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1. Introduction
The titration of fluid therapy is a fundamental part of 
the intraoperative period [1]. Both hypovolemic and 
hypervolemic states increase the risk of postoperative 
complications [2]. Therefore, while optimizing the stroke 
volume (SV), it is crucial to avoid fluid challenges that 
will not result in an SV increment [3]. In this context, 
evaluating fluid responsiveness is highly recommended by 
the perioperative guidelines [4].

The dynamic indices derived from cardiopulmonary 
interactions, such as pulse pressure variation (PPV) and 
SV variation (SVV), have been shown to be superior to 
the static preload parameters in terms of predicting fluid 
responsiveness [5, 6]. However, several conditions limit 
their ability, including the use of a tidal volume below 
8 mL/kg of ideal body weight (IBW) [7]. The mini fluid 
challenge (MFC) is one of the functional hemodynamic 

tests (FHTs) that was developed for such conditions where 
the PPV and SVV are not applicable [4, 8]. This test depends 
on evaluating the hemodynamic changes resulting from a 
rapid infusion of 100 mL of crystalloids [8]. The absolute or 
percentage change in the stroke volume index (SVI) due to 
the MFC (MFC-ΔSVI and MFC-ΔSVI%, respectively) are 
the 2 most frequently analyzed variables when an arterial 
waveform analysis device is used [8–12]. Although the 
sensitivity and specificity of these variables are satisfying, 
up to 20% of patients remain in the gray zone, where the 
diagnosis is uncertain [11, 12]. Therefore, there is a need 
for alternative parameters while using devices analyzing 
the arterial waveform in order to improve the predictive 
ability of the MFC.

From this point of view, the cardiac power index (CPI) 
is a promising parameter, as it is correlated with stroke 
work and the right ventricle end-diastolic volume [13, 
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14]. To the best of our knowledge, there are no studies 
that have evaluated the ability of the percentage change in 
the CPI due to the MFC (MFC-ΔCPI%) to predict fluid 
responsiveness.

The primary aim of this study was to compare the 
abilities of the MFC-ΔSVI% and MFC-ΔCPI% with the 
baseline PPV and SVV to predict fluid responsiveness in 
patients who are undergoing major abdominal surgery 
with laparotomy and are ventilated with 6–8 mL/kg IBW 
tidal volumes (TVs). The secondary aims were to evaluate 
other variables derived from arterial waveform analysis for 
the same outcome and determine the prognostic indices 
(i.e., the best cut-off values, sensitivity, and specificity 
percentages) for all of the variables.

2. Materials and methods
2.1. Study design and patient selection
This study was designed as a single-center prospective 
observational study and performed in line with the 
principles of the Declaration of Helsinki. Ethical approval 
was obtained from the Clinical Research Ethics Committee 
of İstanbul Başakşehir Çam and Sakura City Hospital (no.: 
2022.02.51, dated: February 2022). The inclusion criteria 
were as follows: age at least 18 years, elective abdominal 
surgery with laparotomy under general anesthesia, and 
the use of invasive blood pressure monitoring. Patients 
were enrolled in the study between March and June 2022, 
and written informed consent was obtained from all of 
the patients in the preoperative period. Patients with any 
of the following conditions were excluded: body mass 
index (BMI) >35 kg/m2, preoperative arrhythmia, left 
ventricle ejection fraction <50%, systolic peak velocity 
of tricuspid annular motion <0.17 m/s, static respiratory 
system compliance (Crs) <35 mL/cmH2O, moderate or 
severe valvular heart disease, chronic pulmonary disease, 
chronic medication with beta-blockers, and ASA score >3. 
While applying the protocol, patients with the following 
conditions were also excluded: new onset bleeding or 
arrhythmia, loss of the quality of arterial signal, and need 
for hemodynamic intervention. 
2.2. Anesthesia management
The peripheral oxygen saturation, heart rate (HR), 
noninvasive blood pressure, and bispectral index (BIS 
monitor; Medtronic, Brooklyn Park, MN, USA) values of 
the patients were monitored following their arrival at the 
operating room. Anesthesia was induced with 1% propofol 
along with 1 mcg/kg fentanyl and 0.6 mg/kg rocuronium 
bromide and maintained with sevoflurane (1%–2%) and 
remifentanil (0.05–0.3 mcg/kg/min), aiming BIS values 
between 40 and 60. Mechanical ventilation included 
volume-controlled ventilation (Perseus A500, Drager, 
Lübeck, Germany) with a TV of 6–8 mL/kg IBW at a rate 
of 12–15/min, and an inspiratory-to-expiratory ratio of 

1/2 in 40% oxygen and air with a positive end-expiratory 
pressure (PEEP) of 5–7 cmH2O. The IBW was calculated 
using Robinson’s formula [15]. Fluid administration 
during the surgery was set between 3–5 mL/kg/h by the 
attending anesthesiologist, it was stopped during the 
application of the study protocol and then resumed upon 
completion of the protocol. The decision to administer 
500 mL of fluid loading (FL) was at the discretion of the 
attending anesthesiologist and was not standardized by a 
protocol.
2.3. Respiratory and hemodynamic monitoring
Prior to the start of ventilation with the anesthesia 
machine, the Crs values of the patients were automatically 
calculated by a ventilator (Hamilton-C1 ventilator; 
Hamilton Medical, Bonaduz, Switzerland) capable of 
applying expiratory and inspiratory hold maneuvers. 

The left radial artery was catheterized after the induction 
of anesthesia. An arterial catheter (Vygon, Padova, Italy) 
dedicated to radial artery catheterization and the analysis 
of arterial waveform via a MostCare monitor (Vygon) was 
used, and it was attached to the pressure transducer of the 
aforementioned device. The square-wave test was used to 
ensure the absence of overdamping and underdamping of 
the arterial pressure wave. 
2.4. Parameters of the arterial waveform analysis
The MostCare monitor analyzes the arterial waveform 
with a sampling rate of 1000 points/s [16]. This feature 
allows it to determine the points of instability profile of 
the arterial waveform and calculate the beat-to-beat SVI 
[17]. Systolic, diastolic, and dicrotic pressure (DicP) 
points, mean arterial pressure (MAP), and pulse pressure 
are also identified directly from the arterial wave analysis. 
Subsequently, several hemodynamic parameters are 
calculated automatically, as follows:

CPI (W/m2): CI × MAP / 451
SVV(%): (SVmax – SVmin) / SVmean (calculated 

every 30 s)
PPV(%): (PPmax – PPmin) / PPmean (calculated 

every 30 s)
Arterial elastance, Ea (mmHg/mL): DicP / SV
The maximal slope of the systolic portion of the arterial 

pressure waveform (maximal pressure / time ratio, dP/
dtmax): Obtained directly from the sampling of the arterial 
wave.

Cardiac cycle efficiency (CCE): Calculated using the 
relevant equation [17].
2.5. Protocol
The study protocol was applied following the confirmation 
of the hemodynamic stability during the surgery (defined 
as the mean arterial pressure (MAP) change <10% for 
3 min). BIS values were between 40 and 60 and within 
±10% of the baseline value in all of the patients during 
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the protocol. The surgical team was also warned not to 
apply a new onset surgical stimulus. Only the first sets of 
measurements were recorded for each patient. 

The hemodynamic parameters were recorded at 3 time 
points (T1–T3). The T1 measurement was performed 
before 100 mL of isotonic saline was infused over 1 min 
(MFC). A minute after the MFC was completed, the T2 
measurement was performed. Finally, the T3 measurement 
was performed 3 min after an additional 400 mL of 
isotonic saline was infused within 10 min to complete 500 
mL of FL. Patients whose SVI showed an increase of more 
than 15% after the FL (FL-ΔSVI% > 15) were classified 
as responders. Absolute changes of the parameters due 
to MFC were calculated as follows and defined with the 
MFC-ΔXXX sign (i.e., MFC-ΔSVI, MFC-ΔCPI): SVI(T2) 
– SVI(T1), CPI(T2) – CPI(T1), PPV(T1) – PPV(T2), 
SVV(T1) – SVV(T2), Ea(T1) – Ea(T2), dP/dTmax(T2) 
– dP/dTmax(T1), CCE(T2) – CCE(T1). The percentage 
changes of the parameters due to the MFC were calculated 
as the ratio between the absolute change and baseline (T1) 
values for each parameter and indicated as MFC-ΔXXX% 
(i.e., MFC-ΔSVI%, MFC-ΔCPI%).
2.6. Statistical analysis
In view of previous results, the area under the receiver 
operating characteristics curve (ROCAUC) of the baseline 
PPV and SVV were expected to be <0.65 [11, 18]. Although 
the ROCAUC of the MFC-ΔSVI% is usually >0.90 in the 
literature [8], considering the fact that the MFC-ΔCPI% 
has not been studied previously, a ROCAUC value of >0.85 
was assumed for the MFC-ΔSVI% and MFC-ΔCPI%. 
Assuming that at least 40% of the patients would be fluid 
responsive, it was calculated that at least 65 patients were 
needed to reveal such a difference (type I error of 5% and 
type II error of 20%).

The distribution of the interval data was evaluated 
using the Shapiro-Wilk test. Normally distributed data 
were presented as the mean ± standard deviation, and 
nonnormally distributed data were presented as the median 
(25th–75th percentile). Categorical data were presented as 
the number and frequency. The hemodynamic parameters 
of the responders and nonresponders were compared 
with the student t test or Mann-Whitney U test, whereas 
the hemodynamic changes within the groups during the 
MFC were analyzed using the repeated measurements 
1-way analysis of variance (ANOVA) or Friedmann test, 
as appropriate. The Bonferroni adjustment was applied 
for pairwise comparisons. The relationships between the 
MFC-ΔSVI% and FL-ΔSVI%, and between the MFC-
ΔCPI% and FL-ΔSVI% were evaluated with the Spearman 
correlation analysis. Receiver operating characteristics 
(ROC) curves were created in order to evaluate the ability 
of the baseline values and absolute and percentage changes 
due to the MFC of the following parameters to predict 

fluid responsiveness: the SVI, CPI, SVV, PPV, Ea, dP/dtmax, 
and CCE. The ROCAUCs of the MFC-ΔSVI% and MFC-
ΔCPI% were compared with those of the baseline PPV 
and SVV with the approach defined by DeLong et al. [19]. 
Cut-off values for the variables and their sensitivity and 
specificity values were calculated using the Youden index 
(sensitivity + specificity – 1). Statistical significance was 
accepted as p < 0.05. 

The gray zone analysis was performed for the MFC-
ΔSVI% and MFC-ΔCPI% as described by Coste et al. [20]. 
The upper and lower cut-off points determining the gray 
zone were defined with the values associated with a positive 
likelihood ratio =0.1, ensuring a posttest probability <0.05 
and a negative likelihood ratio =10, ensuring a posttest 
probability >0.90, respectively. 

Statistical analyses were performed using IBM SPSS 
Statistics for Windows 21.0 (IBM Corp., Armonk, NY, 
USA) or MedCalc 16.1 (MedCalc Software Ltd, Ostend, 
Belgium), as appropriate.

3. Results
3.1. Patient characteristics and hemodynamic data
Of the 75 patients who participated in this study, 67 
completed the protocol (Figure 1). Patient characteristics 
are shown in Table 1. Of these patients, 35 (52%) were 
responders, and 32 (48%) were nonresponders to FL. 
The HR, MAP, SVI, CPI, Ea, dP/dtmax, CCE, PPV, and 
SVV values of the patients during the T1, T2, and T3 
measurement times are shown in Table 2.
3.2. Change in the SVI and CPI after MFC in the 
responders and nonresponders
A higher percentage change in the SVI and CPI was 
observed among the responders after the MFC (p < 0.001 
for both). The MFC-ΔSVI% values were 11.5 (7.7–18.2) 
and 3.0 (0–5.6), while the MFC-ΔCPI% values were 
17 (7.5–26.5) and 0 (–4.2–4.2) in the responders and 
nonresponders, respectively.
3.3. Change in the SVI after FL in the responders and 
nonresponders and correlation with the MFC-ΔSVI% 
and MFC-ΔCPI%
A higher percentage change was observed in the SVI 
among the responders after FL (p < 0.001). The FL-ΔSVI% 
values were 27.3 (20–44.8) and 6.7 (3.1–11.3) in the 
responders and nonresponders, respectively. 

The MFC-ΔCPI% was moderately correlated with the 
FL-ΔSVI% (r = 0.66, p < 0.001), while there was a strong 
correlation between the MFC-ΔSVI% and FL-ΔSVI% (r = 
0.83, p < 0.001).
3.4. Predicting fluid responsiveness
ROC curves were created to determine the ability of the 
baseline values and the absolute and percentage changes 
due to MFC of the following parameters to predict fluid 
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responsiveness: the SVI, CPI, SVV, PPV, Ea, dP/dtmax, and 
CCE (Table 3). As the primary outcome, the ROCAUCs 
of the MFC-ΔSVI% and MFC-ΔCPI% (0.94; 95% CI: 
0.86–0.99 and 0.89; 95% CI: 0.79–0.95, respectively) were 
statistically significantly higher than those of the PPV and 
SVV (0.63; 95% CI: 0.50–0.75 and 0.55; 95% CI: 0.42–0.67, 
respectively) (p < 0.001 for all of the comparisons) (Figure 
2). There was no statistically significant difference between 
the ROCAUCs of the MFC-ΔSVI% and MFC-ΔCPI% (p = 

0.24). The best cut-off values and diagnostic performances 
of the variables are shown in Table 3.

A gray zone analysis was conducted for the MFC-
ΔSVI% and MFC-ΔCPI%. The gray zone thresholds for 
the MFC-ΔSVI% were 4.8% and 6.67%, and 12 patients 
(17.9%) were inside of the gray zone (Figure 3a). The 
gray zone thresholds for the MFC-ΔCPI% were 2.9% and 
9.4%, and 18 patients (26.9%) were inside of the gray zone 
(Figure 3b).

Patients who completed study
 (n= 67)

Patients who entered study
 (n = 75)

Lost to follow-up (n = 8)
• Additional fluid bolus use (3)
• Vasopressor use (1)
• New onset bleeding (2)
• Loss of the quality of arterial 

signal (2)

Patients screened
 (n = 98)

Excluded patients (n = 23)
• BMI >35 kg/m2 (7)
• Arrhythmia (3)
• Crs <35 mL/cmH2O (5)
• LVEF <50% (2)
• ASA score >3 (3)
• Did not want to participate (3)

Figure 1. Study flow chart. BMI: body mass index, Crs: static respiratory system compliance, LVEF: 
left ventricle ejection fraction, ASA score: American Society of Anesthesiologists score.

Table 1. Characteristics of the patients.

Variables (n = 67)
Gender (male/female) 37/30
Age (years) 54.3 ± 11.6
BMI (kg/m2) 25.3 (23.0–28.1)
IBW (kg)
PEEP (cm H2O)

59.2 (55.4–68.9)
5 (5–5)

TV (mL) 450 (400–500)
Driving Pressure (cm of H2O) 9 (8–11)
TV (mL/kg of IBW) 7.5 (7.1–7.9)
Static compliance (mL/cm of H2O) 50 (39.1–60)

Values are expressed as the number, mean ± SD, median (25th to 75th percentile). BMI: body mass index, IBW: ideal body weight, PEEP: 
positive end-expiratory pressure, TV: tidal volume.
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Table 2. Hemodynamic variables at baseline, and after 100 and 500 mL of FL.

Baseline (T1) After 100 mL of fluid (T2) After 500 mL of fluid (T3) p-value
HR (beats/min)
Responders 78 ± 12.5 76.3 ± 12.6* 74.9 ± 13*† <0.001
Nonresponders 73.3 ± 12.8 72.3 ± 12.5 72.4 ± 11.1 0.19
P intergroup 0.13
MAP (mmHg)
Responders 74.6 ± 12.2 78.2 ± 13.3* 85.5 ± 15.3*† <0.001
Nonresponders 77 ± 13 77.5 ± 12.8 80.3 ± 11.7* 0.002
P intergroup 0.43
SVI (mL/m2)
Responders 28.5 ± 7.7 32.3 ± 8.3* 37.5 ± 8.8*† <0.001
Nonresponders 33.7 ± 6.3 34.8 ± 7.0* 36.2 ± 7.2*† <0.001
P intergroup 0.004
CPI (W/m2)
Responders 0.35 ± 0.09 0.42 ± 0.11* 0.51 ± 0.13*† <0.001
Nonresponders 0.42 ± 0.09 0.42 ± 0.09 0.48 ± 0.12*† <0.001
P intergroup 0.006
CCE 
Responders –0.06 (–0.38–0.07) 0.01 (–0.32–0.16)* 0.04 (–0.15–0.17)* <0.001
Nonresponders –0.06 (–0.24–0.22) 0.01 (–0.17–0.21) 0.02 (–0.30–0.19)† 0.03
P intergroup 0.17
Ea (mmHg/mL)
Responders 1.46 (1.26–2.00) 1.44 (1.09–1.79)* 1.27 (1.04–1.72)* <0.001
Nonresponders 1.26 (1.05–1.59) 1.27 (1.01–1.54) 1.30 (1.11–1.58) 0.15
P intergroup 0.04
dP/dtmax (mmHg/ms)
Responders 0.85 (0.69–0.97) 0.92 (0.72–1.03)* 0.98 (0.78–1.11)* <0.001
Nonresponders 0.88 (0.75–0.99) 0.88 (0.74–1.08) 0.95 (0.80–1.15)* 0.01
P intergroup 0.42
PPV (%)
Responders 10 (8–13) 8 (6–10)* 6 (4–7)*† <0.001
Nonresponders 8 (6–12) 7 (5–10) * 5 (3–7)*† <0.001
P intergroup 0.07
SVV (%)
Responders 7 (5–11) 9 (7–11)* 6 (4–9)* † <0.001
Nonresponders 7 (5–9) 8 (6–11) 6 (4–10)* † <0.001
P intergroup 0.47

Values are expressed as the mean ± SD or median (25th to 75th percentile). P intergroup: comparison between the responders and 
nonresponders with the student t test or Mann-Whitney U test. P-values = comparison of different time points within the groups 
with the repeated measurements 1-way ANOVA or Friedman test. *Significant difference compared with the T1 value following the 
Bonferroni adjustment (p < 0.016). †Significant difference compared with the T2 value following the Bonferroni adjustment (p < 0.016). 
HR: heart rate, MAP: mean arterial pressure, SVI: stroke volume index, CPI: cardiac power index, CCE: cardiac cycle efficiency, Ea: 
arterial elastance, dP/dtmax: maximal pressure/time ratio, PPV: pulse pressure variation, SVV: SV variation.
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Figure 2. ROC curves generated for the MFC-ΔSVI%, MFC-
ΔCPI%, SVV, and PPV showing the ability to predict fluid 
responsiveness.

Table 3. Best cut-off values and diagnostic performances of the variables.

Variable ROCAUC (95% CI) Best cut-off Sensitivity (%) Specificity (%)
MFC-ΔSVI% 0.94 (0.86–0.99) >6.67 86 94
MFC-ΔCPI% 0.89 (0.79–0.95) >5.3 89 81
PPV 0.63 (0.50–0.75) >8 66 56
SVV 0.55 (0.42–0.67) >10 26 88
MFC-ΔSVI 0.88 (0.78–0.95) >1 94 66
MFC-ΔCPI 0.87 (0.77–0.94) >0.02 77 84
CPI 0.72 (0.60–0.82) ≤0.33 57 78
MFC-ΔEA 0.72 (0.60–0.82) >0.05 69 75
MFC-ΔEA% 0.70 (0.58–0.81) >4.9 60 81
MFC-ΔPPV% 0.70 (0.57–0.80) >18.18 63 72
MFC-ΔPPV 0.70 (0.58–0.81) >1 66 66
SVI 0.69 (0.57–0.80) ≤29 63 84
MFC-ΔDP/DT% 0.68 (0.56–0.79) >2.33 77 59
EA 0.65 (0.52–0.76) >1.32 71 63
MFC-ΔCCE 0.64 (0.52–0.76) >0.05 54 72
CCE 0.60 (0.47–0.72) ≤0.09 86 41
DP/DT 0.56 (0.43–0.68) ≤0.62 20 97
MFC-ΔSVV 0.56 (0.44–0.68) >2 20 91
MFC-ΔSVV% 0.54 (0.41–0.66) >10 57 53
MFC-ΔDP/DT 0.69 (0.56–0.79) >0.01 80 56

The best cut-off values were determined using the Youden index (J = sensitivity + specificity − 1). ROCAUC: are under the receiver 
operating characteristics curve, MFC-ΔSVI%: percentage change in the SVI due to the mini fluid challenge (MFC), MFC-ΔCPI%: 
percentage change in the CPI due to the MFC, MFC-ΔXXX: absolute change in the aforementioned parameter due to the MFC, MFC-
ΔXXX%: percentage change in the aforementioned parameter due to the MFC.
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The MFC-ΔCPI% values of the 12 patients who were 
inside of the gray zone of the MFC-ΔSVI% were further 
evaluated. Of these 12 patients, 7 were outside of the gray 
zone of the MFC-ΔCPI% and were accurately diagnosed 
with this variable, While 3 patients were inside of the gray 
zone of the MFC-ΔCPI%, even though the predictions 
of the MFC-ΔSVI% and MFC-ΔCPI% for these patients 
were in concordance and accurate. The last 2 patients were 
also inside of the gray zone of both variables. However, 
there was a discordance between the predictions of these 
variables that favored the MFC-ΔSVI% (Table 4). 

4. Discussion
The main findings of this study showed that the MFC-
ΔSVI% and MFC-ΔCPI% predict fluid responsiveness 
with high sensitivity and specificity and better than the 
SVV and PPV in patients who are undergoing laparotomy 
and are ventilated with TVs of 6–8 mL/kg IBW. Although 
the gray zone analysis revealed that 17.9% of the patients 
were diagnosed inconclusively with the MFC-ΔSVI% when 
the MFC-ΔCPI% was used as the additional parameter, 
58% of these patients were saved from the gray zone and 
diagnosed accurately.

The OPTIMIZE trial revealed that the abilities of these 
indices to predict fluid responsiveness are also impaired 
in patients undergoing laparotomy, even if the patients 
are ventilated with 8 mL/kg IBW of TVs [21]. Based on 
a study conducted on critically ill patients [18], one can 
argue that the absolute or percentage changes of the 
PPV and SVV due to the MFC might have a reasonable 
diagnostic performance (ROCAUCs for the MFC-ΔPPV 

and MFC-ΔSVV: 0.92 and 0.91, respectively) [18]. 
However, the results of the current study are inconsistent 
with this finding, as it was found that the ROCAUC values 
of absolute and percentage changes of the PPV and SVV 
due to the MFC were all ≤0.70. This inconsistency can 
be explained by the impaired effect of cardiopulmonary 
interactions on the right ventricle preload due to the loss 
of the transdiaphragmatic pressure after laparotomy since 
the transdiaphragmatic pressure works as a driving force 
for the blood through inferior vena cava towards the right 
ventricle [22]. Another study also supports the attenuating 
effect of the reduced abdominal pressure on the right 
ventricle preload changes caused by cardiopulmonary 
interactions, as they found a reduction in the SVV and 
PPV (50% and 40%, respectively) following laparotomy 
[23]. Consequently, neither the baseline values nor the 
MFC-induced changes of these parameters are suitable 
to use for predicting fluid responsiveness in patients 
undergoing open abdominal surgery.

The MFC has a unique place among FHTs because 
it is independent of cardiopulmonary interactions [24]. 
Therefore, this method has the ability to predict fluid 
responsiveness in patients with spontaneous breathing 
[25], low Crs, and a high BMI value [10], and in patients 
ventilated with TVs <8 mL/kg IBW [9, 12]. Messina et al. 
evaluated 7 MFC studies with 368 fluid challenges and 
found a pooled ROCAUC of 0.91 with a cut-off of 5% for 
the MFC-ΔSVI% [8]. The results of this present study are 
in agreement with their findings. 

Using the MFC-ΔSVI% during the MFC is widely 
recognized in the literature, as mentioned above. However, 

Figure 3. Gray zones of the MFC-ΔSVI% and MFC-ΔCPI%. a. Gray zone of the MFC-ΔSVI%.  The lower cut-off point is 4.8% (with 
94.3% sensitivity). The upper cut-off point is –6.67% (with 93.8% specificity). The gray zone includes 12 (17.9%) patients. b. Gray zone 
of the MFC-ΔCPI%. The upper cut-off point is 9.4% (with 90.6% specificity). The lower cut-off point is 2.9% (with 94.3% sensitivity). 
The gray zone includes 18 (26.9%) patients. 
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in line with the results herein, previous studies revealed 
that up to 20% of patients cannot be diagnosed accurately 
as they are placed in the gray zone of the MFC-ΔSVI%, 
a range where it is likely to end up with a false positive/
negative diagnosis [11, 12]. To diagnose these patients 
accurately, other parameters derived from the arterial 
waveform analysis were evaluated, including the CPI, dP/
dtmax, Ea, and CCE during the MFC. The MFC-ΔCPI% 
was the variable that showed a remarkable performance 
with a ROCAUC value of 0.89. Of the 12 (17.9%) patients 
who were in the gray zone of the MFC-ΔSVI%, 7 were 
diagnosed accurately with the MFC-ΔCPI% values out of 
the gray zone. With the support of the CPI, the population 
in the gray zone of the MFC-ΔSVI% was reduced by 58.3%. 
To our knowledge, this is the first study to have shown the 
ability of the MFC-ΔCPI% to predict fluid responsiveness 
in any patient group. In addition, there are no studies 
demonstrating that the gray zone area can be minimized 
using a second arterial waveform analysis parameter. The 
CPI is defined as the product of the cardiac index, MAP, 
and a conversion factor to convert the units to watts (W) 
[25]. While the strong correlation between the CPI and 
stroke work (area under the volume-pressure loop of the 
cardiac cycle) is already well-known [13], it has been 
shown that there is also a correlation between the CPI 
and the end-diastolic volume of the right ventricle [14]. 

From this standpoint, the diagnostic accuracy of the MFC-
ΔCPI% is not surprising, since both of the aforementioned 
parameters are expected to increase concomitantly in 
responders.

The other parameters evaluated in this study were 
the CCE, Ea, and dP/dTmax. The CCE describes the 
relation between the stroke work generated and the total 
energy consumed for providing that stroke work during 
a cardiac cycle [17]. Stroke work is formed as a result of 
the interactions between cardiovascular elements such as 
the contractility, preload, and arterial load [26]. Therefore, 
a low/negative CCE value reflects the presence of a 
derangement in at least one of these elements [17]. If a low/
negative CCE is due to the decreased preload, an increase 
in the CCE is expected after the FL in responders [27]. 
Regarding the Ea, this parameter is an integrative index of 
arterial load that consists of systemic vascular resistance, 
total arteria elastance, and characteristic impedance [28]. 
Because an increase in the SVI is usually followed by a 
decrease in the systemic vascular resistance, the Ea is also 
expected to decrease following a FL in responders [29]. 
Finally, the dP/dTmax is a parameter mainly determined 
by contractility and arterial load [30]. However, this 
parameter might also be affected from the preload status, 
as Garcia et al. reported a decrement in the dP/dTmax 
following acute preload reduction [31]. Therefore, an 
increase in the dP/dTmax might be expected in responders 
after FL.

Even though all of these parameters revealed the 
expected changes in the responders in the current study, 
the explained contribution of the contractility and arterial 
load to these parameters probably prevented them from 
demonstrating satisfying diagnostic accuracy. It has 
already been revealed that baseline CCE and Ea values 

Table 4. MFC-ΔSVI% and MFC-ΔCPI values of the patients inside the gray zone of the MFC-ΔSVI%.

Case no. Actual fluid 
status

Responder according to the 
MFC-ΔSVI%

Responder according to the 
MFC-ΔCPI%

Inside the gray zone of the 
MFC-ΔCPI%

MFC-
ΔSVI%

MFC-
ΔCPI%

49 Responder No Yes No 4.8 11.6
8 Responder No Yes No 4.88 47.37
18 Responder No Yes No 5 10
27 Nonresponder No No No 5 -8.11
34 Responder No Yes No 5.1 31.3
14 Nonresponder No Yes Yes 5.56 6.52
33 Nonresponder No No Yes 5.6 2.9
17 Nonresponder No No No 6.06 0
15 Nonresponder No No No 6.25 –2.78
7 Nonresponder No No Yes 6.45 2.13
4 Nonresponder No No Yes 6.67 3.77
25 Nonresponder No Yes Yes 6.67 6.45

Patients indicated with red are outside the gray zone of the MFC-ΔCPI%. Patients indicated with blue are inside the gray zone of the 
MFC-ΔCPI%, even though the diagnosis of the MFC-ΔCPI% is in line with the diagnosis of the MFC-ΔSVI%. 
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demonstrate insufficient accuracy in terms of predicting 
fluid responsiveness (ROCAUC values: 0.77 and 0.59, 
respectively) [27]. However, to our knowledge, this is the 
first study to report the ability of the baseline dP/dTmax 
and the abilities of the MFCΔ and MFCΔ% values of the 
dP/dTmax, CCE, and Ea to predict fluid responsiveness.

This study had several limitations. First, the infusion 
rate of the MFC and total FL were 100 mL in 1 min and 
500 mL in 10 min, respectively. Different infusion rates 
and times may result in different outcomes. Second, the 
Mostcare monitor was used, which is an uncalibrated device 
for evaluating arterial waveform. The use of externally 
and internally calibrated alternative devices may result in 
different cut-off and diagnostic performance values. Third, 
this study was conducted on patients undergoing major 
abdominal surgery with laparotomy and in the supine 
position. The results should be extrapolated carefully for 
different clinical scenarios. 

To conclude, in patients undergoing open abdominal 
surgery, fluid responsiveness could be predicted more 
accurately using the MFC-ΔSVI% and MFC-ΔCPI% than 
using the SVV and PPV. Additionally, concomitant use of 
the MFC-ΔSVI% and MFC-ΔCPI% is recommended, as 
this approach diminishes the number of patients in the 
gray zone.
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