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Abstract

In this letter, an alternative approximation is developed for the treatment of
breakup process in nuclear reactions, which presents a way of evaluating non-
adiabatic corrections to the adiabatic model three-body wavefunction by introduc-
ing a more consistent prescription for the continuum n-p center of mass energy.
Although the present formalism goes beyond the quasi-adiabatic approach, due to
the use of exact continuum channel energies, its application to deuteron involving
reactions at medium energies shows that such an approach can not be used in its
present form. A possible reason behind this failure is discussed.

Introduction

In nuclear reactions between composite particles, those involving a loosely bound
particle, such as the deuteron, break-up of the particle takes place as a real or virtual
process. The process have attracted the attention of many researchers and a number of
investigations have been made [1].

Such studies started with those on the deuteron break-up. The deuteron break-up
process are at least a three-body system composed of a proton (p), a neutron (n) and
the target nucleus in its ground state. Since the resultant theoretical three-body Hamil-
tonian is too complicated for practical purposes, most of the studies have employed a
phenomenological three-body Hamiltonian in which the nucleon-nucleus interaction is
represented by the optical potentials as half the deuteron incident energy, and an effec-
tive nucleon-nucleon potential is for the n-p interaction.

Several different approximate methods for solving the pnenomenological three-body
Hamiltonian were proposed for theoretical treatment of the process before the adiabatic
approximation was introduced by Johnson and Soper [2] for deuteron involving reactions.
The approximation was based on the observation that the internal motion of the n-p
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system, with a weakly bound ground state, is much slower than its center-of-mass motion.
It was shown that, with this approach, the breakup process greatly affects the transition
matrix elements of these reactions. The approximation has since been used widely for
theoretical analysis of the breakup processes and for the analysis of the experimental
data, not only on reactions involving a deuteron, but also on reactions induced by 6Li
ions, and has established the importance of the breakup process in such reactions [1].

The application of adiabatic ideas [2] to nuclear breakup effects played a key role in
the development of models for the treatments of quantum mechanical three-body sys-
tems. In spite of the efficiency and success of the adiabatic approach, however, the high
quality spin-dependent experimental transfer reaction data [3] clarified that some phys-
ical contributions are missing from the calculation of the reaction amplitude. As the
adiabatic approximation is formulated under the assumption of low energy n-p breakup,
its treatment of such energetic contributions is naturally suspect. An improved treatment
of the higher energy breakup configurations is thus required.

Recent calculations [4] using the quasi-adiabatic approximation, where the n-p center
of mass energy in breakup contributions is assigned some average breakup energy, have
yielded significant corrections to the adiabatic model [3] in such reactions in the descrip-
tion of experimental data for large neutron angular momentum (d,p) transfer reactions
at medium energies.

The quasi-adiabatic model is simple enough to clarify many aspects of reactions in-
volving deuteron and weakly bound composite nuclei and can be used for the practical
analysis of experimental data. The model avoids the complications of the more powerful
but computationally more expensive CDCC technique [1]. In particular, discritization is
avoided. However the quasi-adiabatic theory depends implicitly on an average excitation
energy which represents excitation energy of the n-p pair in the continuum. The the-
ory itself does not automatically provide a unique or obvious prescription for the mean
breakup energy. There is a certain flexibility as to the correct choice of the center-of-mass
energy of the broken n-p pair. This is shortcoming of the quasi-adiabatic approximation.
Nevertheless, the model, together with a reasonable prescription is capable of reproducing
many of the features of the more exact calculations using a small fraction of the computer
resources [4].

Following the success of the quasi-adiabatic model calculation, it appears that it is
worthwhile to devote more theoretical effort to introduce an alternative approach for
a quantum mechanical treatment of three-body systems, which is the main motivation
behind the work presented in this letter.

Here, an alternative approximation is developed for the treatment of the breakup
process, which presents a way of evaluating non-adiabatic corrections to the adiabatic
model three-body wavefunction using exact breakup energies, unlike the adiabatic and
quasi-adiabatic theories.

Under the restriction to S-wave relative n-p configurations, we start with the exact
Schrödinger Equation,

[E −Hnp− TR − U(r, R̄)]Ψ(r, R̄) = 0, (1)
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where Hnp = (Tr +Vnp) is the n-p Hamiltonian, TR the center of mass kinetic energy op-
erator and U(r, R̄) is the effective total nucleon target interactions including the Coulomb
interaction which is assumed to act on the n-p center of mass.

Adding and substracting the deuteron binding energy εd in Eq (1), one gets[
Ec.m. − TR − U(r, R̄)

]
Ψ(r, R̄) = (Hnp + εd)Ψ(r, R̄) (2)

where Ec.m. = E + εd. By decomposing the projectile-target three-body wavefunction,
Ψ(r, R̄), into the adiabatic wavefunction plus the correction, i.e.,

Ψ(r, R̄) = ΨAD(r, R̄) + ∆Ψ(r, R̄), (3)

Eq. (2) is reduced to the form[
Ec.m. − TR − U(r, R̄)

]
∆Ψ(r, R̄) = (Hnp + εd)ΨBU (r, R̄), (4)

since [
Ecm − TR − U(r, R̄)

]
ΨAD(r, R̄) = 0, (Hnp + εd)ΨEL(r, R̄) = 0. (5)

In the above equations, the correction term ∆Ψ has only outgoing waves and accounts
for non-adiabatic corrections to both the breakup and elastic channels.

It is clear from the formalism that for an improved solution of ∆Ψ, one should use
an iterative scheme that leads to more accurate calculations. The zeroth order iteration
starts with use of the adiabatic model breakup wavefunctions on the RHS of Eq. (4).
As ∆Ψ = ∆ΨEL + ∆ΨBU , in each iteration elastic and breakup pieces of the correction
term are projected out [5] and are added up to the related wavefunctions,

ΨBU = ΨAD,BU + ∆ΨBU , ΨEL = ΨAD,EL + ∆ΨEL (6)

The iteration procedure is repeated until the calculations converge.
However, the RHS of Eq. (4) has an infinite range due to the incorrect behavior

of the adiabatic breakup wavefunctions in the asymptotic region of R [2, 4]. To get a
physical solution for ∆Ψ in Eq. (4), one thus needs to have a finite source term. To do
that, instead of following the mathematical treatment given in Ref. [6], we approach the
problem in a different way discussed below.

It is known that the assumed degeneracy of the n-p center-of-mass energy in all
breakup configurations in the adiabatic model (Hnp→ − εd) results in a lack of phase
averaging and, in particular an overestimation of the breakup component of the entrance
channel wavefunction near the nuclear surface, a concern of most importance to transfer
reactions. The lack of phase averaging is revealed by the constancy of continuum channel
partial wave in the adiabatic model, χAD,BUJL (r, R), at beyond the nuclear surface. To
simulate the effect of phase averaging in this region in a simple way, Coley and Tostevin
[5] introduced a smooth radial cut-off in the breakup component according to
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∼
χ
AD,BU

JL (r, R) =
{

1 + exp

[
(R− R0)

a

]}−1

χAD,BUJL (r, R). (7)

This inadequacy of the breakup wavefunction was then studied quantitatively and
they showed that the properties of the wavefunction in the extreme nuclear surface play
a very minor role for the breakup contributions to the (d,p) channel at medium energies.
Therefore, the work of Coley and Tostevin allows us to suppress the breakup wavefunction
ΨBU that appears on the RHS of Eq. (4). In Fig. 1, we show the modulus of the breakup
components (full curve) of the full adiabatic wavefunction as the zeroth order solution for
an arbitrary partial wave for d+116Sn system at 79 MeV, together with the suppressed
breakup componend (broken curve) for the choice of R0 = 10 fm and a = 0.5 fm. The
reader is referred to Ref. [5] for the choice of R0 and a values.
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Figure 1. Modulus of the breakup (solid curve) component of the full adiabatic wavefunction

for the L=18 partial wave for the d+116Sn system at 79 MeV (for simplicity, the nucleon spin-

orbit forces are neglected). The dotted curve shows the suppressed breakup component for the

choice R0 = 10fm, a = 0.5fm.

One readily sees that Eq. (4) may be solved replacing Hnp by (Tr + Vnp). However,
in order to convince the reader that the present formalism goes beyond the adiabatic and
quasi-adiabatic approaches, due to the use of exact continuum channel energies, we start

8



YILMAZ, GÖNÜL

with an exact definition of the continuum channel breakup wavefunction in partial wave
form:

ΨBU
JL (r, R) =

∫ ∞
0

φk(r)χJLK(R)dk, (8)

where φk(r) is a triplet n-p scattering state with asymptotic normalization

φk(r)→
(√

2
π

)
sin(kr + δ0)

r
, (9)

such that
∫∞

0 drr2φk(r)φ′k(r) = δ(k − k′).
We need to evaluate the χJLK by integration via

χJLK(R) =
∫ ∞

0

drr2φk(r)ΨBU
JL (r, R), (10)

and the substitution of Eq. (8) into Eq. (4) yields

[Ec.m. − TR − U(r, R̄)]∆Ψ(r, R̄)] =
∫ ∞

0

dk(εk + εd)φk(r)χJLK(R), (11)

where Hnpφk(r) = εkφk(r) in which εk = ~2k2

2µnp
.

A major problem in the application of an exact method to the breakup process is
that the breakup states are continuous and one has to deal with a continuum and infinite
number of coupled channels.

The formalism presented here treats the continuous channels of the S-wave breakup
states directly in a single channel as the solution of a simple differential equation. The
new formalism clearly reduces to the adiabatic approximation if εk in Eq. (11) is replaced
by −εd, and also collapses back to the standard quasi-adiabatic model equation if εk is
replaced by mean energy ε̄(R) [4]. For the clarification of this point, one may start from
Eq. (2) replacing the RHS by its latest form, e.g.,

[Ec.m. − TR − U(r, R̄)]Ψ(r, R̄)] =
∫ ∞

0

dk(εk + εd)φk(r)χJLK(R), (12)

The above equation can be reduced to the form

[Ec.m. − TR − U(r, R̄)]ΨBU (r, R̄) =
[
U(r, R̄− Uopt(R̄)

]
ΨEL(r, R̄)

+
∫ ∞

0

dk(εk + εd)φk(r)χJLK(R), (13)

since Ψ = ΨBU + ΨEL. It is clear from the above equation if the last term on the RHS
of the equation is zero, which means that εk ≈ −εd, and the exact continuum channel
wavefunction ΨBU approximates to ΨAD,BU . Using the same analogy, if εk were replaced
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by a mean breakup energy such as ε̄(R), as in the quasi-adiabatic model, the formalism
would return the standard quasi-adiabatic ones. This serves as a test of the numerical
calculations. Thus, one easily sees that the last term on the RHS of Eq. (13) is the
correction term to the adiabatic and quasi-adiabatic approaches, and therefore the new
formalism appears to provide an improved description of the three-body wavefunction.

It also incorporates some effects of closed channels, which have breakup energies εk >
E. This is expected to cause sensitive modifications of stripping cross-sections. Phase
relations in the construction of the cross-section are particularly and strongly affected by
closed channel contributions.

Although the technique developed seems mathematically convenient, the iterated cal-
culations in describing the three-body wavefunction for the dt116Sn system at 79 MeV,
and also its application to some (d,p) reactions, did not converged. We have investigated
possible reasons for the non-convergence of the calculations. The detailed analyses of
the calculations have led to the conclusion that the essentially exact quantum mechan-
ical solution developed here cannot be used in its present form in the treatment of the
breakup process in reactions involving deuterons. Since the continuum channel breakup
wavefunction produced in the adiabatic model is not expected to give an accurate rep-
resentation of the continuum channel wavefunction, for values for r outside the range of
n-p potential, then use of the adiabatic wavefunction in the source term of the zeroth
order calculations beyond such ranges is suspect, which causes non-converged results.

Nevertheless, the extended adiabatic models can be seen as an important tool for
those hoping to understand the mechanism of transfer reactions involving loosely bound
systems, and is worthy of further investigation. In particular, such theories should find
application when the rapidly increasing data based on reactions induced by light neutron-
rich radioactive nuclei.

The authors gratefully the financial support of the Scientific and Technical Research
Council of Turkey (TUBITAK, project no: TBAG 1601).
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