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Abstract: A new approach is proposed to
characterize and discriminate temporomandi-
bular joint vibrations. It consists of three
steps. First, signals recorded during each
cycle of mandibular movement are unified
into a single time series. Second, this time
series is embedded in some multidimensional
space. Third, nonlinear analysis methods are
applied to extract the pertinent signal
characteristics. In this way two groups of
signals have been characterized; those in the
first group were recorded from patients
whose post-treatment results werebad and
the ones in the second group were recorded
from patients whose post-treatment results
were good. But patients in both groups had

the same clinical features before treatment. It
was shown that the two groups can be
discriminated from each other by one
parameter of the signals recorded from
patients comprising the groups, the
coefficient of nonlinear forecasting. It was
also found that signals of the bad prognosis
group share certain nonlinear characteristics
although the patients comprising the group
may have different pathologies.
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Introduction

Sounds detected with microphones and stethoscopes
or vibrations detected with accelerometers over the
temporomandibular joint (TMJ) during mandibular
opening and closing have been attributed to subclinical or
acute dysfunction of the joint (1). They are thought to be
caused by various pathologies in the joint (2, 3, 4).
However, recent literature on the subject abounds with
reports describing the prevalence of TMJ sounds in non-
patients also (5, 6, 7). Indeed, in one study (5) it was
concluded that “TMJ sounds in non-patients are
considered to be normal and not a manifestation of
subclinal problems”.

Most authors dealt with sounds recorded over the
joint with a microphone or stethoscope rather than
vibrations. The sounds were characterized as clicks,
crepitations and popping sounds and wereanalyzed using
Fourier methods or visual inspection (8-13) in nearly all
but notably one study in which fractal analysis was used
(14).

Materials and Methods

Experimental

In the present study we have recorded TMJ vibrations
bilaterally for several cycles of mouth opening and closing
by means of two accelerometers placed on the skin over
the joints in patients with clinical symptoms. The degree
of mouth opening was also monitored during each cycle.
Both signals were simultaneously stored on the hard disk
of a PC. Recordings were made twice from each patient,
first when the patient presented to the Dental Clinic with
complaints and then after a period of various types of
treatment at our Physical Medicine and Rehabilitation
Clinic. The details of signal recording, segmentation and
feature extraction will be the subject of another paper.
The present report is concerned with the analysis results
obtained from two groups of patients, one comprising
patients with bad prognosis and the other of patients
with good prognosis.

Data Analysis

Unlike in methods employed by previous
investigators, we have unified the TMJ signals of the
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same patient recorded during different cycles of mouth
opening and closing into a new single time series by
appending them to one another. Thus a sufficient number
of data points for the intended application was obtained.
The reason for this procedure were the following:

1. Although the signal that is recorded during a single
cycle of mouth opening and closing represents a time
series, it contains too few data points for applying non-
linear analysis methods. Therefore, nonlinear features can
not be discerned from a single short record only.
Appending different records to one another allows this.

2. In principle, each point in the time series represents
some event in the dynamic process. According to the
proposed approach, all points in this time series are
informative since no “noisy” segments are included. On
the other hand, the initial point of every TMJ signal
segment is “influential” because it has no virtual
“predecessor” from a previous segment and so this factor
may distort some signal characteristics. But the
coefficient of forecasting used here is not so sensitive to
influential points due to averaging over all points. Also, a
special procedure was used to eliminate the factor of
influential points. Therefore, it can be said that all the
data points considered reflect the same dynamic process
and the estimates obtained from the analysis are quite
reliable.

There are several different informative parameters
which can be used for the purpose of signal
characterization. In our case the question was which
parameter would be the most appropriate. First, it was
necessary to determine whether the constructed time
series was linear or nonlinear. While spectral estimates
would be most appropriate for a linear time series,
parameters such as the information dimension or the
Kolmogorov entropy would be most suitable for a
nonlinear time series.

To determine the character of the time series, the
information theoretic test [15 and references therein]
was used. This test revealed that all the time series
considered were nonlinear. Therefore, estimates of
nonlinear dynamics were more appropriate than linear
estimates.

There are also many parameters that describe
features of nonlinear dynamics. What we have used here
is the coefficient of nonlinear forecasting; the so-called
translation error (16). This coefficient is used to
recognize the deterministic dynamics of a time series
(17). Recall that the dynamics of a signal can be
deterministic (i.e. chaotic- generated by a strange
attractor) or stochastic (random). In both cases, the

behaviour of the signal can be very complex and looks
similar but a precise prediction of its behaviour can be
obtained for the case of deterministic dynamics only.

In the present study the coefficient of nonlinear
forecasting of the signal has been determined by a version
of the nonlinear forecasting method after embedding the
signal in a certain multidimensional space. This method
and the results obtained from it are presented in the
following section.

Nonlinear forecasting of TMJ signals

To study the dynamics of a signal, it is necessary to
apply an appropriate numerical criterion. Recently a few
criteria have been proposed for this purpose (16, 18-20).
Here, we have applied the method described in Ref. 16.
The reason for this choice is based on the following
factors:

• A coefficient characterizing the dynamics makes a
clear distinction between a chaotic behaviour and a
stochastic one.

• The procedure to calculate this coefficient is
sufficiently quick.

Denote by s(1), s(2),. ...s(N) the values of some one-
dimensional time series. Using Taken’s embedding
procedure (17, 18), we obtain the sequence of vectors:

x(j) = (s(j+L), .....s(j+(E-1)L),  j = 1, ....N-(E-1)L  (1)

Here the embedding dimension and the lag time are
designated by E and L respectively. The embedding
parameters E and L are chosen by using the methods in
Ref. 16 or by minimizing the translation error considered
below.
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are used to calculate the translation error

(3)

where the Euclidean length is designated by ||  ||. It was
shown that the translation error e

tr
is greater than or
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equal to unity for Gaussian noise (16). We have also
verified this inference for a strongly non-Gaussian noise
with the K-distribution probability density (21). At the
same time, e

tr
≤0.1 for the Henon attractor which is less

than the value of e
tr

for Gaussian noise. The translation

error was found to be in the same range for other
attractors, including the logistic map and the Lorenz
system (17). Thus, the translation error is a “good”
discriminator of stochastic from deterministic time series.
This inference is correct if the time series is not too short.
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Figure 1. TMJ vibration signals recorded during one cycle of mandibular movement and goniometer (jaw angle) signal during the same cycle.

Figure 2. New time series obtained by appending signals of several cycles from one joint.
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Results

Figure 1 shows a typical TMJ vibration signal and the
goniometer (angle) signal recorded during one cycle of
mouth opening and closing. Figure 2 is the plot of the
new time series obtained by appending to one another the
TMJ signals of several cycles of mandibular movement as
explained previously. The coefficient of forecasting
(translation error) was calculated from the time series
obtained in this fashion.

The values of the tranlation error obtained at the
embedding dimension 2 and lag time 6 are presented in
Table 1. It is clearly seen that all values obtained from the
signals of patients in the first group (i.e. the three
patients with bad prognosis) are larger than those of the
patients in the second group (i.e. the seven patients
treated sucessfully). Thus, we find that the coefficient of
nonlinear forecasting -the translation error- is a useful

parameter for predicting treatment results. It shoud be
noted that such a result can not be obtained with spectral
approaches traditionally used. For example, amplitude
spectra of the considered time series are given in Table 2.
Amplitude spectra were obtained with FFT analysis using
128 data points with 80% overlap in each case. A
rectangular window was used. As can be seen from this
table the amplitude values and frequencies of maximum
amplitude for different patients are quite “mixed” and do
not allow any discrimination to be made between bad and
good prognosis groups.

It is interesting to note that all the signals recorded
from the second group of patients are of different types
(clicks, popping and creptiations). However, it was
possible to embed these signals in some mutidimensional
space where they had similar values of the coefficient of
nonlinear forecasting and which could be discriminated
from those of patients in the first group.

Discussion

There are mainly two findings of this study. First, a
new approach for processing TMJ signals is introduced.
This approach is based on estimates of nonlinear
dynamics. Its efficacy has been demonstrated for a case in
which conventional estimates have failed. Second, it has
been shown that TMJ signals arising from probably
different pathologies which are difficult to treat can have
common nonlinear characteristics (the embedding
dimension, lag time and the range of the coefficient of
nonlinear forecasting) allowing to distinguish them from
the signals of patients who respond better to treatment
(i.e. good prognosis).

Thus, these results imply that wider applications of
nonlinear methods to TMJ signals are needed in search
for their common features and how they may be used to
predict the results of treatment in clinical practice.
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Table 1. Coefficient of Nonlinear Forecasting (Translation Error)
Calculated From the New Time Series Signals of Patients
with Bad and Good Prognosis.

Patients Coefficient of Nonlinear Prognosis

Forecasting

1 5.090 Bad

2 4.751 Bad

3 8.563 Bad

4 2.896 Good

5 2.296 Good

6 3.172 Good

7 4.243 Good

8 3.872 Good

9 4.254 Good

10 4.649 Good

patient no no of maximum frequency of mean maximum mean maximum
and FFT amplitude maximum amplitude±S.D. frequency±S.D.

prognosis blocks (volt) amplitude (volt) (Hz)
(Hz)

1B 5 0.136 93.75 0.117±0.012 100.00±12.50
2B 29 0.463 15.63 0.283±0.105 34.48±11.15
3B 52 0.939 78.13 0.471±0.318 86.24±28.66
1G 63 0.529 46.88 0.302±0.088 42.99±17.82
2G 10 0.305 46.88 0.251±0.030 35.94±07.16
3G 30 0.351 78.13 0.227±0.065 67.71±17.74
4G 26 0.226 46.88 0.108±0.057 72.72±31.53
5G 33 0.137 93.75 0.084±0.032 57.29±24.23
6G 38 0.433 62.50 0.197±0.099 67.85±15.33
7G 29 0.145 31.25 0.084±0.025 42.03±13.67

B: Bad prognosis; G: Good prognosis

Table 2. Amplitude Spectra of Time Series
Signals Obtained from Patients with
Good and Bad Prognosis.
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