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Abstract: Since most secreening tests are
not 100% accurate, the proportion of
subjects screened positive in such a test
cannot be used as an estimate of the
population prevalence. Methods which take
sensitivity and the specificity into
consideration should be employed in such
circumstances. Estimation of the population
prevalence as defined by Gart and Buck may
produce results which are outside the range
of 0 to 1. A Bayesian approach avoids results
of this kind, but requires complicated
computations. Lew and Levy proposed an

approximation to the Bayesian estimate of
the population prevalence. To simplify the
computations, I propose a method which
requires the evaluation of a logistic function.
The coefficients of the function are tabulated
for some selected test characteristics and
sample sizes. For other values that are not
tabulated, coefficients can be interpolated.
Although the method is simple it produces
very accurate results.
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Introduction

It is often necessary to estimate the prevalence of a
disease in the underlying population on the basis of a
screening test that cannot discriminate diseased and
nondiseased subjects with 100% certainty. Such
screening tests are usually far from being a gold standard
test, that is, their sensitivities and specificities are less
than one, thus yielding false positive and false negative
results. When cost or other factors (such as speed and/or
risks) are considered, a gold standard test may not be
efficient in screening large groups of individuals.

Prevalence estimates are important in planning health
services and policies. When such screening tests are
administered to a sample of individuals, the proportion of
subjects with a positive test result, therefore, cannot be
used as an estimate of the true prevalence in the
population. The reason is that among those who yield
positive test results some are falsely labelled as positive
(although they are free of the disease) and among those
who are negative on the test, some are actually diseased
(false negatives).

Although the main objective of diagnostic tests is to
evaluate the positive and negative predictive values, for

screening purposes it is also desirable to estimate the
disease prevalence.

Estimation of the disease prevalence on the basis of
screening tests has long been of interest to many
scientists. Gart and Buck (1) derived an estimate of the
true population prevalence, π’’, by using the sensitivity
(S

e
) and specificity (S

p
) of the test and the proportion of

subjects screened positive by that test (R). This estimate
is given by:

Levy and Kass (2), Rogan and Gladen (3) and
Gastwirth (4) have also proposed this estimate. Although
rare, it can easily be shown that this estimate can yield
results which are negative or above unity. For example, if
10% of the persons are screened as positive by a test
which has a sensitivity of 0.80 and a specificity of 0.70,
the estimated prevalence, π’’, vould be –0.40 and if 90%
of the persons are screened as positive by the same test
π’’ would be 1.2. Therefore, estimates of the prevalence
that always lie between zero and one and have values

π'' =
R + Sp – 1

Se + Sp – 1
(1)
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close to the estimate defined in (1) in most situations, are
of greater concern. Lew and Levy (5) proposed the use of
a Bayesian estimate that fulfils the requirements
mentioned above. As they indicated, the Bayesian
estimator n’ requires numerical evaluation of the ratio of
integrals as defined below:

where,

For users without the necessary knowledge or
routines to evaluate the above integration they
recommended the use of the quadratic function of the
observed raw prevalence and obtain π’ quickly to a
reasonable degree of accuracy for typical values of S

e
, S

p
and sample sizes from 20 to 100. This procedure,
however, requires two functions to be evaluated and the
evaluations vary according to the value of p, the observed
proportion of positives in the test.

In this article, I propose a very simple and accurate
method to obtain the approximate Bayesian estimate of
the true population prevalence. For practical purposes,
only for some selected sensitivities, specificities and
sample sizes are the coefficients tabulated.
Approximations for other values that are not tabulated,
can be obtained by interpolation.

Methods

Approximate Bayesian Estimate of the True
Population Prevalence

As a Bayesian estimate of the population prevalence
requires integration, a simple but accurate approximation
to this estimate is of interest. When the Bayesian estimate
and proportion of positives in a test with a known
sensitivity and specificity are plotted for different sample
sizes, it becomes apparent that points fit very well to a
logistic function in the from of:

where y is the Bayesian estimate and x is the proportion
of subjects with a positive test result. SPSS Release 6.0 is
used to estimate the constants, b

0
and b

1
for samples of

sizes 20 to 500 with increments of 10; for sensitivities
and specificities from 0.70 to 0.90 with increments of
0.05. This makes a total of 1225 functions. Among the
1225 functions studied, the lowest R2 was 0.993 and the
difference between the calculated Bayesian estimate and
its estimated value from (5) never exceeded 4%. Such
residual values as high as 4% were very rare and
observed either for very low or very high proportions
(such as when the proportion of subjects screened
positive was 90% or greater), which may not be very
common in practice. In most situations the
approximations are exact or true within 1–2% of the
actual Bayesian estimate. For samples of size greater than
200 the equation given by (1) is recommended. In this
case, if π’’ is negative it can be assumed to be zero or if it
is above unity it can be assumed to be 1. For large
samples (n ≥ 200) the difference between the Bayesian
estimate and π’’ defined in (1) is negligible and because of
its simplicity, use of π’’ is more practical. Figure 1 (a)
through (c) display the Bayesian estimate of the
population prevalence calculated by (2) and (3), the
estimate obtained by (1) and the approximate Bayesian
estimate calculated by (5) as a function of p, proportion
of positives in the test, for three arbitrarily selected
sample sizes, sensitivities and specificities.

Since many pages would be necessary to list the
constants of the logistic equation for varying sample
sizes, sensitivities and specificities, I restricted it to a
single page and tabulated the values of b

0
and b

1
for some

selected sensitivites (S
e

= 0.70, 0.80 and 0.90),
specificities (S

p 
= 0.70, 0.80 and 0.90) and sample sizes

(n = 20, 30, 40, 50, 60, 70, 80, 90, 100, 150 and 200).
From Table 1, coefficients b

0
and b

1
can be obtained for

given values of S
e
, S

p
and n. By using these coefficients

the approximate Bayesian estimate, π
a

is:

where p is the observed proportion of subjects screened
positive by the test. For screening tests which have
sensitivities and specificities between 0.70 and 0.90 and
for sample sizes between 20 and 200 but not tabulated,
the interpolation method as defined in (6) can be used to
obtain the coefficients b

0
and b

1
.

Example 1: Suppose that a test which is 0.80 sensitive
and 0.90 specific is used to screen a group of 80 subjects
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π' =
d + Sp – 1

Se + Sp – 1
(2)

y = 1
1 + e– b0 + b1x

(4)

d =

Px+1(1–P)n–x dP
1–Sp

Se

Px(1–P)n–x dP
1–Sp

Se
(3)

πa = 1
1 + e– b0 + b1p (5)
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Figure 1.a Se=0.70,  Sp=0.80,  n=60

Figure 1.b  Se=0.80,  Sp=0.80,  n=70

Figure 1.c  Se=0.90,  Sp=0.90,  n=30

– – – – – – – – – – –

– – – – – – – – – – – – –

– – – – – – – – –

.01667 .18333 .35000 .51667 .68333 .85000
.10000 .26667 .43333 .60000 .76667 .93333

.01429 .15714 .30000 .44286 .58571 .72857 .87143
.08571 .22857 .37143 .51429 .65714 .80000 .94286

.03333 .23333 .43333 .63333 .83333
.13333 .33333 .53333 .73333 .93333

Figure 1. (a–c) Comparison of three different methods of estimation; Bayesian, the one derived by Gart and Buck and the approximate Bayesian
proposed in this article, for some arbitrarily selected sensitivities, specificities and sample sizes.
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for the presence of a certain disease. Assume that 15
subjects were positive in that test (p = 0.1875). The
coefficients can be obtained from Table 1 as b

0
= –3.109

and b
1

= 6.920. Using these coefficients and substituting
p = 0.1875 in (5) we get:

as the approximate Bayesian estimate of the true
population prevalence. In such a case the actual Bayesian
estimate, found by (2) and (3), would be 0.137.

Interpolation Method

Since the values of b
0

and b
1

are determined by n
1
, S

e
and S

p
, all possible combinations of the three parameters

should be considered when interpolating the values. The
required steps can be outlined as follows:

A) If 0.7 ≤ S
e

≤ 0.9; 0.7 ≤ S
p

≤ 0.9; 20 ≤ n ≤ 200

Step 1. Find the lower and upper tabulated values of
S

e
, S

p
and n, between which the sensitivity and the

specificity of the current test and the sample size lie. Let
the subscripts L and U denote the lower and upper
tabulated values respectively and subscript C denote the
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Table 1. Coefficients of the Logistic Function for Selected Se, Sp and n Values.

N                          Se Sp = 0.70                                         Sp = 0.80                                        Sp = 0.90
b0 b1 b0 b1 b0 b1

0.70 –2.947 5.888 –2.744 6.089 –2.377 5.962
20 0.80 –3.357 6.105 –2.985 5.967 –2.532 5.646

0.90 –3.619 6.019 –3.131 5.680 –2.633 5.268
0.70 –3.603 7.204 –3.203 7.117 –2.671 6.702

30 0.80 –3.918 7.122 –3.349 6.698 –2.763 6.158
0.90 –4.050 6.736 –3.405 6.179 –2.809 5.620
0.70 –4.076 8.151 –3.496 7.772 –2.844 7.132

40 0.80 –4.278 7.775 –3.565 7.129 –2.893 6.444
0.90 –4.303 7.157 –3.559 6.461 –2.905 5.812
0.70 –4.430 8.858 –3.698 8.221 –2.956 7.412

50 0.80 –4.525 8.224 –3.707 7.413 –2.976 6.628
0.90 –4.467 7.432 –3.658 6.640 –2.966 5.933
0.70 –4.701 9.402 –3.844 8.547 –3.035 7.609

60 0.80 –4.704 8.549 –3.806 7.613 –3.034 6.755
0.90 –4.583 7.625 –3.726 6.765 –3.008 6.017
0.70 –4.915 9.828 –3.955 8.792 –3.094 7.754

70 0.80 –4.839 8.794 –3.881 7.761 –3.076 6.848
0.90 –4.668 7.768 –3.776 6.857 –3.038 6.078
0.70 –5.086 10.171 –4.041 8.984 –3.139 7.866

80 0.80 –4.945 8.986 –3.938 7.875 –3.109 6.920
0.90 –4.734 7.878 –3.815 6.928 –3.062 6.125
0.70 –5.226 10.452 –4.110 9.138 –3.175 7.955

90 0.80 –5.029 9.140 –3.983 7.967 –3.135 6.977
0.90 –4.786 7.966 –3.845 6.984 –3.080 6.161
0.70 –5.343 10.685 –4.167 9.264 –3.204 8.027

100 0.80 –5.098 9.266 –4.020 8.041 –3.156 7.023
0.90 –4.829 8.037 –3.870 7.029 –3.095 6.191
0.70 –5.716 11.432 –4.346 9.661 –3.296 8.252

150 0.80 –5.316 9.662 –4.136 8.273 –3.221 7.166
0.90 –4.960 8.258 –3.947 7.170 –3.141 6.283
0.70 –5.917 11.834 –4.440 9.869 –3.343 8.369

200 0.80 –5.430 9.870 –4.917 8.393 –3.255 7.240
0.90 –5.029 8.374 –3.987 7.243 –3.165 6.331

πa = 1
1 + e– –3.109 + 6.920 x 0.1875

 = 0.14
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current values of sensitivity, specificity and the sample
size.

Step 2. Write down all possible combinations of S
eL
,

S
eU

, S
pL

, S
pU

, N
L
, and N

U
and corresponding b

i
(i = 0,1)

values from Table 1. For each combination find the
product of the four terms as defined below and take the
sum of these products: 

n Se Sp bi Product

nL SeL SpL bi(nL,SeL,SpL) bi(nL,SeL,SpL).(nU–nC).(SeU–SeC).(SpU–SpC)

nL SeL SpU bi(nL,SeL,SpU) bi(nL,SeL,SpU).(nU–nC).(SeU–SeC).(SpC–SpL)

nL SeU SpL bi(nL,SeU,SpL) bi(nL,SeU,SpL).(nU–nC).(SeC–SeL).(SpU–SpC)

nL SeU SpU bi(nL,SeU,SpU) bi(nL,SeU,SpU).(nU–nC).(SeC–SeL).(SpC–SpL)

nU SeL SpL bi(nU,SeL,SpL) bi(nU,SeL,SpL).(nC–nL).(SeU–SeC).(SpU–SpC)

nU SeL SpU bi(nU,SeL,SpU) bi(nU,SeL,SpU).(nC–nL).(SeU–SeC).(SpC–SpL)

nU SeU SpL bi(nU,SeU,SpL) bi(nU,SeU,SpL).(nC–nL).(SeC–SeL).(SpU–SpC)

nU SeU SpU bi(nU,SeU,SpU) bi(nU,SeU,SpU).(nC–nL).(SeC–SeL).(SpC–SpL)

SP = Sum of products

Step 3. Calculate the value of b
i
.

Step 4. Substitute the values of b
0

and b
1

in (5) to
obtain the approximate Bayesian estimate.

Example 2: Suppose that a test which is 0.88 sensitive
and 0.76 specific is used to screen a group of 92 subjects
for the presence of a certain disease. Assume that 23
subjects were positive in the test (P = 0.25). The
sensitivity of the current test is 0.88 (S

eC
= 0.88) which

lies between the two tabulated values 0.80 (S
eL
) and 0.90

(S
eU

).   Similarly  S
pC

= 0.76, S
pL

= 0.70 and S
pU

= 0.80;
n

C
= 92, n

L
= 90 and n

U
= 100. To find b

0
, the sum of

products can be obtained as follows:

n Se Sp b0 Product

90 0.80 0.70 –5.029 –5.029 x 8 x 0.02 x 0.04 = –0.0322

90 0.80 0.80 –3.983 –3.983 x 8 x 0.02 x 0.06 = –0.0382

90 0.90 0.70 –4.786 –4.786 x 8 x 0.08 x 0.04 = –0.1225

90 0.90 0.80 –3.845 –3.845 x 8 x 0.08 x 0.06 = –0.1477

100 0.80 0.70 –5.098 –5.098 x 2 x 0.02 x 0.04 = –0.0082

100 0.80 0.80 –4.020 –4.020 x 2 x 0.02 x 0.06 = –0.0097

100 0.90 0.70 –4.829 –4.829 x 2 x 0.08 x 0.04 = –0.0309

100 0.90 0.80 –3.870 –3.870 x 2 x 0.08 x 0.06 = –0.0372

SP = –0.4266

To find b
1
, replace b

0
values by b

1
, in the above table.

n Se Sp b1 Product

90 0.80 0.70 9.140 9.140 x 8 x 0.02 x 0.04 = 0.0585

90 0.80 0.80 7.967 7.967 x 8 x 0.02 x 0.06 = 0.0765

90 0.90 0.70 7.966 7.966 x 8 x 0.08 x 0.04 = 0.2039

90 0.90 0.80 6.984 6.984 x 8 x 0.08 x 0.06 = 0.2682

100 0.80 0.70 9.266 9.266 x 2 x 0.02 x 0.04 = 0.0148

100 0.80 0.80 8.041 8.041 x 2 x 0.02 x 0.06 = 0.0193

100 0.90 0.70 8.037 8.037 x 2 x 0.08 x 0.04 = 0.0514

100 0.90 9.80 7.029 7.029 x 2 x 0.08 x 0.06 = 0.0675

SP = 0.7601

From (5) the approximate Bayesian estimate is:

B) If S
e
and/or S

p
> 0.90; 20 ≤ n ≤ 200, use 0.90 for

interpolation.

C) Cases where S
e

and/or S
p

< 0.70 are not very
common in practice and will be ignored in this article.

D) If n > 200 use π’’ as defined in (1) to find the
estimate of the population prevalence.

Discussion

If the sensitivity and the specificity of a test which is
used for screening individuals for a particular disease are
less than unity, the proportion of subjects screened
positive by that test cannot be used as an estimate of the
true population prevalence. Estimation procedures with
such tests are either complicated or yield undesirable
results. The estimation procedure proposed here requires
simple calculations. As well as being simple, it produces
results that always lie between 0 and 1, and are very close
to those obtained by Bayesian techniques. Users who are
not familiar with complicated mathematical calculations,
can use this method and obtain the required estimates to
a high degree of accuracy.
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bi = SP
nU – nL  . SeU – SeL  . SpU – SpL

(6)

b0 = –0.4266
10 x 0.1 x 0.1

 = –4.266

b1 = 0.7601
10 x 0.1 x 0.1

 = 7.601

πa = 1
1 + e–(–4.266+7.601x0.25)

 = 0.086
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