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Microglial iron trafficking: new player in brain injury 
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1. Introduction
Neonatal brain injury is a significant reason for 
children’s developmental problems and persistent 
neurological deficits. Hypoxia and ischemia are central 
to the development of brain injury that occurs in full-
term and preterm neonates [1, 2]. Hypoxic-ischemic 
encephalopathy (HIE) is a common problem with a global 
prevalence ranging from 1 to 3.5/1000 live births in high-
income countries and 26/1000 in low-resource countries 
[3]. Preterm birth’s global incidence is 15 million and it is a 
significant reason for infant mortality and morbidity with 
permanent neurologic problems and the associated social 
and economic burden [4]. HIE is also associated with 
other comorbid neurological disorders such as seizures 
and learning, behavioral, visual, cognitive, and motor 
disorders [5].

Alarmingly, the incidence of HIE in preterm infants 
is higher (4–48 per 1000 preterm neonates), representing 
that it accomplishes a major task in the pathogenesis 
of preterm brain injury [6, 7]. Currently, there are 
no approved therapies for preterm brain injury, and 
hypothermia treatment (HT) is the only approved therapy 
for term infants in terms of HIE [4, 8]. Still, current HT 
practice has decreased HIE-related mortality from 25% to 
9% and cerebral palsy (CP) from 20% to 16% [9]. Studies 
have revealed that HT did not help all children and that 
certain neurodevelopmental problems remain even in 
the absence of CP. Thus, further therapies are needed to 
improve long-term outcomes [10, 11].

The development of novel therapies for the treatment of 
neonatal brain injury strictly requires the identification of 
novel cellular pathways, particularly cell death mechanisms 
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[12]. Reactive oxygen species (ROS), inflammation, 
excitatory amino acids, and mitochondrial dysfunction 
are among some of these cellular mechanisms that lead to 
brain injury via cell death [11, 13-15]. The neonatal brain 
has an increased oxygen consumption, polyunsaturated 
fatty acid (PUFA) concentrations, and an insufficient 
antioxidant system, making it particularly defenseless 
to oxidative damage [16, 17]. Hence, it is fundamental 
to focus on the oxidation-based molecular pathways to 
understand and deal with brain injury in neonates. 

Microglia are the immune cells that act in central 
nervous system (CNS) inflammation. They account 
for around 10%–15% of all brain cells. Although these 
cells are incredibly well-regulated, any abnormalities in 
their functions may instigate neurodegeneration and 
perinatal and neonatal brain injuries, particularly by cell 
death mechanisms in which pyroptosis is dominant [18-
20]. However, investigating other death mechanisms in 
microglia is critically important to fully explore the etiology 
of microglia-mediated brain injuries. Neonatal brain injury 
leads to different long-term clinical outcomes, including 
CP, motor and intellectual impairment, behavioral and 
visual problems, learning disorders, seizure, and autism 
spectrum disorders [5, 21-24] (Figure 1). This review 
aims to assess the literature on neuronal iron metabolism, 
lipid peroxidation, and ferroptotic mechanisms, mainly in 
microglia that contribute to neonatal brain injuries.
1.1. Iron metabolism, ferroptosis, and neuronal cell 
death
As a vital mineral, iron is involved in many metabolic 
activities, including electron and oxygen transport, storage, 

mitochondrial function, and cellular development. These 
biochemical enzymatic reactions are executed by iron-
containing proteins, including hemoglobin and heme-
containing and iron-sulfur enzymes. The imbalance in 
the iron metabolism could result in local or systemic 
drawbacks via a specific cell death mechanism called 
ferroptosis [25, 26].

Ferroptosis is a regulated cell death due to iron 
accumulation and lipid peroxidation [25-27]. Despite its 
name, ferroptosis is not a kind of cell suicide but rather 
a form of cell sabotage that occurs throughout normal 
cell  activities to adapt to stimulus and physiological 
changes [25, 26]. As a result of its dysregulation or 
instability, ferroptosis is frequently involved in a variety 
of physiological and pathological processes, including 
neurotoxicity, cancer, neurodegenerative disorders and 
reperfusion injury [26, 27]. Ferroptosis is fundamentally 
different from other types of cell death in terms of 
evolution, biochemistry, genetics and morphology [25, 26, 
28, 29].

At the molecular level, the initial process of ferroptotic 
death is mediated by hydroxyl radicals (OH), which are 
generated during the Fenton reaction, in which Fe2+ iron is 
oxidized to Fe3+, resulting in a highly reactive pro-oxidant 
OH radical. The OH radical reacts with PUFAs to produce 
lipid radicals. The lipid radical reacts with molecular 
oxygen to constitute lipid peroxyl radicals, which spread 
the reaction by damaging surrounding lipid molecules, 
producing lipid hydroperoxides and more lipid radicals. 
These reactions continue until the antioxidant enzyme 
glutathione peroxidase 4 (GPX4) catalyzes the reaction by 

Figure 1. Flow diagram outlining the clinical outcomes of 
microglial ferroptosis resulting from preterm brain injury and 
hypoxic ischemic encephalopathy.
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donating hydrogen atoms generated during glutathione 
(GSH) synthesis to produce nonradical lipid alcohols 
under normal conditions. The enzymatically triggered 
process of lipid peroxidation initiates ferroptosis, which 
requires phosphatidylethanolamine (PE)-containing 
arachidonic acid (AA), one of the major phospholipids that 
undergo oxidation. In this process, Acyl-CoA synthetase 
long chain family member 4 (ACSL4) acetylates free PUFA 
(AA) with coenzyme A to produce AA-CoA, which is 
then integrated into the membrane phospholipid PE via 
the enzyme lysophosphatidylcholine acyltransferase 3 
(LPCAT3). Lipoxygenases (LOXs) then oxidize PE-AA to 
form PE-AA-OOH, which promotes ferroptosis [26, 30-
34]. As revealed by studies aimed at potential mechanisms 
of different ferroptosis enhancers, system X, as well as 
GPX4 inhibition, could all lead to a decline in GSH levels 
and the consecutive release of ROS, particularly as a result 
of increased lipid peroxidation levels and ferroptosis [25, 
26, 29]. 

Prior to identifying ferroptosis, deferoxamine (DFO) 
was crucial in preventing brain oxidative stress and death. 
DFO was already proven to be efficient in the suppression 
of CNS cells from death before ferroptosis was discovered 
[35, 36]. However, the factor driving this function remains 
unknown. Recent studies on ferroptosis could give an 
insight into this involvement [30, 35, 37, 38].

Ferroptosis is involved in neuronal cell death generated 
by adult ischemia and intraventricular hemorrhage, and 
suppression of the ferroptosis protects the neuronal cell 
from death [30, 36, 39, 40]. Nevertheless, despite the fact 
that there have only been a few studies demonstrating 
ferroptosis regarding neonatal brain injury, the evidence 
implies that ferroptosis would more likely occur in the 
neonatal brain [41-43]. For instance, in a study where 
cultured oligodendrocytes were exposed to cysteine-free 
conditions to mimic periventricular leukomalacia in vitro, 
GSH was depleted, and cell death was increased, which 
was also reversed by ferrostatin [32, 44].

Numerous antiferroptotic agents have been discovered 
[29, 30, 44-47]. First-generation inhibitors of ferroptosis 
include ferrostatin-1 (Fer-1) and liproxstatin-1 (Lip-1; 
[44]. Lipid peroxidation is prevented by those inhibitors, 
which react with and donate hydrogen atoms to peroxyl 
radicals in lipids [31, 44, 46, 47]. Reduced neurological 
impairments, infarct volume, and neuronal death after 
a stroke have been shown to be suppressed by inhibition 
of ferroptosis by Fer-1 and/or Lip-1, which also reversed 
the changes in GPX activity and iron accumulation [30, 
47, 48]. Additionally, oligodendrocyte cells have been 
protected from cuprizone-induced demyelination by 
Fer-1 [41]. These inhibitors are lipid radical scavengers 
currently being studied for their role in neurodegenerative 
pathology [30, 48, 49]. In parallel, preventing neonatal 

brain injury could be one of their applications [26, 27, 30, 
39, 42, 44, 48, 50-53]. 
1.2. Microglia-mediated brain injury, iron metabolism, 
and ferroptosis
Neonatal brain injury is presented by a unique 
encephalopathy that arises in the early days of life and a 
major cause of life-long neurological impairment [54]. 
There would be numerous molecular reasons for neonatal 
brain injury, which are reviewed and emphasized the 
involvement of cell death mechanisms [3, 18-20].

Molecular mechanisms behind the association between 
microglia, iron metabolism/ferroptosis, and brain injury, 
limitedly regarding the developmental stage, have recently 
been focused on the literature [55]. The studies underlined 
the pro-inflammatory role of ferroptosis in the microglia 
[40, 56-61]. However, we regard the contribution of 
iron metabolism and ferroptosis to brain injury should 
be evaluated in terms of the developmental stage since 
the brain development in adults differs from that of the 
neonates [16, 30, 62]. 

In the CNS, macrophages and microglia are crucial for 
cell function and immunological protection. CNS-resident 
microglia and peripheral macrophages mobilize to act on 
an injury or infection. This engagement reflects the most 
critical activities of CNS as well as their antiinflammatory 
or resolving functions. There is a wide range of features 
displayed by macrophages, microglia, and a well-defined 
multipattern involving inflammatory/classical (M1) 
and resolution/alternative (M2) macrophages/microglia 
activation [63].

The iron uptake patterns of M1 and M2 macrophages/
microglia are conceptually distinct. Neonatal brain injury 
is hypothesized to arise due to an excess level of iron in the 
brain’s most sensitive areas during pregnancy. It is called 
neuroinflammation to describe the inflammatory reactions 
triggered by the brain’s innate immune system. Even though 
brain inflammation shares many characteristics with 
peripheral one, it is distinguished by CNS-specialized cells 
like neurons, microglia, astrocytes, endothelial cells and 
pericytes, which are not found in peripheral inflammation 
[15, 18, 19, 49]. In neuroinflammatory situations, the blood-
brain barrier (BBB) is compromised, allowing peripheral 
inflammatory cells such as macrophages to move into the 
brain. In addition to their effects on cell differentiation, 
iron also influences cell homeostasis [18, 49].

Iron could transit the BBB via the transferrin-1 
(TFR1), divalent transporter-1 (DMT-1), ferroportin-1 
(FPN-1) route, a model similar to that used by cells in 
the periphery [64]. Iron is transmitted to the BBB by 
FPN, which releases Fe2+ from the cellular membrane of 
microvascular endothelial cells, promptly oxidized to Fe3+ 
by ceruloplasmin, released into the interstitium through 
the astrocyte, and afterwards trapped by transferrin. 
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Fe3+ ions in the CNS are linked to small molecules that 
astrocytes distribute into the brain [30, 39, 64]. Contrary 
to the periphery, CNS encompasses significantly 
more nontransferrin-bound iron (NTBI). TFRs are 
overexpressed in neurons in their normal state and the 
majority of the iron comes from transferrin. Astrocytes 
produce DMT-1 and absorb Fe2+ ions, which are present 
in the form of NTBI. TFRs facilitate microglia to obtain 
transferrin-bound iron (TBI). Neurons and other glial 
cells are exposed to NTBI due to higher DMT-1 levels in 
an inflammatory setting. Some factors can upset this iron 
balance, resulting in an iron deficiency or excess. By the 
accumulation of iron in the CNS, iron regulatory protein 1 
(IRP1) utilizes the Fe-S complex to gain aconitase activity, 
whereas IRP2 is destroyed. As a result, IRPs lose their 
affinity for iron responsive elements (IREs), leading to 
mRNA breakdown with Fe3+ ions [30, 39, 64].

The iron handling patterns of M1/M2 macrophages are 
radically different and surprising. Reduced IRP binding 
activity, a lower cytoplasmic labile iron pool (cLIP), lower 
levels of TFR1 and FPN1, and more significant amounts 
of ferritin heavy (Ferritin-H) found in M1 macrophages. 
M1 macrophages are less capable than M2 macrophages 
in terms of iron uptake and transfer. M1 macrophages 
respond to extracellular iron imbalance or overload with 
a limited capacity [51, 65, 66].

Neuroinflammation and iron accumulation, linked by 
a complicated network of molecular interactions, form a 
toxic circuit that propagates the neurodegenerative process. 
Iron stimulates the proinflammatory M1 phenotype in 
microglia and macrophages as defined by inducible nitric 
oxide synthase (iNOS) production, which is required for 
adaptive remodeling of iron homeostasis in M1 microglia/
macrophages [63, 67]. These modifications possibly enable 
neuroinflammation to survive, albeit in an environment of 
increased oxidative stress, which could be life threatening 
to neurons. Additionally, NO can degrade the Fe-S 
complex in c-aconitase, assisting IRP1 while driving up 
mitochondrial iron reserves and oxidative stress in iron-
deficient environments, culminating in neuronal death [30, 
39, 64]. Importantly, accumulated iron, attributed to hypoxic 
conditions at the cellular level, particularly in microglia, 
stimulates ROS production, cytokines and oligodendrocyte 
apoptosis. Microglia prevents excessive iron accumulation in 
immature oligodendrocytes following hypoxic injury [68].

2. Discussions
In our previous study, primary mouse microglia and 
astrocytes in culture were exposed to 12 h of hypoxia 
with or without mild hypothermic preconditioning. Iron 
importer proteins, DMT-1 and TFR1, increased their 
mRNA expression in response to hypoxia, and hypothermic 
preconditioning maintained the elevation of DMT-1 in 

both glial cell types. Ferroportin expression increased 
as a glial cell survival factor after hypoxia. Hypothermic 
preconditioning promoted the development in both cell 
types, particularly in astrocytes. Following hypothermic 
preconditioning, interleukin-10 (Il-10) levels significantly 
increased in cells. We demonstrated that hypothermic 
preconditioning before hypoxia reduced neurotoxicity and 
inhibited the expression of the ferritin light chain, primarily 
by modifying transport protein expression. This may be 
beneficial by mitigating the iron-related detrimental effects 
following hypoxic injury. The fundamental mechanism 
that is responsible for therapeutic hypothermia is not yet 
fully understood. Hypoxia increased iron overload in the 
mixed glial cells and ferritin expression in microglia and 
astrocytes via iron transport. We infer that hypothermic 
preconditioning may provide a protective strategy during 
hypoxia through iron homeostasis. Further research into 
in vivo models in terms of the protective mechanism 
of therapeutic hypothermia in HIE may give a better 
understanding of this in the near future [69].

Following hypoxia-induced brain injury, the 
transcription complex of hypoxia-inducible factor 1 
subunit alpha (HIF-1α) is activated, resulting in the 
activation of multiple genes that enable cells to adjust 
to hypoxia and, therefore, recover from cell death. HIF-
1α regulates TFR1 and DMT1 expressions in neurons, 
astrocytes, and microglia [70-72].

In another study, we found that 24-h stimulation of 
glyceryl trinitrate (GTN), which serves as a NO donor and 
a trigger of iNOS generation, resulted in considerable NO 
production in primary mouse microglia, astrocyte, and 
meningeal cell cultures. In this work, GTN stimulation 
increased the iron absorption in microglia, which was 
previously reported. Ferritin light chain expression in 
microglia was promoted by GTN, and ferritin heavy chain 
expression was stimulated in astrocytes in our study. In 
addition to the iron that is taken up by transport proteins, 
microglia can obtain iron from phagocytosis from the 
environment. As our research has already demonstrated, 
microglia were more susceptible to iron deposition than 
astrocytes [73]. 

As a clinical vignette in neonatology, inhaled NO (iNO) 
is commonly used in both preterm and term infants in 
order to treat primary persistent pulmonary hypertension 
resulting from different clinical situations, including sepsis, 
hypoxic ischemic encephalopathy, meconium aspiration 
syndrome, respiratory distress syndrome, congenital 
diaphragmatic hernia, pulmonary hypoplasia and 
congenital heart disease [74]. Despite the lack of evidence 
of iNO’s efficacy or safety and consensus statements 
against its routine utilization in preterm infants, its use 
has increased [75]. There is an ongoing discussion on the 
neurodevelopmental effect of the iNO in infants and long-
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term neurodevelopment impairment [74-76]. Endogenous 
NO affects risk factors in the developing normal and 
injured brain [77]. The neuronal isoform NOS-1 induces 
either positive benefits through vascular adaptation or 
detrimental cellular consequences during ischemia [77, 78]. 
The influence of exogenous NO on the developing CNS is 
highly controversial under normal and stressful situations 
[77, 79]. Inhaled NO increases vascular recruitment and 
diminishes brain injury only during ischemia but not 
reperfusion [77]. We also speculate from our previous 
study and current scientific evidence that iNO therapy 
in infants may lead to microglial inflammation through 
the ferroptosis and contribute to neurodevelopmental 
impairment. In line with our hypothesis, NO inhibitors in 
the early reperfusion/reoxygenation phase could alleviate 
the neonatal brain injury due to hypoxia and ischemia 
[52]. These observations highlight the need for further 
preclinical and clinical research on the effects of inhaled 
NO in neonatal brain injury.

Discovering the molecular route that underlies the 
interaction between inflammatory processes and iron 
overload will boost the development of novel treatment 
methods for interrupting this loop in neonatal brain 
injury [39, 43]. Hepcidin therapy, which prevents iron 
from penetrating into the CNS, and classical  brain iron 
chelation are feasible treatment options for these severe 
illnesses [30, 32, 48].

It is known that preterm birth is related to an elevated 
risk of intracerebral hemorrhage (ICH). Reduced 
birth weight and gestational age are associated with 
an increased prevalence of ICH. ICH affects 15% of 
extremely preterm infants, with more than 50% of all 
preterm infants undergoing posthemorrhagic ventricular 
dilatation and approximately 30% acquiring long-term 
neurodevelopmental sequela [22, 24, 80]. Infants suffering 
from ICH are at risk of neurological impairment but no 
effective treatment is available. ICH-induced brain injury, 
which comprises primary physical damage produced 
by the hemorrhage and secondary damage caused by 
the action of extremely toxic substances released by the 
hemorrhage, is exacerbated by iron formation, resulting in 
ventricular dilatation. These components include free iron 
and cell-free hemoglobin, which significantly contribute 
to ventricular dilatation [81-83]. In addition, the use 
of iron-chelator treatment following an ICH is firmly 
established, proving the involvement of iron in the onset 
and progression of brain damage following an ICH [38]. 
Significant evidence has been consolidated indicating that 
fibrin components, including hemoglobin, fibrinogen, 
and iron, are important in developing secondary damage 
following an ICH [83-85]. In recent years, neonatologists 
have focused on hemoglobin and iron-induced neuronal 

toxicity, as hemoglobin and its metabolites are cytotoxic 
[86]. They have the potential to create oxidative stress and 
inflammation in the body [87]. Heme oxygenase (HO-
1) degrades hemoglobin in the brain and releases iron, 
carbon monoxide and biliverdin into the extracellular 
space due to the breakdown of hemoglobin. Following 
bleeding, a significant amount of iron is released from 
hemoglobin into the interstitial space, resulting in the 
generation of free radicals through the Fenton reaction 
and, as a result, oxidative destruction to protein, lipids, 
and DNA (Figures 2 and 3). The concentrations of NTBI in 
the cerebrospinal fluid of preterm with posthemorrhagic 
ventricular dilatation were established [88]. Administering 
erythrocyte suspension and its breakdown products 
causes ventricular dilatation, brain injury, and increased 
HO-1 enzyme and ferritin levels in rats, contributing to an 
increase in iron overload in the brain [89, 90].

3. Conclusions and future perspectives
For a child to develop to its full potential, programmed 
cell death must occur and it occurs more frequently in 
newborns than in adults [30, 39, 48]. Moreover, the cellular 
iron disparity is noticeable in neonates. Their antioxidant 
capacity is insufficient, implying that ferroptosis might 
also be significant in infants under pathologic conditions, 
despite the relatively small number of studies examining 
ferroptosis in neonatal brain injury [18-20, 58].

Neonatal brain injury treatment approaches for the 
term and preterm newborns are currently being developed; 
therefore, a thorough understanding of their mechanisms 
is critical to their success. Ferroptosis in neonatal brain 
injury models should be investigated further. In contrast 
to non-CNS tissues, iron chelators must transmit the BBB 
to reach the CNS parenchyma. Then, they must invade 
iron-accumulating cells and retrieve iron from the labile 
iron pool and ferritin, and the iron–chelator complex 
must depart the cells via the vasculature. Iron chelators 
have been reported to be effective in certain neurological 
conditions. The mechanism by which these chelators 
eliminate iron from the CNS remains to be elucidated and 
requires additional research [18,19,42,48].

Even with the therapeutic aim, many clinical 
applications could be reviewed considering the potential 
microglial involvement, ferroptosis, and possible 
clinical and neurodevelopmental outcomes. Common 
utilization of iNO in both term and preterm infants may 
also be considered an unknown characterized sword. 
Comprehensive and precise studies of the molecular 
dimensions of cellular iron storage and transfer could 
significantly contribute to identification of alternative 
strategies for preventing and treating  brain injury in 
neonates
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Figure 2. Components of ferroptosis pathway are shown 
graphically. Cells that are engaged in iron-induced free radical 
production (left), as well as GSH/GPX4 dysregulation (in the 
middle), have been found to be implicated in this process. To 
induce ferroptosis, erastin or RAS-selective lethal 3 (RSL3) 
inhibits the amino acid antiporter in system Xc and GPX4, 
resulting in lower activity of GPX4. The active site of GPX4 
contains selenocysteine. Selenium-tRNA maturation requires 
the production of Isopentenyl Pyrophosphate (IPP). The plasma 
membrane’s ferroptosis suppressor protein 1 (FSP1) contains 
oxidoreductase activity, which lowers coenzyme Q levels and 
minimizes L-OOH accumulation. Lipoxygenase requires iron 
as a cofactor, which is provided by HO-1, ferritinophagy, and 
the labile iron pool (LIP). TFR1: transferrin-1, IREB: Iron-
responsive element-binding protein-1 , ACSL4, acyl-CoA 
synthetase long-chain family member 4; GPX, glutathione 
peroxidase; GSH, glutathione; LOXs, lipoxygenases; LPCAT3, 
lysophosphatidylcholine acyltransferase 3; PL, phospholipids; 
PL-AA-OOH, lipid hydroperoxides; NCOA4: nuclear receptor 
coactivator 4, PUFA : polyunsaturated fatty acid, Nrf-2: nuclear 
factor erythroid 2–related factor 2, ATF4: Activated transcription 
factors-4, Se: Selenium, CoQ10:Coenzyme Q10, CoQ10H2 : Reduced 
coenzyme Q10 , NAD(P)H: nicotinamide adenine dinucleotide 
phosphate.

Figure 3. Flow diagram outlining the underlying mechanisms 
contributing to neonatal brain injury and potential 
prevention mechanisms.  Graphical illustration of the main 
pathophysiological mechanisms underlying the development 
of brain injury in the neonates, namely hypoxia-ischemia-
reperfusion, hypoxia-hyperoxia, inflammation, hemorrhagic 
insults, and PBIs. GSH depletion, glutathione S‐transferase 
(GST) deformation, and reduced glutathione peroxidase 
(GPX) expression are observed in ferroptosis in neonatal 
brain injury. Iron accumulation potentiates inflammation, 
ROS, and NO associated with preterm and neonatal brain 
injury. Inflammation, excess iron (nontransferrin-bound iron), 
intracranial hemorrhage in preterm infants, and hypoxia in 
preterm and term infants induce cell death via oxidative stress 
and lipid peroxidation. Nitric oxide induces hypoxic ischemic 
injury in the neonatal brain via the disruption of neuronal iron 
metabolism. Different compounds may also show positive results 
in preterm brain injury and hypoxic ischemic encephalopathy, 
acting by attenuating different components of ferroptosis. EPO: 
Erythropoietin, FER-1: Ferrostatin-1, Lip-1: liproxstatin-1, LOX: 
Lipoxygenases, ACSL4: Acyl-CoA synthetase long chain family 
member 4, NOS inhibitor: nitric oxide synthase inhibitor.
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