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1. Introduction
Surface electromyography (surface EMG) is a main 
technique used to detect and analyze the electrical 
activities produced by skeletal muscles through surface 
electrodes on the skin. It provides important information 
about muscle control by the nervous system (central and 
peripheral). To prevent disorders and evaluate treatments, 
surface EMG is conventionally used to understand 
specific conditions, such as muscle fatigue, denervation, 
reinnervation, muscle coordination, load sharing, and 
spasticity.  In recent years, the applications of surface EMG 
have extended beyond traditional fields to encompass new 
areas, including obstetrics, occupational medicine, art in 
medicine, neuro-rehabilitation, ergonomics, preventive 
medicine, research on aging, veterinary science, control 
of artificial limbs, robotics, and the development of 
human-machine interfaces [1]. Because of this important 
expansion into new application fields, the number of 
potential users has also increased. 

The rapid development in research fields and cutting-
edge technologies are fostering the growth of surface EMG 
and its potential in clinical applications. Developments 
in EMG applications can make the use of this technique 
more attractive for clinicians by taking EMG out of the 
traditional environment. However, there is still a lack of 
acceptance of surface EMG in clinical applications. Many 
challenges remain unresolved, including adaptation to 
novel EMG systems and signal processing methods [1,2]. 
These challenges led to a gap in progress between the 
research fields of surface EMG and its clinical acceptance, 
characterized by the translational knowledge and skills in 
the widespread use of surface EMG among the clinician 
community. To reduce this gap, it is necessary to translate 
updated surface EMG applications and technological 
advances into clinical research. However, it can be difficult 
for the clinicians or clinical practitioners to follow all the 
aspects of signal processing and technological innovations 
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in surface EMG Therefore, we aimed to present a 
perspective on recent developments in the application of 
surface EMG and signal processing methods.

2. Materials and methods
We conducted this scoping review following the Joanna 
Briggs Institute (JBI) method and included studies that 
focused on surface EMG and its applications. Based on the 
JBI recommendations, we conducted a general search of 
PubMed and Web of Science to identify key search terms. 
Our search string was: (“Surface Electromyography” OR 
“Surface EMG” OR “sEMG” OR “Electromyography”) AND 
(“Kinesiology” OR Biofeedback” OR “Neurophysiology” 
or “Muscle Strength” OR “Muscle Fatigue” OR “Physical 
Therapy and Rehabilitation” OR “Physical Exercise” OR 
“Posture” OR “Postural Control” OR “Movement Analysis” 
OR “Muscle Coordination” OR “Motor Synergies” OR 
“Modelling” OR “Signal Processing” OR Signal Analyzing” 
OR “Decomposition”) NOT (“review”[Title/Abstract] OR 
“Needle Electromyography” OR “needle EMG”) . The 
search string was further expanded by running searches 
with medical subject headings (MeSH) in the medical 
databases (e.g., PubMed) as well as with identical and 
compatible non-MeSH terms in other databases (e.g., 
Web of Science and Google Scholar). We tested various 
combinations of search terms with Boolean operators 
to assess the sensitivity of the terms for word variations. 
Following the search, we uploaded selected articles into 
the Rayyan web software and removed duplicates. We did 
a prescreening of 133 titles and abstracts and assessed 91 
full texts of selected abstracts and titles according to the 
inclusion criteria. We then extracted data from the studies 
using the JBI guidelines. We conducted a thematic analysis 
to clarify the conceptual categories. This approach allowed 
us to characterize the application fields of surface EMG 
and to assess its clinical acceptance.

3. Results
The present study reviewed the latest developments in 
surface EMG recording, signal analysis, and its application 
fields.
3.1. Surface electromyography detection
The source of surface EMG signals is the depolarizing and 
repolarizing regions of muscle fibers. Motion generation 
is accomplished by transmitting synaptic inputs to motor 
neuron pools. When a motor neuron is discharged, action 
potentials are generated at the neuromuscular junctions 
and propagated across all muscle fibers to the tendon 
sites. Motor unit (MU) action potentials are the sum of 
MUs and can be recorded from the skin surface at various 
distances from the source by surface EMG. The recording 
of surface EMG signals includes the following steps: (i) 
detection of myoelectric potentials with surface electrodes 

(bipolar electrode pairs, electrode arrays, or grids), (ii) 
amplification of these potentials, (iii) analog filtering of 
amplified potentials to prevent aliasing, and (iv) converting 
analog to digital signals by sampling. Surface EMG signals 
can be transmitted to computer, tablet, and mobile devices 
through wired (electrical or optical) or wireless (WiFi, 
Bluetooth, NFC) connections. Surface electrodes can 
have different properties and configurations, as shown in 
Figure 1. These electrodes can be mainly divided into wet 
(metal–skin contact with a gel or paste), dry (metal–skin 
contact without gel or paste), and capacitive (no electrical 
contact with the skin) electrodes [3]. The wet silver/silver 
chloride (Ag/AgCl) electrode pairs are still widely used as 
conventional surface EMG electrodes.

Further techniques for detecting surface EMG signals 
are based on multichannel detection through one- or two-
dimensional electrode arrays, which allow the application 
of spatial filters with different spatial selectivity. One of the 
important developments in surface EMG devices is high-
density surface EMG (HDsEMG), which is EMG imaging 
technology to identify the recruitment of more than a single 
MU. However, using HDsEMG in clinical practice is more 
complex than using conventional surface electrode pairs 
because of its specific hardware and analysis method [3,4]. 
Advances in electrode technology continue in parallel with 
developments in materials science and sensor technology. 
Research has been conducted on various innovative 
electrodes, such as nanomaterial-based electrodes, tattoo-
like or skin-printed conductive inks, semipermanent tattoo 
electrodes, high adhesion stretchable electrodes, wearable 
high-resolution facial arrays, hydrogel electrodes, and anal 
and vaginal probes with special geometries [5–7].
3.2. Factors affecting surface EMG signal characteristics 
The signal characteristics of surface EMG depend on 
several anatomical, physical, and detecting methods. The 
signal detection can vary according to the size and shape 
of the electrodes (i.e. electrode pairs, grid electrodes), 
the electrode material, the interelectrode distance (IED), 
and the electrode–skin contact (i.e., dry or gelled) [8–10]. 
Anatomical attributes mainly depend on muscles type 
and form [8]. For example, a small grid of electrodes with 
short IEDs (2.5 mm to 5.0 mm) could be well suited for 
the hand and facial muscles, while the mapping of surface 
EMG in larger volume muscles such as the calf requires 
larger electrode grids with larger IEDs (5.0 mm to 8.0 
mm). Other anatomical factors are the thickness of the 
subcutaneous tissue layer, the depth of the source within 
the muscle, and the length of the muscle fibers [10].

The main physical factors are the orientation of the 
electrodes according to the fiber direction and their 
position to the muscle’s innervation zone (IZ) region, the 
slope of the electrodes according to the orientation of the 
muscular system, the IED, the conductive gel, and the 
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Table. The application of surface EMG across a variety of disciplines. 

Field surface EMG applications

Neurophysiology 

spasticity, cramps, and related phenomena [19,25]
effects of strength training on muscle activation [26]
gait and stance analysis [27]
the effects of aging on the muscle and nervous system [28,29]
evoked potentials (CMAP, M wave, H-reflex, MEP, and CMEP) stimulated by electrical and magnetic 
stimulation [30]
muscle training in sports [31]
functional control of paralyzed extremities [32]
diagnosis and rehabilitation of neuromuscular diseases (stroke, cerebral palsy, spinal cord injury, etc.) 
[33,34]
monitoring the neurodegenerative processes of motor neuron diseases [35]

Muscle strength and 
fatigue;
physical therapy and 
rehabilitation

the mechanical and myoelectric signs of muscle fatigue [36]
muscle fatigue in central and peripheral nervous system disorders [37]
joint torque in isometric contraction in various pathologies [38,39]
evaluating muscle activation during a task [40,41]
tuning the curves of the surface EMG amplitude [42]
monitoring the physiological efficacy and changes of rehabilitation [43,44]

Posture and movement 
analysis

the role of muscles in postural control [45]
reflex and control paradigm [46,47]
muscle activation for postural disturbances (perturbation directions) [48]
changes in EMG responses in dementia translations [49]
internal sources of postural perturbations [50]
the role of the mechanisms and different skeletal muscles involved in the control of the perturbation and 
quiet stance [51,52]
analyzing movement and movement disorders [53,54]
evaluating the effectiveness of applied treatments [55]
examining jaw, tongue, and cheek movements [56]
envelope studies [57] 

Muscle coordination 
and motor synergies

spinal motor neuron estimates [58]
investigating muscle synergies in response to postural perturbation and posture control [59,60]
modular control of reach movements [61]
analysis of behavior such as plasticity and flexibility in movement disorders [62]
factorization to muscle synergies [63]
reconstruction of spine maps from surface EMG [64]
motor principles in human walking [65]
bilateral coordination [66]
development of locomotor primitives [67]

Biofeedback

the treatment of patients with stroke, cerebral palsy, and spinal cord injury [68–70]
the treatment of neck and headaches [71]
the treatment of urinary incontinence [72]
the treatment of chewing disorder [73]
dysphagia therapy [74]
neuromotor rehabilitation and exercise programs [75]
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crosstalk [11]. Figure 2 shows that two lines intersecting 
is a good estimate for the location of the center of the IZ. 
Figure 2a shows electrode pairs set to reidentify the IZ 
for more accurate localization of the MUs. While linear 

electrode arrays allow for precise mapping of MU activity 
along the muscle length (Figure 2b), grid electrodes allow a 
comprehensive understanding of how MUs are distributed 
within the muscle volume (Figure 2c). 

Decomposition

motor control strategies [76]
morphological and functional properties of MU [77]
examination of MU under conditions (pathology, fatigue, pain, or exercise) [78,79]
surface EMG simulation [80]

Modeling

muscle fatigue modeling [81]
understanding crosstalk [82]
estimating muscle dynamics reflecting joint moments [83]
investigating motor constraints in pathological conditions [84,85]
examining deep muscles [86]
estimating muscle stimulation, muscle–tendon unit strength, and joint moment [87]

Other applications

ergonomics (ergonomic design and analysis to prevent work-related disease and early detection of 
musculoskeletal disorders) [88–90]
proctology and obstetrics applications [91,92]
sports and movement sciences (biomechanics and motion analysis, strength or endurance training, 
coordination, and fatigue) [93–95]
rehabilitation technologies and human-machine interfaces (prostheses, orthoses, electrical stimulation 
systems, control signals to external devices in neurorehabilitation, etc.) [96–99]

Table. (Continued).

 
 
 
Figure 1. Different types  of surface EMG electrodes 

 

Figure 1. Different surface EMG electrodes.
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The factors related to the detection system are the spatial 
filters, amplifiers, electrode type, electrode configuration, 
electrode material, and noise. Noise can occur from 
electrode–skin contact, the input impedance of the 
bioelectric signal amplifier, a motion artifact, power line 
interference, or electromagnetic radiation. The inheritance 
of the task (dynamic, static, maximal, submaximal, etc.) is 
one of the essential factors. The effect of all these factors 
on surface EMG features has been extensively studied and 
discussed in the literature [11,12]. 
3.3. Signal processing methods for surface EMG
Signal analysis methods can provide descriptive information 
and features of the signal. Surface EMG signals have been 
extensively analyzed in the time domain, frequency domain, 
and time–frequency domain. Conventional signal analysis 
methods for surface EMG are shown in Figure 3. These 
analysis methods mainly involve the examination of the 

raw surface EMG in the time domain (Figure 3a), rectified 
surface EMG signals (Figure 3b), smoothed surface EMG 
signals (Figure 3c), and the power spectrum (PS) of surface 
EMG signals in the frequency domain (Figure 3d). 

EMG features have been recently obtained from both 
linear and nonlinear analysis methods. The main surface 
EMG features in the time domain are average rectified 
values, mean absolute values (MAV), and root-mean-
square values (RMS), in terms of amplitude [13]. Many 
other surface EMG features have been introduced in the 
time domain by providing different information (energy, 
frequency, complexity estimation model, etc.). For example, 
modified mean absolute value (mMAV), average absolute 
value slope (MAVSLP), variance (VAR), integrated EMG, 
v-order, LOG detector, and simple square integral variables. 
Absolute temporal moments provide statistical information 
similar to the MAV and VAR properties. Some features 

 
 
 
 
Figure 2. IZ detection with different electrode locations a) surface electrode pairs, b) linear 

electrode array, c) grid electrodes [10] 

 

Figure 2. IZ detection with different electrode locations: a) surface electrode pairs, b) linear electrode array, 
and c) grid electrodes.
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provide frequency information of the EMG signal defined 
in the time domain, such as zero crossings (ZC), Willison 
amplitude (WAMP), myopulse percentage rate, slope sign 
change, and amplitude of the first burst. A histogram is an 
extension of the ZC and WAMP features. The waveform 
length (WL) provides information about the complexity 
of the EMG signal in the time domain. Change in average 
amplitude and the difference of the absolute standard 
deviation are different versions derived from the properties 
of WL. Autoregressive coefficients provide information 
for the prediction model. Multiple Hamming windows 
and multiple trapezoidal windows provide energy and 
complexity of signal information with the windowing 
method [13–15]. 

The signal analysis in the frequency domain provides 
useful and important spectral features of signals that 
cannot be obtained in the time domain. For transforming 
the signal into the frequency domain, the PS or power 
spectral density (PSD) is calculated using a Fourier 
transform of the autocorrelation function of the EMG 
signal. All features in the frequency domain are calculated 
according to the statistical parameters of the PSD. The 
most common features of surface EMG signals in the 

frequency domain are mean frequency (MNF) and median 
frequency (MDF). Modified MNF and modified MDF 
were proposed as expanded versions of MNF and MDF. 
Other features can be mathematically obtained from the 
EMG PS, such as total power, mean power, peak frequency 
(PKF), and frequency ratio (FR). Spectral moment 
and central frequency variance are alternative forms of 
statistical analysis calculated from the EMG PS. PS ratio 
extends the PKF and FR features. Cepstral coefficients 
are calculated as the inverse Fourier transform of the 
signal’s logarithm of the PS size. The PS distortion rate (Ω) 
provides information about spectral distortion. SNR is the 
ratio of signal power to noise power [16,17]. 

The time–frequency analysis provides information 
about the frequency spectrum in a fixed time interval or 
where the components of the signal in a certain frequency 
range are at a certain time. This method has attracted the 
attention of many researchers. The most common methods 
in the time-frequency domain are the Wigner–Ville 
distribution, the Choi–Williams distribution, short-time 
Fourier transform, wavelet transform, empirical mode 
decomposition, and the Stockwell transform [18–20].

Statistical methods such as higher order statistics, 

 
 
 
Figure 3. Conventional signal analysis methods for surface EMG a) raw surface EMG in the 

time domain b) rectified surface EMG signal c) smoothed surface EMG signal d) power 

spectrum of surface EMG signal in the frequency domain.  

 

Figure 3. Conventional signal analysis methods for surface EMG: a) raw surface EMG in the time domain, b) rectified surface EMG 
signal, c) smoothed surface EMG signal, and d) PS of surface EMG signal in the frequency domain. 
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independent component analysis (ICA), skewness, and 
kurtosis are being used in surface EMG analysis. Different 
ICA algorithms are also used in surface EMG signal analysis 
[21]. To explain the distribution of sampled EMG signals, 
the probability density function basis of probability theory 
is used [22]. Nonlinear time series analyses are used to 
investigate the surface EMG signal in terms of stochastic, 
deterministic, and even chaotic characteristics. These 
nonlinear methods include the surrogate data method, 
the Volterra–Wiener–Korenberg model, chaotic analysis 
method, symplectic geometry method, correlation, fractal 
analysis method, and entropy [23,24].

HDsEMG represents two-dimensional (2D) potential 
distribution that provides an image of an instantaneous 
surface EMG for each sample. Image interpolation has 
been proposed to reduce the pixel size and create additional 
smaller pixels for a smoother display of HDsEMG with 
appropriate sampling. It can sample this 2D analog signal 
by sequencing the maps in space and time. Each epoch 
provides an image of the spatial distribution of the MAV, 
RMS, MNF or MDF features. It can also create a surface 
EMG analog movie with frames separated by epoch 
duration and colors representing the instant potential 
amplitude distribution in time.
3.4. Application fields of surface EMG
The review results show that surface EMG has had a wide 
range of applications as a muscle activation measurement 
tool that can transfer information about muscle function. 
The table shows the different application fields of surface 
EMG.

Neurophysiology is one of the main application fields 
of surface EMG for assessing muscle activation, neural 
activation patterns, and movement strategies in humans 
[25–27]. The use of surface EMG has progressively expanded 
with the enhanced knowledge of the physiopathology 
of disease, the diagnosis of the neuromuscular diseases, 
and evaluation of patient rehabilitation and treatments 
[28–31]. Surface EMG has been extensively investigated 
to evaluate the effects of strengthening training programs, 
muscle activation, neural adaptation, the plasticity of 
the nervous system following exercise training, aging 
factors in the muscle and nervous system, and the neural 
regulation required to perform different motor tasks 
[28–31]. Electrical stimulation methods have also been 
used in combination with surface EMG. For example, 
they are used together for estimating myoelectric signal 
variables, evaluating muscle activation in exercise training, 
understanding the functional control of paralyzed 
extremities, and rehabilitating stroke, spinal cord injury, 
geriatric, and cardiovascular patients [32–34]. The evoked 
potentials of electrical and magnetic stimulation (M wave, 
H-reflex, MEP, and CMEP, etc.) have been conducted to 
investigate neuromuscular fatigue and the provocation 

of the corticospinal system during different motor tasks. 
EMG response to nerve stimulation has been used to 
investigate the number of active motor neurons, evaluate 
denervation, and monitor neurodegenerative processes 
[35].

To understand the mechanical and myoelectric events 
of muscle fatigue and muscle strength during various 
contractions, surface EMG has been studied in the fields 
of sports, rehabilitation, occupational medicine, space 
medicine, prosthetic control, work-related disorders, 
and oncology [2,36,37]. Joint torque measurements have 
been used in isometric contractions in many clinical 
applications, such as for stroke, Parkinson’s disease, 
multiple sclerosis, diabetes, and other various pathologies 
[38,39].

In physical therapy applications, surface EMG has 
been commonly used to evaluate muscle activity during 
tasks such as postural perturbations, the myoelectric signs 
of muscle fatigue, and the magnitude of muscle activation 
[40–42]. It has also been applied to evaluate impaired 
motor control in physical therapy and to monitor the 
changes by rehabilitation [43,44].

Posture and gait studies use surface EMG to investigate 
the role of muscles and the mechanisms of reflex and 
control paradigms [45–47]. Many studies have examined 
EMG responses for postural disorders, activation of 
muscles, internal sources of postural perturbations, and 
changes in dementia translations [48–52]. Surface EMG 
provides qualitative and quantitative information (timing, 
amplitude, and morphology of muscle activation) for many 
applications (e.g., clinical evaluation, surgical selection, 
local muscle inhibition by drugs, assessment of muscle 
strength, muscle fatigue, orthoses, masticatory functions, 
dental malocclusions, and rehabilitation protocols) [53–
56].

To explore neural control, assessment of muscle 
coordination and motor synergy is also one of the 
application fields of surface EMG. Measuring muscle 
activity during motor behavior helps to estimate the net 
global firing rate of spinal motor neurons innervated 
by muscle and envelope changes [57,58]. Therefore, 
surface EMG provides a quantitative perspective in 
neurophysiology research to examine the complex control 
mechanisms of the central nervous system, which drives 
hundreds of muscles to control whole-body movements. 
Different approaches have been proposed to reveal the 
modular motor organization of human behavior, such as 
muscle synergies in response to postural perturbations, 
reaching out and movement with the arm, and assessment 
of the plasticity and flexibility in movement disorders 
[59–62]. Furthermore, different muscle synergy models 
and patterns in the organization of the musculoskeletal 
system have been used to investigate the dynamic behavior 
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of the muscles [63,64]. Surface EMG can characterize the 
mechanisms underlying muscle coordination, considering 
the spatial size and temporal nature of the spinal motor 
output [65]. Using different statistical and analytical 
approaches, surface EMG studies have revealed a large 
part of muscle synergy, modulation, and variation in 
muscle activity between tasks (e.g., standing, balance, and 
posture control during walking) [65,66]. Besides, many 
studies have shown different movement modes, directions, 
speeds, and basic patterns during body support through 
the phasic and tonic components of surface EMG. Surface 
EMG has also been applied to different populations, from 
infants to the elderly, to characterize the specific features of 
motor pool activity during the development of locomotor 
patterns and the specific adaptation of segmental motor 
output in patients [67].

Surface EMG biofeedback has an important role 
in pathological conditions to provide the patient with 
advanced information about muscle activity. For example, it 
benefits both patient and practitioner to learn the locations 
of muscle tension in the body, how to relax muscles, and 
the effectiveness of exercises. When combined with other 
physiotherapies, surface EMG biofeedback has provided 
better improvements in motor strength, functional 
recovery, gait quality, and swallowing difficulties compared 
to standard physiotherapy. Many studies have reported 
surface EMG biofeedback’s effectiveness in the treatment 
of patients with stroke, cerebral palsy, and spinal cord 
injury. It is a beneficial tool for reducing the excitability of 
hyperactive spinal stretch reflexes. It also improves surface 
EMG amplitude and various gait parameters (walking 
speed, cadence) and facilitates the activation of targeted 
muscles [68–70]. Surface EMG biofeedback training has 
also effectively treated headaches, asthma, muscle cramps, 
and pain [71]. To treat incontinence with surface EMG 
biofeedback, practitioners have used different EMG 
sensors for detecting and monitoring muscle tension. 
Several studies have confirmed an association between 
pelvic muscle dysfunction and vulvar pain symptoms, the 
muscle spasm-based diagnostic for vaginismus, interstitial 
cystitis, and urinary incontinence [72]. Surface EMG 
biofeedback training of masticatory muscles has been used 
as an effective treatment for temporomandibular disorders 
when combined with adjunctive cognitive-behavioral 
therapy [73,74]. Surface EMG biofeedback has been used 
for motor learning in sports, recreation, and rehabilitation 
to improve the learner’s performance [75]. 

Multichannel EMG or HDsEMG explores motor con-
trol strategies and motor adaptation to various conditions 
(pathology, fatigue, pain, or exercise) by decomposition of 
MUs [76,77]. The automatic decomposition algorithms of 
MUs have allowed the identification of full MU discharge 
patterns even at maximum contraction forces. This meth-

od has been used to assess neurodegenerative diseases, 
stroke, type II diabetes, and cleft lip patients [78,79]. Re-
cently, surface EMG simulators have supported the realis-
tic simulation of complex muscle features such as changes 
in tissue conductivity, the effects of fatigue, and anatomical 
variations [80]. In addition, advanced simulators of mus-
cle control strategies have been proposed for both healthy 
and pathological conditions. Surface EMG is a valuable 
tool in modelling and understanding muscle function and 
performance, such as the estimation of muscle fatigue, 
crosstalk, muscle dynamics, deep muscle activation, mo-
tor constraints, and joint moments [81–87].

In ergonomics and occupational medicine, surface 
EMG is an important tool to provide the quantitative 
evaluation to analyze the neuromuscular system in the 
work environment and identify risk factors in terms of 
work-related health problems, such as manual lifting 
tasks, workloads, posture, horizontal distance, the site of 
the spine subjected to force, and muscle fatigue [88–90]. 
Therefore, surface EMG techniques have been extensively 
used in designing and analyzing workplace optimization, 
performing arts, the use of musical instruments, risk pre-
vention, and early detection of work-related health prob-
lems. Surface EMG has further applications in proctology 
and obstetrics [91,92]. It is often used in conjunction with 
other diagnostic and monitoring methods, such as clini-
cal examinations, ultrasound, and pressure sensors. In 
obstetrics, it is more commonly use to observe the pelvic 
floor and uterine contractions rather than fetal monitor-
ing, which is typically done using a fetal heart rate monitor 
and ultrasound.

In sport science and exercise physiology, surface EMG 
has been used to evaluate the effectiveness of exercise 
training, to investigate the links between coordination and 
fatigue, and for motion analysis. The main applications in 
these fields are: (i) evaluating muscle coordination and 
muscle activity during complex movement patterns (e.g., 
walking, running, cycling, golf, tai chi, etc.), (ii) observing 
neural and hypertrophic factors of muscle strength gain, 
muscle fatigue, and muscle damage, (iii) specifying goal-
oriented physical exercise, and (iv) determining suitable 
exercise for a particular training purpose [93–95].

Surface EMG has been used for other specific applica-
tions, such as human–machine interfaces, data-driven or 
model-driven approaches for prostheses, orthoses, electri-
cal stimulation systems, replacements, orthotics, neuro-
modulator robots, and robotic assistive devices [96–99]. In 
neurorehabilitation, the control signals of external devices 
have been extracted from anatomical and physiological 
information related to musculoskeletal power generation. 
3.5. Future directions of surface EMG
Surface EMG has excellent potential in many exciting 
and growing fields, as shown by the large amount of 
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published literature (20+ books, 200+ reviews, 20+ 
encyclopedia entries, and 7000+ articles) and the 
abundance of professional meetings  and networking 
(e.g., the Association for Applied Psychophysiology and 
Biofeedback, the Biofeedback Foundation of Europe, 
and the International Society of Electrophysiological 
Kinesiology, etc.). Similarly, there are rapid advances in 
equipment and devices provided by surface EMG equipment 
manufacturers (TMSI, OTbioTech, Delsys, Noraxon, 
Thought Technology, and others). The current trends 
include integrated surface EMG and inertial measurement 
units. The recent launch of wearable EMG motion control 
devices, such as the Myo armband (http://www.myo.
com), is an important indicator of these developments. 
These advances in wearable technologies have increased 
the potential of myoelectric devices to penetrate daily life. 
Future applications may also include using a large array 
of electrodes that cover all limbs with signal conditioning 
and wireless transmission embedded in a microcard. The 
advances in surface EMG biofeedback technique can 
provide tools to evaluate gross motor activities during 
various tasks. HDsEMG devices with wireless systems are 
also rapidly developing. The development of HDsEMG 
decomposition algorithms will probably focus on online 
MU identification and feedback for clinical practice and 
myoelectric control systems. Furthermore, EMG imaging 
techniques can potentially expand in the future as a 
solution to the technological problems of the electrode–
skin interface. Dry or capacitive wearable electrodes that 
do not require skin preparation have already been used 
in telemedicine, sports, and telerehabilitation. Recent 
developments in surface EMG imaging combined with 
ultrasound or functional magnetic resonance imaging can 

play an important role in physiological research. Surface 
EMG images have the potential to be the input of human–
machine interfaces and rehabilitation robots. The studies 
in this field are interdisciplinary and cover the fields of 
chemistry, dermatology, textiles, leather-like electronics, 
organic semiconductors, and materials science. Recent 
advances in information and communication technology, 
such as the internet of things, allow for improved 
communication with medical doctors or biofeedback 
practitioners in daily life. Therefore, novel technological 
developments in motor control and motor learning can 
bring new solutions for surface EMG biofeedback and 
telerehabilitation applications that lead to more effective 
physical therapy in many applications.

4. Conclusion
It is apparent that surface EMG has made innovative 
technological progress and has great research potential. 
Translating these innovations into routine clinical 
applications can allow them to play a growing and 
valuable role in muscle activation measurement in clinical 
practices. Thus, researchers must build interfaces that 
give opportunities for continuing education and research 
with more contemporary techniques and devices. These 
interfaces can support the widespread use of surface EMG 
in clinical practice.
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