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Introduction

As a metabolic disease affecting a large population
in various countries, mortality rate of diabetes mellitus
have been largely reduced through the control of hy-
perglycemia by the development of potent antidiabetic
substances (1), ultrapure recombinant human insulin
(2) and new methods for insulin delivery (3). Con-
sequently, mean life expectancy of diabetic patients has
been increased especially in well developed countries
(4). Despite these significant developments in anti-
diabetic therapy, diabetic complications chiefly seen in
the long term are persistently deleterious to a large
extent. While some of these complications are closely
related to a lack of compliance during antidiabetic
therapy, are apparant even with an optimal ther-
apeutic regimen. Novel approaches in antidiabetic ther-
apy are aimed not only to decrease high blood glucose
levels, but also to eradicate long-term diabetic com-
plications which may cause a diminished life expectancy
and/or a poor quality of life.

Animal models of diabetes are increasingly being
used in the investigation of etiopathogenesis of di-
abetes and long-term diabetic complicatins seen in clin-
ical studies (5,6). to common models of diabetes used
in biomedical studies have been established on chem-
ically-induced and spontaneous (genetically-induced) di-
abetic animals. Both models with certain advantages
and disadvantages have been used almost equally in
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the investigation of diabetic complications. Strep-
tozotocin (STZ) (7) and alloxan (ALX) are the chem-
icals used to induce experimental diabetes, mostly in
rodents. Administration of the chemicals to adult rats
or mice results in a state resembling insulin-dependent
(type 1) diabetes in human beings (7,8), whereas in-
traperitoneal injections of STZ (9,10)  or ALX (11,12)
produce a model for non-insulin-dependent (type 2) di-
abetes. BB (Bio Breed) (13), Cohen (14), Zucker (6)
rats, ob/ob(db/db) (6,15), C57Bl/KsJdb(16) mice and
Chinese hamsters (6) are among the mutant animals
having various characteristics of human diabetes used
for the investigation of diabetic complications. The
main purpose of this review is to focus on diabetic
complications in experimental models of diabetes and
on the novel and conventional modalities used in their
management.

Experimental Diabetic Complications

As in the case of clinical diabetes, experimental di-
abetic complications may be subdivided into the fol-
lowing classes: A) Neurological complications, B) Car-
diovascular complications, C) Gastrointestinal
complications, D) Urological complications, E) Res-
piratory complications, F) Ophthalmic complications, G)
Reproductive complications, H)Haematological and bio-
chemical complications, I) Complications related to
Drug metabolism and pharmacokinetics. Most of these
complications are closely related to the impairment in

Yusuf ÖZTÜRK1

V. Melih ALTAN2

Nuray ARI2
Diabetic Complications in Experimental Models

Received: January 2,1998

Departments of Pharmacology, Faculty of
Pharmacy,1 Anadolu University, Eskişehir and
2Ankara University, Ankara-Turkey

tracts, etc., have been stated. Furthermore,
novel and conventional therapeutic ap-
proaches in their management have also been
briefly discussed.
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Abstract: In this review, the aim is to focus
on diabetic complications in experimental
models of diabetis. For this purpose, com-
plications, chiefly seen in log-term periods in
various systems of animals, such as cardio
vascular and nervous systems, gas-
trointestinal, urogenital and respiratory
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smooth muscles as a result of experimental diabetes
(17).

A) Neurological Complications 

One of the most prevalent diabetic complications is
neuropathy seen in 21% of diabetic patients (18). Di-
abetic neuropathy has also been observed in animal
models. Diabetes may affect the autonomic, sensory
and motor nerves and the central nervous system (19-
22). Both morphological and functional changes due to
experimental diabetes have been observed in the auto-
nomic nervous system (19). Neuropathy is detectable
in chemically-induced (19) and spontaneous (20,23) di-
abetes models. Development of this diabetic complica-
tion highly significant, since it causes various neuro-
psychiatric deficits and behavioural changes (24) and
accelerates the development of complications such as
cardiovas cular, gastrointestinal and urogenital com-
plications (25-28). Changes in certain neu-
rotransmitters have been reported in various animal
models of diabetes. For example, altered β-endorphin,
Met-and Leu-enkephalin levels in the pituitary (20) and
changed noradrenaline and dopamine levels in ad-
renergic nerves (28,29) have been demonstrated in
experimental diabetes. Impaired axoplasmic transport
of noradrenaline in the sciatic nerve of spontaneously
diabetic mice (30) and lower activities of monoamine
oxidase and tyrosine hydroxlase in diabetic rat brains
(31,32) seem to be closely related to the changes in
neurotransmitter levels. The function of the sensory
nerves is also impaired in experimental diabetes. STZ-
induced diabetes attenuates opiate receptor mediated
nociceptive reactions in mice (33). The potential for
morphine dependence also seems to be lower in STZ-
diabetic rats and spontaneously diabetic C57BL/ksjdb
mice (34). Cellular ethiopathogenesis of diabetic neu-
ropathy is not fully understood. There is however, a
high likelihood that the causes such as lower Na, K-
ATPase activities, impaired sorbitol metabolism, lower
myo-inositol levels, neural ischaemia etc. may be in-
volved in this pathology (21).

B) Cardiovascular Complications 

As a long-term complication, cardiovascular diseases
may be apparent in both diabetic patients and experi-
mental animals. These complications are the most se-
rious and commence one of the major causes of mor-
tality causes due to diabetes. In log-term diabetic
patients, cardiomyopathy and congestive heart failure
may develop as a result of the impaired left ven-
tricular function (35,36). The function of the coronary
arteries in diabetic patiens is also impaired depending

on the calcification of the arterial wall (37).The exact
cause of the impaired left ventricular function is not
known. However, animal experiments have revealed
changes in myocardial β-adrenergic responsiveness.
Both insulin-dependent 538-40) and noninsulin-
dependent diabetes (12) may cause a decrease in myo-
cardial contractility induced by adrenergic agonists.
ınsulin replacement therapy of insulin-dependent di-
abetic rats corrects these changes (39,40). It has been
suggested that thyroid hormones mediate the ben-
eficial effect of insulin (39). In vitro insulin treatment
is ineffective on the lower myocardial  β-adrenergic
responses (40). Treatment of non-insulin-dependent di-
abetic rats with the oral antidiabetic drug glyburide,
also normalizes the reduced β-adrenergic re-
sponsiveness in the myocardium which may be a col-
lective reason for the congestive heart failure seen in
diabetes mellitus. α1-Adrenergic responsiveness of rat
myocardium has been reported to be higher due to
experimental diabetes (43,44) and partly reversed by
insulin treatment (44). This increase may serve as a
compensatory mechanism for the lower β-adrenergic
responsiveness in this organ. A supersensitivity to
muscarinic agonists has been also demonstrated in the
myocardium in STZ-diabetic rats. This supersensitivity
may be due to higher cholineacetyltransferase activity
and choline concentration and lower cholinesterase ac-
tivity in the myocardium (45,46). Inotropic responses
of the myocardium to calcium have also been reported
to be lower presumably due to a deficient calcium up-
take of sarcoplasmic reticulum (387). Purinergic re-
sponses of rat atria seem to be higher in STZ-diabetes
(47). The smooth muscles of blood vessels may be
also affected depending on the experimental diabetes.
The influence of diabetes on the catecholamine-induced
vasopressor activity is contradictory. A lower re-
sponsiveness of the rat aorta to roradrenaline and
phenylephrine has been noted in STZ diabetes and this
change is reversed by insulin treatment (48,49). This
observation has not been confirmed in the aorta of di-
betic rabits (49) and, moreover, higher α-adrenergic
responsiveness of the rat  aorta has been reported in
experimentally-induced diabetes (50,51). A lower pros-
tacylin release in response to adrenaline has been ob-
served in the aorta of STZ diabetic rats (52). Lower
responsiveness of rat aorta to serotonin has been re-
ported as well (49,53). Calcium and potassium-induced
contractions of diabetic rat aorta are also lower sug-
gesting a lower activity of calcium channels and/or a
lower calmodulin level in this tissue (50,53-55). How-
ever, no change has been reported in the calcium
channel activity of the aorta of STZ-diabetic rats (56)
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and lower calmodulin levels in the aorta of long-term
diabetic rats have been reported (57). Changes in the
endothelial functions of arteries may also be significant
in the development of vascular diabetic complications.
Changes in the production of EDRF (Endothelium de-
rived relaxing factor) have been reported to be in the
arteries of both insulin-dependent and non-insulin-
dependent diabetic rats (11,58,59). These changes are
possibly the result of endothelial destruction which
may be due to both atherosclerosis (60) and hyper-
glycemia (61). In addition, contractile responses of the
aorta of diabetic rats to endothelin-1 (ET-1) have
been found to be lower (55). Most of the changes de-
scribed above may play a role as a compensatory
mechanism rather than a pathological cause of the car-
diovascular complications. In contrast, the increase in
circulating endothelin levels (62), plasma angiotensin
converting enzyme activity (63) and the decrease in
circulating prostacyclin levels (64) have been reported.
These changes seem to be the mechanisms responsible
for diabetic cardiovascular complications. In addition,
hypotensive responses of diabetic rats to isoprenaline
(64) and the isoprenaline effect on the cerebral cir-
culation of STZ diabetic rats (66) have been found to
be lower.

C) Gastrointestinal Complications

Diabetic gastroenteropathy is one of the primary
autonomic syndromes related to diabetes (67). Asymp-
tomatic dilatation of the stomach (68) and impaired
gastric acid secretion (69) in diabetic patients have
been reported. In ALX diabetic rats, lower basal and
histamine-induced gastric acid secretion has been dem-
onstrated (70,71). By the application of advanced bio-
statistical methods (72,73), it has been establishad
that both direct and indirect (vagally-induced) com-
ponents of histamine-induced gastric acid secretion is
lower in ALX diabetic rats (71). This observation con-
firms the dyspepsia seen in diabetic subjects. Attenu-
ated responses of rat stomach fundus to serotonin has
been observed (74-76). The lower responses to se-
rotonin in rat stomach fundus may be an explanation
for the asymptomatic dilatation of the stomach ob-
served in diabetic patients. Another gastrointestinal di-
abetic complication is lower β-adrenergic re-
sponsiveness in this tract. Both ALX-and STZ-induced
diabetes causes a decrease in β-adrenergic responses
of rat duodenum (74). This decrease in β-adrenergic
responses may be apparent not only in insulin-
dependent diabetes but also in non-insulin-dependent
diabetes(77). Lower β-adrenergic responses may be
seen in almost every segment of the gastrointestinal

tract (77,78). Similarly, contractile responses of je-
junum to bradykinin and neurotensin in STZ  diabetic
rats have been found to be lower, while neurokinin A
and B-induced contractions in this tissue have been
shown to be higher due to diabetes (78). Contractile
responses of gastrointestinal tract to acetylcholine and
substance P have been reported to be lower in experi-
mentally diabetic rats, as well (79). Calcium-irduced
contractions of the intestine of ALX-diabetic rats have
been shown to be lower (80). This lower re-
sponsiveness of rat intestine to calcium is attributable
to a decrease in the calmodulin level in the smooth
muscle (57,81). α-Adrenergic, but not cholinergic and
purinergic responses of isolated ceacum of STZ di-
abetic rats have been reported to be higher (82).
Megacolan (83) and increase in gastrointestinal motility
(84) have been observed in STZ-diabetic rats. This in-
creased absorption may be due to an enhancement in
the glucose transporter capacity of intestinal villi (86).
In the intestine of experimentally diabetic rats, the ac-
tivity of phosphofructokinase, an important enzyme in
the utilization of glucose, has been reported to be
lower (87).

D) Urological Complications

Nephropathy is one of the most significant com-
plications seen in diabetes mellitus (88). The signes of
nephropathy such as proteinuria (89), albuminuria
(90), glomerulopathy (91) have been observed in STZ
diabetic rats. The excretion pattern of urinary proteins
is also altered in experimental diabetes(92). Urinary
retention resulting from an atony in the urinary blad-
der is another significant complication in diabetic pa-
tients (93). Similar changes have also been indicated in
experimental models of diabetes. Enlargement of the
urinary bladder, increases in the amount of urine and
in the threshold urine volume necessary for trigering
micturation have been reported in STZ diabetic rats
(94,95). Urinary bladders of diabetic rats are hyper-
trophic having a two fold increase in weight, and its
collagen content is also increased (96,97). In the in vi-
tro experiments, contractile responses of urinary blad-
der muscle to electrical stimulation, ATP, bethanecol,
prostaglandin F2 and KCI have been found to be high-
er in rats with 8 and 16 week diabetes. These di-
abetic changes in the bladder contractility have been
reported to be normalized to some extent following
insulin therapy (98). Similar changes in the bladder
muscle have been seen in spontaneously diasetic BB
rats (99,100). In the urinary bladder from STZ-
diabetic rats, an increase in muscranic receptor medi-
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ated biosynthesis of prostacyclin has been observed
(52). 

E) Respiratory Complications 

In diabetes mellitus, long-term complications related
to the respiratory tract may occur and these complica-
tions may be apparent in animal models. Morpho-
logical and biochemical abnormalities have been in-
dicated in the lungs of STZ-diabetic rats (101,102).
Responsiveness of tracheal segments to carbachol has
been reported to be higher due to a vagal neuropathy
in experimentally diabetic rats (103). While this ob-
servation has been confirmed by the observation of
lower acetylcholine responsiveness in the tracheal
smooth muscle from both insulin-dependent (Type I)
diabetic and non-insulin-dependent (Type II) diabetic
rats exhibit a decrease in the contractile responses to
acetylcholine and these changes are normalized by in-
sulin treatment for 10 days (105). Furthermore, high-
er contractile responses to KCI have been demonstrat-
ed in the tracheal muscle of 12-13 week diabetic rats
(104).

F) Ophthalmic Complications 

Cataracts, retinopathy, keratopathy and thrombotic
glaucoma are the common long-term ophthalmic com-
plications in diabetic patients. Diabetic eye complica-
tions are the one of major causes of blindness. Similar
complications have been also detected in the experi-
mental models of diabetes. Incidence of the develop-
ment of cataracts in experimentally-diabetic rats has
been found to be increased by a high sugar diet, also
(106). In particular, a galactose-rich diet may facilitate
the development of cataracts in diabetic animals
(106,107). In ALX diabetic rats, lens glutathione re-
ductase activity has been found to be higher when
compared to non-diabetic animals (108). In addition,
lower glucose-6-phosphate dehydrogenase and sorbitol
(polyol) dehydrogenase activities in th rat lens have
been reported due to ALX diabetes (109). Neuronal
and vascular changes have been observed in the retina
of Cohen diabetic rats. A striking decrease in the mu-
ral, endothelial and rod cells of the retina has been
demonstrated in Cohen diabetic rat (110) and STZ di-
abetic rats (111). The retinal changes in Cohen di-
abetic rats have been proposed to be closely related to
diabetic microangiopathy (112). Similar retinal changes
have been observed in spontaneously diabetic Chinese
hamsters (113), dogs (114) and BB rats (115). Fur-
thermore, higher permeability of the blood-retina bar-
rier has been reported to be a consequence of higher
capillary permeability in the retina of spontaneously di-
abetic BB rats (116,117).

G) Reproductive Complications

Reproductive complications are seen in both male
and female patients suffering from diabetes mellitus.
Impotence, retrograde ejaculation and lower fertility
have been reported in male diabetic patients (25).
Some of the complications in diabetic patients may be
seen in experimental models of diabetes. Impaired VI-
Pergic innervation (118) and lower prostacyclin levels
(119) have been reported in the penis tissue of rats
with STZ diabetes. The smooth muscle of rat vas de-
ferens seems to be affected by experimentally-induced
diabets, as well. Increased contractile responses to
noradrenaline (120-123), Phenylephrine, clonidine
(122), acetyhlcholine (121,122) and KCI (122) have
been observed in both STZ and ALX diabetic rats.
Most of the studies reported a higher α-adrenergic re-
sponsiveness of vas deferens in rats with long-term
experimental diabetes, while one report described the
higher α-adrenergic responsiveness of rat vas deferens
in rats with long-term experimental diabetes, while
one report described the higher α-adrenergic re-
sponsiveness of rat vas deferens in short-term di-
abetes (123). Furthermore, this report also dem-
onstrated that long-term experimental diabetes causes
a decrease in α-adrenergic responsiveness in rat vas
deferens.

H) Haematological and Biochemical Complications

Haematological and biochemical changes have been
reported in both diabetic patients and animals. An in-
crease in the thrombin-and ADP-induced platelet ag-
gregation has been reported in STZ-diabetic rats
(124,125). In contrast, no change has been observed
in the collagen -induced platelet aggregation due to ex-
perimental diabetes (215). Similar changes have been
observed in spontaneously diabetic BB rats (126) and
ALX diabetic rats (127), but not in ALX diabetic rab-
bits (128). Although the mechanism of diabetic chang-
es in platelets is fully understood, these changes in the
platelet aggregation have been accepted as a factor
that may increase thrombus formation in blood vessels
(129). Another diabetic change having biochemical and
haematological significance is the development of non-
enzymatic protein glycosylation both in diabetic pa-
tients and animals (130). As an important parameter
of glycemic control, glycosylated haemoglobin possess-
es a lower oxygen binding capacity in diabetics (131).
As a pathological process, glycosylation has been seen
in other proteins having functional significance such as
insulin (132) and structural significance such as col-
lagen (133,134). The glycosylation of insulin may also



335

Y. ÖZTÜRK, V.M. ALTAN, N. ARI

reduce its biological activity in vivo (132). This process
appears to be an irreversible feature, since the gly-
cosylation occurs through the covalent binding of sug-
ar moieties (135). It seems quite possible that the
non-enzymatic protein glycosylation contributes to
many diabetic complications. Insulin receptor tyrosine
kinase activity has been found to be impaired both in
STZ diabetic and obese Zucker rats (136,137). Hepat-
ic glusose transporter activity also appears to be al-
tered in STZ diabetic rats (138). Na-K-ATPase activ-
ities of skeletal muscle, myocardium and peripheral
nerves have been reported to be lower (139). It has
been demonstrated that calmodulin levels in fat and
liver tissues from spontaneously diabetic BB rats are
lower when compared with controls (140,141). In
STZ diabetic rats, lower calmodulin levels in smooth
muscle have been also observed (57,81).

I) Complications Related to Drug Metabolism
and Pharmacokinetics

Acute and chronic diabetes mellitus have different
effects on the hepatic drug metabolism in rats (142).
Sex-dependent changes have been observed in the
drug metabolism of certain animal species as a result
of diabetes. The hepatic drug metabolism seems to be
inhibited in spontaneously diabetic male guinea-pigs,
but not in female guinea-pigs (143). Similar changes
in the hepatic drug metabolism have been observed in
STZ-diabetec rats, as well. Male diabetic rats have a
lower aminopyrine metabolism, while females possess
an higher aminopyrine metabolism compared with the
controls, indicating altered metabolisms due to di-
abetes (144). It has been suggested that the presence
of androgens in male diabetic animals may cause a dif-
ference in the capacity of the hepatic drug metabolism
(145). The sex hormone metabolism in the liver has
been also reported to be different in STZ diabetic rats
(146). Changes in the hepatic drug metabolism seem
to be closely related to the development of fatty liver
(147) and occur as a consequence of altered catalytic
activities of cytochrome P-450 (148). Glutathione S-
transferase activities of the liver and kidney are also
lower and consequently, chloroform toxicity is pot-
entiated in STZ-diabetic rats (149). It has been sug-
gested that experimental diabetes modulates the meta-
bolic activation of chemical carcinogens (150). These
changes observed in STZ-diabetic rats may be related
to both metabolic and mitochondrial changes in the
tissues (151) and there may be differences between
male and female animals (152). Similar changes may
be seen in animal models of non-insulin-dependent di-
abetes (153). Interestingly, differences between ALX-

and STZ-induced diabetes in rats have been reported
in terms of their effects on the hepatic drug me-
tabolism (154). On the other hand, it has been dem-
onstrated that the elimination and excretion kinetics of
some drugs, such as gentamycin (155), diflunisal
(156), zenarestat (157), etc. are different in various
animal models of diabetes.

Therapeutic Modalities 

In most cases, antidiabetic therapy with conven-
tional drugs is successful for the clinical management
of diabetic complications. There are, however, some
diabetic complications which seem to be resistant to
antidiabetic drugs even when applied in an optimal
dose regimen. Progessive retinopathy is not curable by
conventional therapies and may cause blindness when
it occurs in diabetic patients (158,159). Diabetic foot
may occur in diabetic patients as a complex clinical
manifestation following both the development of neu-
ropathy and vascular complication and is not curable
by conventional antidiabetic therapies (160). In recent
studies in our laboratories, insulin treatment has been
found to be ineffective on lower calmodulin levels in
smooth muscles of the duodenum, aorta, trachea and
vas deferens of STZ-diabetic rats (161,162) In con-
trast, lower β-adrenergic responsiveness in the myo-
cardium (12,39,40,163-165) and gastrointestinal tract
(40,75,163) of insulin-dependent diabetic rats is cor-
rected by insulin replacement therapy. Glyburide or in-
sulin treatment also corrects lower β-adrenergic re-
sponsiveness in the myocardium (12) and
gastrointestinal tract (166) of non-insulin-dependent
diabetic rats. Lithium treatment also has been reported
to correct lower β-adrenergic responsiveness in the
gastrointestinal tract due to diabetes without im-
proving hyperglycemia (76,167). Vanadium com-
pounds, known as insulinomimetic agents, have been
reported to improve the complications related to myo-
cardium (168), blood vessels (169), gastrointestinal
(170) and respiratory (104) tracts. Insulin treatment
has also  been reported to correct the diabetic chang-
es in the urinary bladder (98). In contrast, the de-
creases in the responsiveness to calcium and cal-
modulin levels in the smooth muscles of STZ-diabetic
rats seem to be resistant to insulin treatment (57,81).
Newer therapeutic modalities such as aldose reductase
inhibitors seem to be effective against the diabetic
myocardial (171), vascular (172) complications and
nephropathy (173). Despite of all these observations,
novel therapeutic approaches are necessary for the ra-
tional treatment of diabetic complications and for the
higher quality of life of diabetic patients.    
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