. During initial phases of SARS-CoV-2 
infection, symptomatic patients present with impaired 
type I/III IFN-mediated antiviral responses. Critically ill 
COVID-19 patients show genetic polymorphisms in one 
IFN receptor gene (IFNRA2) and in a gene locus near the 
TYK2, which is the key for IFN, interleukin (IL)-12 and IL-
23 signaling, and Th1/Th17 cell-mediated antiviral immune 
responses [83]. Pretreatment with JAK inhibitors might 
blunt IFNs’ antiviral responses increasing risk of severe 
infection; therefore, these group of drugs should not be used 
for prophylaxis or those not requiring respiratory support 
[83]. In patients with moderate to severe SARS-CoV-2 
pneumonia, combination of baricitinib with corticosteroids 
provided greater improvement in pulmonary functions 
than corticosteroids alone; therefore, it would be better to 
co-administer JAK inhibitors with corticosteroids [80, 84].
4.6. IL-1 inhibitors: anakinra and canakinumab
IL-1 family are pleiotropic cytokines, have roles in 
inflammation, hematopoiesis, and fibrosis. IL-1β and 
TNF-α promote vascular permeability and leakage. Both 
IL-1β and IL-18 fuel cytokine storm and MAS and IL-1 
cytokines (except IL-18) can be successfully inhibited 
by IL-1 antagonists [85]. Nod-like receptor family pyrin 
domain-containing 3 (NLRP3) is a critical inflammasome 
in the acute protection of the body against a wide variety of 
noxious stimuli, including RNA viruses [86]. SARS-COV-2 
has been shown to induce NLRP3 by its ion channel-
forming M protein and ORF8b[87] and activates caspase-1, 
a molecule responsible for the activation and exuberant 
release of IL-1β and IL-18 [26, 27, 88].

Anakinra3 is a recombinant antagonist of human 
IL-1 and approved for the treatment of RA and certain 
autoinflammatory disorders with recommended doses of 
1–2 mg/kg/day with a maximum daily dose of 8 mg/kg. In 
3  FDA. Kineret® (anakinra) for injection, for subcutaneous use: Highlights Of prescribing Information. 2001. https://www.accessdata.fda.gov/drug-
satfda_docs/label/2012/103950s5136lbl.pdf

terms of sepsis and MAS, the use of extremely high doses 
of anakinra (2 mg/kg/h for 72 h continuous infusion) 
was shown to be safe [89]. Because of its proven safety, 
anakinra is one of the first studied immunomodulatory 
treatments showing benefit when it’s used at higher doses 
but not with low doses [90]. Currently, there are several 
anakinra studies registered for COVID-19 and only one 
RCT; the CORIMUNO-ANA-1 trial has published results 
[91]. The rest of the available data come from low-quality 
studies with a significant risk of bias. The CORIMUNO-
ANA-1 trial included mild-to-moderate COVID-19 
inpatients who required at least 3 L/min of oxygen but 
not mechanical ventilation and elevated CRP (≥25 mg/L). 
Patients (n=116) were 1:1 randomized to receive either 
SOC or SOC plus intravenous anakinra (200 mg twice a 
day on days 1–3, 100 mg twice on day 4, and 100 mg once 
on day 5, a similar dose used to treat critically ill patients 
with HLH. The trial was early terminated following an 
interim analysis that showed any evidence to support 
anakinra on clinical improvement, ventilator support and 
death over SOC alone. However, this trial is criticized 
for use of corticosteroids in more than half of patients 
in both arms that might shadow efficacy of anakinra. A 
recent metaanalysis revealed improved survival in patients 
treated with anakinra (38 deaths in 342) than in those who 
received SOC (137 deaths in 553; adjusted OR 0.32 95%CI, 
0.20–0.51) [92]. Subgroup analyzes showed that anakinra 
was more effective in reducing mortality in patients 
with CRP concentrations of >100 mg/L and when given 
without dexamethasone, but it was not effective when 
co-administered with dexamethasone. Metaanalysis also 
reported a nonsignificant increase in the risk of adverse 
events with anakinra [92]. The SAVE study determined 
high-risk patients, which potentially progress into severe 
respiratory failure by measuring serum soluble urokinase 
plasminogen activator receptor (suPAR) levels as an early 
indicator for clinical worsening. Patients were treated with 
100 mg/day subcutaneous anakinra for 10 days if they 
had suPAR of >6 ng/mL reporting improved respiratory 
and survival outcomes suggesting superior efficacy when 
administered early [93, 94]. The other IL-1β antagonist 
canakinumab (450–750 mg single iv infusion) was failed 
to show efficacy in improving survival without IMV [95].
4.7. Colchicine 
Colchicine has multiple effects on the function of the 
immune system, particularly on neutrophils, including 
inhibition of tubulin polymerization and microtubule 
generation, chemotaxis, superoxide anion production, 
suppression of cellular adhesion molecules, inflammatory 
chemokines, and cytokines (TNF-α and IL-6) as well 
as NLRP3 inflammasome activation that mediates 
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interleukin 1β production [96]. Colchicine is approved 
for the treatment of gout and familial Mediterranean fever 
(FMF) but has attracted attention in recent years for the 
management of atherosclerotic cardiovascular disease and 
idiopathic pericarditis [97]. Beyond gout and FMF, given 
its anti-inflammatory/immuno-modulatory properties 
and good safety profile, colchicine is widely used to treat 
a variety of inflammatory conditions. Several studies 
investigated the efficacy of colchicine in COVID-19, 
yielding conflicting results. 

The first small RCT (n=36 in both arms) by Lopes et al, 
suggested superiority of colchicine on reduction in length 
of both supplemental oxygen therapy and hospitalization 
compared to placebo in patients with moderate to severe 
COVID-19 but fail to show survival benefit due to the low 
number of deaths in both groups [98]. The COLCORONA 
trial included outpatients, diagnosed within 24 h of 
randomization, over 40 years with at least one high-risk 
adverse prognostic feature to determine the composite 
endpoint of death or hospital admission. Patients were 1:1 
randomized to receive either colchicine (n=2235) 0.5 mg 
twice per day for 3 days followed by once per day for 27 
more days or placebo (n=2253) [99]. The primary endpoint 
evolved in 104 (4.7%) in the colchicine group and 131 
(5.8%) in the placebo group (OR: 0.79, 95% CI, 0.61-1.03; 
p=0.08), reaching significance when only PCR confirmed 
4159 cases were included (OR 0.75, 95%CI, 0.57–0.99; 
p=0.042). Death was occurred in 5 (0.2%) and 9 (0.4%) 
patients (OR 0.56, 95%CI, 0.19–1.66) in colchicine and 
placebo groups, respectively. In RECOVERY, colchicine 
arm of the trial was terminated, since the colchicine  failed 
to show a significant difference in the primary endpoint of 
the 28-day mortality rate of colchicine vs. SOC alone (21% 
in both colchicine and SOC arms; risk ratio 1.01, 95%CI: 
0.93-1.1; P=0.77) [100].   

Metaanalyzes of observational and RCTs showed an 
advantage of colchicine use; however, subgroup analysis 
with randomized controlled trials showed no statistically 
significant difference in the mortality (OR: 0.80, 95%CI, 
0.44–1.46) [101]. Moreover, colchicine neither prevented 
COVID-19-related hospital admissions nor disease 
course among rheumatic patients who were receiving it 
for their underlying diseases [102, 103]. Colchicine has 
potential toxicities, particularly in those with kidney and 
liver impairment and elders, myelosuppression, elevation 
in transaminases, and myopathy, which are commonly 
observed during the course of COVID-19 [97, 104]. 
Therefore, routine use of colchicine is not recommended 
until well designed trials show its clear benefit on specific 
populations.
4.8. Anti-TNF agents
TNF-α is one of the most potent pro-inflammatory 
cytokines with a broad spectrum of actions. TNF-α is 

produced by macrophages, monocytes, and T cells that 
promote expression or other inflammatory cytokines 
via NFKB pathway. Marked elevations were reported 
in many inflammatory conditions including cytokine 
release syndrome. [26]. SARS-CoV viral spike protein 
can modulate TNF-α-converting enzyme (TACE)-
dependent shedding of the ACE2 ectodomain, required 
for the viral entry which is coupled to TNF-α production 
[105]. However, studies assessing serum TNF-α levels in 
COVID-19 patients revealed conflicting results. Some 
studies found that it elevated, whereas some others did 
not [67]. High serum TNF concentrations at the time of 
admission, thus, at very early phase of infection, predicted 
poor outcomes and found significantly elevated in severe 
COVID patients [106]. Therefore, it’s hypothesized that 
the use of TNF inhibitors might be effective in blocking 
viral entry and detrimental effects of exuberant TNF-α, 
as shown in preclinical studies on severe respiratory 
syncytial virus and influenza infections [106, 107]. The 
COVID-19 Global Rheumatology Alliance (GRA) registry 
showed fewer hospitalizations among people treated with 
TNF antagonists than non-TNF inhibitor biologic/JAK 
inhibitor users (adjusted OR 0.40, 95%CI, 0.19–0.81) that 
indicate the potential favorable role of anti-TNFs [82]. 

Since TNF fuels other potent pro-inflammatory 
cytokines, anti-TNF therapy might be more effective 
when applied early in the disease course to block 
excessive production of TNF. Intravenous infliximab and 
subcutaneous adalimumab with loading doses might 
be preferred over other anti-TNFs. Although there are 
few observational reports regarding the successful use of 
anti-TNFs, the limitations of observational data need to 
be considered when translating these findings to clinical 
practice. Trials on the use of anti-TNFs in COVID-19 such 
as the “adalimumab in COVID-19 to prevent respiratory 
failure in community care, (AVID-CC)” are ongoing, but 
none of them have published results. 
4.9. Anti-IL-17 antagonists 
One of the cytokines found abundant in COVID-19 
patients is IL-17 and reported to be associated with severe 
lung inflammation [26]. IL-17 has wide-ranging pro-
inflammatory effects on induction of cytokines; IL-1β, IL-
6, TNF-α; growth factors, G-CSF; chemokines; and matrix 
metalloproteinases. IL-17 inhibitors did not increase the 
risk of progressive COVID-19 [108]. For the use of IL-
17 antagonists in COVID-19, there are very scarce data, 
limited to a recent study from Russia, which fail to show 
clinical benefit of netakimab [109].
4.10. GM-CSF inhibitors 
GM-CSF is one of the key molecules involved in cytokine 
storm which is excessively released in COVID-19 patients 
[70]. GM-CSF is crucial for driving both innate and 
adaptive immune responses and blockade of this growth 
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factor may halt immunopathology caused by the virus. 
Mavrilimumab is a GM-CSF inhibitor developed for 
the refractory RA [110]. Studies evaluating the efficacy 
of mavrilimumab revealed conflicting results [41, 111]. 
Lenzilumab is another GM-CSF inhibitor, which show 
promise in the treatment of severe refractory COVID-19 
[112]. 

5. Conclusion  
Excessive inflammatory response with features of cytokine 
storm causes severe disease course and adversely affects 
the outcome of COVID-19. Successful vaccination 

campaigns and antiviral drugs in development programs 
would be the most effective tools in the fight against the 
COVID-19. Larger trials are ongoing, and their results are 
urgently needed to ascertain the most effective treatment 
options, and some of such novel agents show promise in 
their early clinical studies. Until the discovery of curative 
medications, drugs that are used in daily rheumatology 
practice constitute life-saving treatment options in 
COVID-19 patients with an extenuating severe detrimental 
inflammatory response. Herein, we discussed altered 
immune responses in COVID-19 and presented current 
treatment options in the treatment of severe COVID-19.
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