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1. Introduction
Prostate cancer is the second most frequently diagnosed 
cancer in men and the fifth leading cause of death world-
wide [1,2]. Diagnosing prostate cancer consists of digital 
rectal examination, assessing serum prostate-specific an-
tigen (PSA) levels, and transrectal ultrasound (US)-guid-
ed prostate biopsy. However, there are some limitations 
to these methods. Serum PSA level has a low specificity 
(25%–40%) and can lead to unnecessary biopsies. Tran-
srectal US-guided biopsy does not usually allow direct 
visualization of abnormal regions and focuses on the pe-
ripheral zone (PZ), missing clinically significant prostate 
cancer (csPCa) and overdiagnosing csPCa. The detection 
of csPCa and the evaluation of their biological aggressive-
ness are important for treatment [3-5].

Multiparametric magnetic resonance imaging (mpM-
RI) of the prostate is useful in detecting csPCa [5-9]. csPCa 
has been defined on histology as Gleason scores of ≥7 (in-
cluding 3 + 4 with a prominent but not predominant Glea-
son 4 component), volume of ≥ 0.5 mL, or extra prostatic 
extension [8]. mpMRI based on the second version of the 
Prostate Imaging Reporting and Data System (PI-RADS) 
shows high sensitivity and moderate specificity for the de-
tection of csPCa. In a metaanalysis including 21 studies, 
the diagnostic sensitivity and specificity of PI-RADS v2 
were 89% and 73%, respectively, in detecting csPCa [6]. 
The limitations of mpMRI are the differences in imaging 
quality between centers and the differences in interpreta-
tion between readers [9-12]. Various strategies such as the 
combination of laboratory tests and imaging and quantita-
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tive analysis of images are still being investigated to further 
improve the diagnostic accuracy of mpMRI in detecting 
csPCa [13-18].

Texture analysis (TA) is a quantitative image analysis 
method that can evaluate the signal heterogeneity of the 
images by examining the distribution and connectivity 
of pixel intensities within normal and pathological tis-
sues. In medical images, macroscopic heterogeneity can 
reflect histopathological heterogeneity [19-22]. Recently, 
in studies on breast, brain, and rectal cancers, magnetic 
resonance imaging texture analysis (MRTA) has been used 
for cancer detection, staging, and treatment response as-
sessment. These studies have demonstrated that TA can be 
a powerful noninvasive tool for the assessment of intratu-
moral features and thus can be used in evaluating malig-
nancies [19-25].

TA provides additional tissue heterogeneity data that 
may assist in differentiating PZ lesions in mpMRI. This 
study investigates the role of MRTA in detecting csPCa in 
patients with suspicion of prostate cancer.

2. Materials and methods
2.1. Study design
Between January 2018 and January 2020, 127 patients who 
had a clinical suspicion of prostate cancer and underwent 
mpMRI were evaluated retrospectively. mpMRI scans 
were accessed via the picture archiving and communica-
tion system. The following inclusion criteria were queried 
from our electronic hospital medical records system: (1) 
mpMRI performed within 6 months before prostate bi-
opsy; (2) csPCa in the PZ using targeted biopsy or radical 
prostatectomy; and (3) benign lesions or clinically insig-
nificant prostate cancer (cisPCa) in the PZ using targeted 
or systematic biopsy. Patients with csPCa in the transition 
zone (n = 10), those who did not have mpMRI (n = 13), 
those who did not have pathological diagnosis (n = 6), 
those who had imaging artifacts (n = 6), those who had 
previous treatment (n = 7), and those who had biopsy be-
fore mpMRI (n = 5) were excluded from the study. Finally, 
80 consecutive cases were included in the study. The study 
was approved by the institutional ethics committee of our 
hospital, and the requirement for written informed con-
sent was waived.
2.2. Imaging protocol
MRI examinations were performed using a 3T scanner 
(MAGNETOM Skyra; Siemens Healthineers AG, Erlan-
gen, Germany) with a pelvic-phased array coil. The MRI 
protocols were consistent with PI-RADS v2.1. All patients 
received a spasmolytic to reduce bowel peristalsis. The 
MRI protocols included axial, coronal, and sagittal T2-
weighted turbo spin-echo sequence (TR/TE, 5000/110; 
echo-train length, 23; number of signals averaged, 3; 
FOV, 200 × 200 mm), diffusion-weighted imaging (DWI) 

with a single-shot echo planar imaging sequence (TR/TE, 
4500/76; flip angle, 90°; slice thickness, 3.5 mm; matrix 
size, 128 × 128; FOV, 200 × 200 mm; b values, 50, 1000, 
and 1500 s/mm2), and dynamic contrast-enhanced MRI 
(DCE-MRI) with a T1-weighted volumetric interpolated 
breath-hold examination sequences (TR/TE, 5.08/1.77; 
flip angle 15°; FOV, 259 × 259 mm; slice thickness, 3.5 mm 
without inter slice gap; temporal resolution, 8 seconds; 
35 contrast-enhanced phases acquired sequentially). On 
dynamic series, after the first two phases, 0.1 mmol/kg 
of gadobutrol (Gadovist; Bayer Schering Pharma GmbH, 
Berlin, Germany) was injected intravenously at a rate of 3 
mL/s with an MR-compatible automatic injector, followed 
by 30 mL of saline flush.
2.3. Biopsy technique
mpMRI-directed transrectal US-guided fusion biopsy was 
performed for the targeted lesions. Suspected lesions in 
mpMRI were localized on the sector map before fusion 
biopsy. At least three biopsies were performed for the tar-
geted lesions. In patients without suspicious lesions, tran-
srectal US-guided systematic biopsy was performed. All 
biopsy cores were evaluated histopathologically. Gleason 
scores of 3 + 4 or more and the maximum cancer core 
length involvement of 4 mm or more were defined as csP-
Ca [26].
2.4. Textural analysis
TA allows quantitative assessment of the heterogeneity of 
the tumors by analyzing the distribution and relationship 
of pixel intensities on the medical images. Different meth-
ods of TA exist such as statistical, structural, model-based, 
and transformation-based. The statistical method has been 
most widely used in TA and includes first-, second-, and 
higher-order statistics [21,22,27,28].

First-order statistics, also called histogram analysis, 
evaluate frequency distribution of pixel intensity values 
within a region of interest (ROI). These forms of textural 
analysis consider only pixel intensity and do not provide 
spatial information between pixels. The most common 
histogram features include mean, standard deviation (SD) 
or variance, skewness (asymmetry), kurtosis (pointedness 
or flatness), first-order entropy (irregularity), and mean of 
positive pixels [21,22,27,28].

More complex computations such as second- or 
higher-order statistics, which explore the relationship be-
tween pixels within the ROI, provide spatial information 
between pixels. Second-order statistics, such as second-
order entropy, energy, homogeneity, dissimilarity, and 
correlation, are based on gray-level cooccurrence matrix 
(GLCM) and compare the relationship between two pix-
els. GLCM is a two-dimensional histogram capturing the 
frequency of cooccurrence of pixel pairs of certain values 
in a given spatial range. Higher-order statistics are based 
on neighborhood gray-level difference matrix (NGLDM) 
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and include contrast, coarseness, and busyness. NGLDM 
can demonstrate coarseness and complexity within an im-
age by comparing the relationship between more than two 
pixels [21,22,27,28].
2.5. Image analysis
Two radiologists (6 years and 3 years of experience, respec-
tively, in mpMRI interpretation), aware of all clinical, and 
histopathological findings, interpreted mpMRI in consen-
sus. According to the histopathological findings, csPCa 
and benign lesions or cisPCa were identified at dedicated 
workstations. All images were imported to commercially 
available software (Olea Sphere® 3.0, Olea Medical, La Cio-
tat, France) for segmentation and TA. The ROI was drawn 
using the freehand technique to encompass the entire le-

sion on the ADC map, T2-weighted images (T2WIs), and 
early and late postcontrast T1-weighted images (T1WIs) 
in patients with csPCa. In patients with benign lesions or 
cisPCa, the ROI was determined to include the lesion if 
visible on mpMRI, and to include the entire peripheral 
zone if it is not visible or has indistinct margins. After the 
segmentation, the first-, second-, and higher-order texture 
parameters were extracted from the selected ROI (Figures 
1a–1d). The texture features included first-order param-
eters (mean, median, skewness, kurtosis, entropy, and 
uniformity), GLCM (contrast, correlation, difference en-
tropy, joint energy, joint entropy, sum entropy, and inverse 
variance), and NGLDM (contrast, coarseness, complexity, 
busyness, and strength).

Figure 1. 68-year-old man with prostate cancer. (a) ADC map and (b) T2WI shows csPCa located in the left peripheral zone in the apex 
of the prostate and a region of interest placed (yellow area) on the (c) ADC map and (d) T2WI.  



ÖZER et al. / Turk J Med Sci

704

2.6. Statistical analysis
The data were analyzed using SPSS v. 17.0 (IBM Corpo-
ration, Armonk, NY, USA) and MedCalc for Windows, 
version 19.2.6 (MedCalc Software Ltd., Mariakerke, Bel-
gium). The normality of the distribution of continuous 
numerical variables was analyzed using the Shapiro–Wilk 
test. Descriptive statistics were presented as mean ± SD or 
median (range) for continuous numerical variables and 
count (percentage) for categorical variables.

The Student t-test was used to compare two indepen-
dent groups. Univariate and multivariate logistic regres-
sion analyses were performed using texture parameters to 
define the independent predictors of csPCa. The variables 
highly associated with each other were excluded from the 
regression model due to a multicollinearity problem using 
the backward stepwise analysis method used in multivari-
ate regression analysis. Odds ratios (ORs) were used to de-
note the effect size of the variables in the regression model. 
The diagnostic performance of univariate and multivariate 

texture parameters was assessed using receiver operating 
characteristic (ROC) curve analysis. During multivariate 
analysis, the area under curve (AUC) values were derived 
according to the predictive values of the regression model. 
Comparisons among AUC values were assessed using the 
Delong method [29]. In all statistical analyses in this study, 
p-values of <0.05 were used to denote statistical signifi-
cance.

3. Result
The study enrolled 80 patients (males) with a mean age of 
68.05 ± 8.45 years (range, 50–87 years). For all patients, 
the mean prostate volume was 61.85 ± 34.43 mL and the 
mean PSA level was 9.76 ± 8.70 ng/mL. Histopathological 
analysis showed that 39 patients (48.8%) had csPCa, while 
41 patients (51.2%) had benign lesions or cisPCa.

Tables 1 and 2 summarize the mean and SD of the tex-
ture parameters in groups with csPCa and benign lesions 
or cisPCa.

Table 1. Texture parameters of clinically significant prostate cancer and benign lesions or clinically insignificant prostate cancer extracted 
from ADC maps and T2-weighted images in the peripheral zone.

ADC maps T2-weighted images
Benign lesions or 
cisPCa csPCa p † Benign lesions or 

cisPCa csPCa p †

First-order
Mean 1404.64 ± 218.43 721.40 ± 170.92 <0.001 511.17 ± 197.98 256.57 ± 120.31 <0.001
Median 1432.85 ± 235.43 690.56 ± 194.62 <0.001 513.30 ± 201.29 241.18 ± 85.62 <0.001
Skewness –0.489 ± 0.565 0.433 ± 0.681 <0.001 –0.113 ± 0.545 0.309 ± 0.488 <0.001
Kurtosis 3.34 ± 1.19 3.29 ± 1.09 0.827 3.05 ± 0.61 3.56 ± 1.15 0.019
Entropy 5.29 ± 0.25 4.57 ± 0.51 <0.001 5.40 ± 0.15 4.98 ± 0.38 <0.001
Uniformity 0.031 ± 0.007 0.042 ± 0.021 0.004 0.028 ± 0.003 0.038 ± 0.011 <0.001
Second-higher-order 
GLCM contrast 74.33 ± 54.94 151.26 ± 158.41 0.006 84.74 ± 28.21 153.28 ± 119.20 0.001
GLCM correlation 0.728 ± 0.209 0.623 ± 0.306 0.076 0.662 ± 0.128 0.507 ± 0.174 <0.001
GLCM difference entropy 3.76 ± 0.29 3.61 ± 0.55 0.131 4.12 ± 0.20 4.20 ± 0.42 0.291
GLCM joint energy 0.006 ± 0.004 0.019 ± 0.028 0.007 0.0032 ± 0.0008 0.0077 ± 0.0086 0.003
GLCM joint entropy 7.65 ± 0.76 6.87 ± 1.69 0.011 8.50 ± 0.37 7.76 ± 1.26 0.001
GLCM invers variance 0.177 ± 0.053 0.144 ± 0.071 0.026 0.144 ± 0.022 0.124 ± 0.044 0.011
GLCM sum entropy 5.71 ± 0.54 5.10 ± 1.20 0.006 6.01 ± 0.21 5.46 ± 0.60 <0.001
NGLDM coarseness 0.072 ± 0.024 0.075 ± 0.037 0.624 0.029 ± 0.010 0.036 ± 0.024 0.104
NGLDM contrast 0.62 ± 0.75 8.17 ± 17.32 0.010 0.45 ± 0.14 3.00 ± 7.43 0.039
NGLDM business 0.009 ± 0.005 0.024 ± 0.015 <0.001 0.023 ± 0.008 0.041 ± 0.040 0.009
NGLDM complexity 3459.83 ± 1258.17 3548.75 ± 1385.14 0.764 5475.10 ± 1110.99 5673.03 ± 1774.22 0.549
NGLDM strength 89.96 ± 46.26 97.31 ± 52.62 0.509 34.93 ± 13.11 42.00 ± 28.04 0.158

† Student’s t-test, mean ± standard deviation; cisPCa, clinically insignificant prostate cancer; csPCa, clinically significant prostate cancer; 
ADC, apparent diffusion coefficient; GLCM, gray-level cooccurrence matrix; NGLDM, neighborhood gray-level different matrix.
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3.1. Texture features: ADC maps
Except the kurtosis, all first-order texture parameters in 
csPCa in the PZ were significantly different. In csPCa; mean, 
median, and entropy were significantly lower, while skew-
ness and uniformity were significantly higher (p < 0.01). 

Except the GLCM correlation, GLCM difference en-
tropy, NGLDM coarseness, NGLDM complexity, and 
NGLDM strength, all second- and higher-order texture 
parameters were significantly different in csPCa in the PZ. 
Furthermore, csPCa had significantly lower GLCM joint 
entropy, GLCM inverse variance, and GLCM sum entropy 
while having significantly higher GLCM contrast, GLCM 
joint energy, NGLDM contrast, and NGLDM busyness (p 
< 0.05). 
3.2. Texture features: T2WIs
All first-order texture parameters in csPCa in PZ showed 
significant differences; mean, median, and entropy were 
lower, while skewness, kurtosis, and uniformity were 
higher (p < 0.05).Except the GLCM difference entropy, 

NGLDM coarseness, NGLDM complexity, and NGLDM 
strength, all second- and higher-order texture parameters 
in csPCa in the PZ were significantly different. Further-
more, GLCM correlation, GLCM joint entropy, GLCM in-
verse variance, and GLCM sum entropy were significantly 
lower for csPCa, whereas GLCM contrast, GLCM joint 
energy, NGLDM contrast, and NGLDM busyness were 
significantly higher (p < 0.05).
3.3. Texture features: T1WIs
On early postcontrast T1WIs, entropy was significantly 
lower among the first-order texture parameters, whereas 
uniformity was significantly higher in csPCa in PZ (p < 
0.05).

On late postcontrast T1WIs, mean, median, and uni-
formity were significantly higher among the first-order 
texture parameters, whereas skewness and entropy were 
significantly lower in csPCa in PZ (p < 0.05).

On early and late postcontrast T1WIs, GLCM differ-
ence entropy, GLCM joint entropy, and GLCM sum entro-

Table 2. Texture parameters of clinically significant prostate cancer and benign lesions or clinically insignificant prostate cancer extracted 
from early and late T1-weighted images in the peripheral zone.

Early T1-weighted images Late T1-weighted images
Benign lesions or 
cisPCa csPCa p † Benign lesions or 

cisPCa csPCa p †

First-order
Mean 153.37 ± 235.42 171.69 ± 95.15 0.653 92.04 ± 40.41 161.16 ± 80.03 <0.001
Median 154.20 ± 241.92 169.15 ± 88.59 0.717 91.50 ± 40.45 161.69 ± 80.03 <0.001
Skewness 0.148 ± 0.555 0.145 ± 0.671 0.982 0.199 ± 0.566 –0.083 ± 0.627 0.037
Kurtosis 2.89 ± 0.69 3.029 ± 1.360 0.570 2.98 ± 0.96 3.07 ± 0.94 0.667
Entropy 5.09 ± 0.30 4.54 ± 0.89 0.001 5.00 ± 0.32 4.50 ± 0.79 0.001
Uniformity 0.035 ± 0.007 0.076 ± 0.097 0.011 0.037 ± 0.009 0.057 ± 0.036 0.002
Second-higher-order 
GLCM contrast 163.27 ± 87.97 306.47 ± 404.75 0.036 157.99 ± 75.82 259.57 ± 237.18 0.014
GLCM correlation 0.548 ± 0.197 0.464 ± 0.295 0.135 0.57 ± 0.19 0.40 ± 0.32 0.005
GLCM difference entropy 4.12 ± 0.20 3.63 ± 0.85 0.001 4.08 ± 0.19 3.58 ± 0.85 0.001
GLCM joint energy 0.010 ± 0.003 0.037 ± 0.062 0.010 0.010 ± 0.003 0.036 ± 0.058 0.008
GLCM joint entropy 6.78 ± 0.49 6.00 ± 1.77 0.012 6.79 ± 0.52 5.98 ± 1.76 0.008
GLCM invers variance 0.110 ± 0.029 0.092 ± 0.052 0.074 0.102 ± 0.037 0.091 ± 0.054 0.328
GLCM sum entropy 5.24 ± 0.34 4.52 ± 1.37 0.003 5.26 ± 0.35 4.43 ± 1.38 0.001
NGLDM coarseness 0.063 ± 0.024 0.069 ± 0.076 0.671 0.063 ± 0.027 0.060 ± 0.028 0.645
NGLDM contrast 1.88 ± 1.45 139.64 ± 598.99 0.159 2.24 ± 2.04 65.87 ± 240.57 0.103
NGLDM business 0.021 ± 0.014 0.041 ± 0.048 0.020 0.021 ± 0.013 0.036 ± 0.037 0.029
NGLDM complexity 5397.69 ± 2467.22 4629.23 ± 1541.69 0.101 5112.13 ± 2020.06 4386.96 ± 1276.61 0.060
NGLDM strength 77.18 ± 32.79 75.43 ± 29.10 0.802 80.49 ± 37.66 79.68 ± 48.73 0.934

† Student’s t-test, mean ± standard deviation; cisPCa, clinically insignificant prostate cancer; csPCa, clinically significant prostate cancer; 
ADC, apparent diffusion coefficient; GLCM, gray-level cooccurrence matrix; NGLDM, neighborhood gray-level different matrix.
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py were significantly lower in csPCa in PZ, whereas GLCM 
contrast, GLCM joint energy, and NGLDM busyness were 
significantly higher. Furthermore, GLCM correlation in 
csPCa in the PZ was significantly lower on late postcon-
trast T1WIs (p < 0.05).

On early and late postcontrast T1WIs, there was no 
significant difference in other texture parameters in the PZ 
(p > 0.05). 
3.4. Logistic regression analysis of texture parameters
The results of the univariate and multivariate logistic re-
gression analyses on texture parameters are shown in Ta-
bles 3 and 4.

Among the first-order texture parameters, mean and 
entropy and, among the second- and higher-order texture 
parameters, GLCM contrast, GLCM difference entropy, 
GLCM joint energy, GLCM joint entropy, GLCM sum en-
tropy, and NGLDM busyness were independent predictors 
of csPCa on the ADC maps.

3.5. ROC analysis of the texture parameters and 
regression models
The ROC analysis results of multivariate logistic regres-
sion models for detecting csPCa in PZ are shown in 
Table 5. The ROC curves constructed from output prob-
abilities of logistic regression models are shown in Fig-
ures 2a–2d.

Univariate ROC analysis showed that the ADC mean 
and ADC median had the highest AUC value (0.986; 95% 
CI, 0.969–1 and 0.987; 95% CI, 0.971–1, respectively) for 
differentiating csPCa in PZ (p < 0.001). In addition, the 
first-order entropy based on the ADC maps had a higher 
AUC value (0.920; 95% CI, 0.865–0.975) than other tex-
ture features (p < 0.001).

The first-order logistic regression model (mean + en-
tropy) based on the ADC maps had a higher AUC value 
(0.996; 95% CI, 0.989–1) than other texture-based logistic 
regression models (p < 0.001).

Table 3. Univariate and multivariate logistic regression analyses for the texture parameters extracted from ADC maps and T2-weighted 
images in the peripheral zone.

ADC maps T2- weighted images

Univariate analysis Multivariate analysis Univariate analysis Multivariate analysis

OR p OR     p OR p OR p 

First-order
Mean 0.988 <0.001 0.988 0.002 0.991 <0.001 0.993 <0.001
Median 0.989 <0.001 NA NA 0.988 <0.001 NA NA
Skewness † 1.267 <0.001 NA NA 1.002 0.002 NA NA
Kurtosis † 0.996 0.825 NA NA 1.001 0.026 NA NA
Entropy  ‡ 0.550 <0.001 0.621 <0.013 0.410 <0.001 0.473 0.001
Uniformity † 1.078 0.009 NA NA 1.445 <0.001 NA NA
Second-higher-order 
GLCM contrast 1.007 0.014 0.970 0.040 1.015 0.006 NA NA
GLCM correlation † 0.998 0.085 NA NA 0.993 <0.001 NA NA
GLCM difference entropy ‡ 0.920 0.132 NA NA 1.080 0.300 NA NA
GLCM joint energy † 1.072 0.035 1.224 0.080 1.580 0.008 NA NA
GLCM joint entropy ‡ 0.953 0.015 0.671 0.031 0.900 0.003 NA NA
GLCM invers variance † 0.992 0.029 0.978 0.097 0.982 0.014 NA NA
GLCM sum entropy ‡ 0.924 0.011 2.252 0.012 0.618 <0.001 0.708 0.015
NGLDM coarseness † 1.004 0.616 NA NA 1.021 0.104 NA NA
NGLDM contrast 1.398 0.108 NA NA 5.313 0.020 NA NA
NGLDM business † 1.081 <0.001 1.448 0.001 1.051 0.019 1.093 0.007
NGLDM complexity 1.000 0.761 NA NA 1.000 0.546 NA NA
NGLDM strength 1.003 0.504 NA NA 1.016 0.154 NA NA

OR, odds ratio; CI, confidence interval; ADC, apparent diffusion coefficient; GLCM, gray-level cooccurrence matrix; NGLDM, 
neighborhood gray-level different matrix; NA, not available; †OR in units of 1000; ‡OR in units of 10.
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Table 4. Univariate and multivariate logistic regression analyses for the texture parameters extracted from early and late T1-weighted 
images in the peripheral zone.

Early T1-weighted images  Late T1-weighted images

Univariate analysis Multivariate analysis Univariate analysis Multivariate analysis

OR p OR p OR p OR p 

First-order
Mean 1.001 0.665 NA NA 1.021 <0.001 NA NA
Median 1.000 0.717 NA NA 1.022 <0.001 1.044 <0.001
Skewness † 1.000 0.981 NA NA 0.999 0.043 NA NA
Kurtosis † 1.000 0.569 NA NA 1.000 0.663 NA NA
Entropy ‡ 0.844 0.002 1.404 0.230 0.848 0.002 NA NA
Uniformity † 1.068 0.003 1.202 0.083 1.060 0.003 1.152 <0.001
Second-higher-order 
GLCM contrast 1.004 0.041 NA NA 1.005 0.020 NA NA
GLCM correlation † 0.999 0.146 NA NA 0.997 0.009 0.997 0.042
GLCM difference entropy ‡ 0.763 0.004 NA NA 0.784 0.003 0.767 0.006
GLCM joint energy † 1.080 0.010 1.923 0.001 1.081 0.008 NA NA
GLCM joint entropy ‡ 0.950 0.015 1.625 0.001 0.948 0.011 NA NA
GLCM invers variance † 0.990 0.074 NA NA 0.995 0.321 NA NA
GLCM sum entropy ‡ 0.914 0.006 NA NA 0.900 0.003 NA NA
NGLDM coarseness † 1.002 0.672 NA NA 0.996 0.640 NA NA
NGLDM contrast 1.205 0.052 NA NA 1.180 0.025 NA NA
NGLDM business † 1.034 0.023 NA NA 1.027 0.045 NA NA
NGLDM complexity 1.000 0.114 NA NA 1.000 0.075 NA NA
NGLDM strength 0.998 0.799 NA NA 1.000 0.932 NA NA

OR, odds ratio; CI, confidence interval; ADC, apparent diffusion coefficient; GLCM, gray-level cooccurrence matrix; NGLDM, 
neighborhood gray-level different matrix; NA, not available; †OR in units of 1000; ‡OR in units of 10.

Table 5. Receiver operating characteristic curve analysis results of multivariate regression models for clinically significant prostate 
cancer in peripheral zone.

AUC † Sensitivity (%) Specificity (%) p 

First-order logistic regression model based on ADC maps 0.996 (0.989–1) 100 95.12 <0.001
Second-higher-order logistic regression model based on ADC maps 0.883 (0.814–0.952) 74.4 85.4 <0.001
First-order logistic regression model based on T2WIs 0.932 (0.873–0.992) 94.87 87.80 < 0.001
Second-higher-order logistic regression model based on T2WIs 0.891 (0.819–0.963) 84.6 85.4 < 0.001
First-order logistic regression model based on early T1WIs 0.729 (0.616–0.843) 51.3 92.7 < 0.001
Second-higher-order logistic regression model based on early T1WIs 0.771 (0.656–0.887) 69.2 95.1 <0.001
First-order logistic regression model based on late T1WIs 0.935 (0.886–0.984) 94.90 78.00 <0.001
Second-higher-order logistic regression model based on late T1WIs 0.759 (0.651–0.866) 53.85 90.24 <0.001

† AUC, area under curve (95% CI); ADC, apparent diffusion coefficient; T2WIs, T2-weighted images; T1WIs, T2-weighted images
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4. Discussion
Recently, radiomics has been used for cancer detection, 
staging, and treatment response assessment [13,30,31]. 
Moreover, radiomics has been used in mpMRI, which is 
widely used for prostate cancer detection, staging, and 
treatment response. This study showed that texture fea-
tures derived from mpMRI can be used to distinguish 
csPCa in PZ. Therefore, we conclude that TA provides ad-
ditional tissue heterogeneity data that may contribute in 
differentiating PZ lesions on mpMRI.

TA assesses tumor heterogeneity by analyzing the dis-
tribution and relationship of pixel intensities in medical 
images and provides quantitative information about the 
lesion that cannot be distinguished by a radiologist [19-
22,28].

Studies have shown that TA could be useful in diag-
nosing prostate cancer [19-22,28,31,32]. In a study on 
transrectal US, TA could distinguish prostate cancer from 

benign lesions with a sensitivity of 86% and a specificity 
of 88% [32]. In addition, a few studies have applied TA on 
mpMRI [19-22]. Wibmer et al. stated that second-order 
MRTA is useful in prostate cancer detection and Gleason 
score assessment [21]. Sidhu et al. showed that MRTA of 
the prostate transition zone may discriminate csPCa [20]. 
Niu et al. reported that tumor aggressiveness in prostate 
cancer can be assessed with specific parameters delivered 
from MRTA [19]. In our study, we also showed that MRTA 
can offer additives to distinguish csPCa in PZ. 

The mean ADC values vary according to the cell mem-
branes, nuclei, and extracellular space at the tissue level. 
The mean ADC values are low in high-cellular tumors [33]. 
Studies have shown that ADC is an appropriate biomark-
er for diagnosing prostate cancer and its aggressiveness 
[16,18]. In this study, univariate ROC analysis showed that 
the ADC mean and ADC median were the best variables 
in differentiating csPCa in PZ. In addition, the first-order 

Figure 2. Receiver operating characteristic (ROC) curves of the multivariate logistic regression models based on (a) ADC maps, (b) 
T2-weighted images, (c) early and (d) late T1-weighted images for the diagnosis of csPCa in the peripheral zone.
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multivariate regression model obtained by adding entropy 
to the ADC mean had the highest diagnostic performance 
in differentiating csPCa in PZ. However, the ADC mean 
values can vary according to the pulse sequences in differ-
ent devices and different b values, which limit the role of 
the ADC mean values in the distinction between benign 
and malignant lesions and the cut-off value [33].

In this study, various first-order (skewness, entropy, 
and uniformity), GLCM (correlation, difference entropy, 
joint energy, sum entropy) and NGLDM (busyness) tex-
ture parameters provided good diagnostic performance 
for identifying csPCa. Among these texture parameters, 
first-order entropy obtained from the ADC maps had the 
excellent diagnostic performance and the higher AUC 
value. In addition, other entropy parameters obtained us-
ing second-order statistics showed significant diagnostic 
performance. Entropy indicates uncertainty/randomness 
within the image. High entropy values represent an in-
crease in heterogeneity in the image [22,28,31]. We showed 
that csPCa lesions were more homogeneous with lower 
entropy values than benign lesions or cisPCa. Although 
this seems incompatible with other studies, it is compat-
ible with the definitions of PI-RADS scores [8,16,21]. PI-
RADS 4–5 lesions appeared focal, circumscribed, moder-
ately homogeneous, or markedly hypointense focus/mass. 
PI-RADS 2–3 lesions, on the other hand, were linear or 
wedge-shaped, and had an indistinct margin and variable 
signal intensity within the normal PZ [8].

Uniformity, which is inversely correlated with entro-
py, is a measure of the gray-level distribution of the im-
age; lower values represent heterogeneity [22,28,31]. In 
this study, high uniformity values were obtained, which 
showed that csPCa lesions were more homogeneous rela-
tive to entropy. In addition, csPCa had high GLCM joint 
energy values, another parameter showing homogeneity 
among second-order parameters.

Skewness measures the asymmetry of the histogram 
curve and can be negative or positive [22,28,31]. We found 
positive skewness values in csPCa. However, conflicting 
results in the skewness values have been reported in sev-
eral studies on prostate cancer [18-20,34]. Its mechanism 
is unclear, and what it represents is unknown.

Contrast, also called variance or inertia, represents lo-
cal signal intensity variation in an image; higher values in-
dicate a greater difference in signal intensity between ad-
jacent voxels. Correlation measures the linear dependency 

of signal intensity between voxel pairs. It can be positive 
or negative and takes values between 0 (uncorrelated) 
and 1 (perfectly correlated) [22,28,31]. We found higher 
GLCM contrast values and lower GLCM correlation val-
ues in csPCa, which conforms to the literature [19,21,35]. 
Busyness is a measure of the intensity change between pix-
els and their neighborhood [28]. In this study, NGLDM 
busyness values were higher in csPCa, and no data were 
found in PubMed for the performance of NGLDM texture 
parameters in the diagnosis of prostate cancer at the time 
of writing.

Multivariate regression analysis showed that models 
based on ADC maps had higher diagnostic performance 
in the assessment of PZ lesions than T2WI and DCE-MRI. 
Texture parameters derived from ADC maps have pro-
vided more diagnostic benefits in the diagnosis of prostate 
cancer [22]. In the PI-RADS v2 and v2.1, it was empha-
sized that DWI should be the basis of scoring lesions in 
the PZ, and our results are consistent with the PI-RADS 
[8,36]. First-order texture parameters are better under-
stood and have more clinical validity than second- and 
higher-order texture parameters [22]. In this study, better 
diagnostic performance was obtained in models derived 
from first-order parameters.

 Some limitations in this study should be considered. 
First, the sample size is small. Second, the PI-RADS score 
of the lesions was not considered in the study. Prospective 
TA studies using the PI-RADS in a larger series will form 
the basis of machine learning techniques for prostate can-
cer. Finally, mpMRI-directed transrectal US-guided fusion 
biopsy was used as a reference standard instead of radical 
prostatectomy in most patients.

In conclusion, MRTA is useful in differentiating csPCa 
from benign lesions or cisPCa. In addition, the first-order 
multivariate regression model obtained by adding entropy 
to the mean had the highest diagnostic performance in 
identifying csPCa.
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