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Abstract

Two photon absorption in size-quantized films of semiconductors with degen-
erated band structures are investigated. The carrier energy spectrum and wave-
functions in the bands are calculated using two-band Kane model with spin taken
into accont. Two-photon absorption coefficients for different polarizations of inci-
dent radiations are calculated. The strong dependence of two-photon absorption on
polarizations are stated.

1. Introduction

Superlattices and other structures with quantum wells are currently the most inten-
sively studied objects of semiconductor electronics. Recent achievements in study and
practical applications of two dimensional electron gas (2DEG) constructed from III-V
compounds, mainly on the basis of GaAs [1-3] thin films, heterostructures, structure of
superlattices among others, have stimulated the search for developing new semiconductor
structures such as quantum wires and quantum dots [3-5]. Aside from the traditional
III-V compounds, semiconductors such as HgCdTe, HgMnTe, CdMnTe etc., which have
unique properties, have been employed to obtain 2DEG materials.

On the basis of such compounds and by changing their composition, one can obtain
superlattices of types I, II and III as identified by generally accepted classification [3].

In the present work we consider two-photon absorption of light (TPA) in size quantized
films formed from the above mentioned semiconductor type. Desire to investigate TPA
in semiconductors stems from the wide possibilities this method may bring [6-9]. First,
TPA allows to obtain bulk excitation of semiconductor, which in turn facilitates a study
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volume that is little distorted by the surface. Second, by the help of two photon pumping
it is easier to create population inversion in uniform semiconductors and semiconductor
structures. Thirdly, since in crystals with inversion symmetry two-photon transitions
are allowed between states of the same parity (dipole transitions), using TPA one can
observe those energetic states which otherwise cannot be detected in one photon spectra.
TPA essentially depends on electric field polarizations that differ drastically from the one
photon polarizations. Moreover, TPA depends on polarization even in an isotropic media.
It follows from above discussions that TPA spectroscopy may be an effective method of
study for various structures with 2DEG, as well as other low-dimensional systems that
are in growing interest [3− 5].

The initial expression for the absorption coefficient of photons of energy h̄ω1 in pres-
ence (per unit volume) of photon of energy h̄ω2 has the form [10]

K2 (h̄ω1) = e4

n1n2c2m4ω1ω2
2

∑
f,i

∣∣∣∣∑
t

{
→
e 2
→
Mfi·

→
e 1
→
Mti

Et−Ei−h̄ω1
+
→
e 1
→
Mft·

→
e 2
→
Mti

Et−Ei−h̄ω2

}∣∣∣∣2
×δ [Ef −Ei − h̄(ω1 + ω2)]

(1)

Here,
→
Mft= 〈f

∣∣∣→P ∣∣∣ t〉, →M ti= 〈t
∣∣∣→P ∣∣∣ i〉 are dipole matrix elements defined in terms of mo-

mentum operator p; e and m are the electron charge and mass; c is light velocity; n1and
n2 are the index of refractions corresponding to the frequencies ω1 and ω2;

→
e 1,
→
e 2 are

the corresponding polarizations; Ei, Ef and Et are the energies of initial, intermediate
and final states of electrons; |i〉, |f〉, |t〉 are the electronic wave functions,respectively. As
follows from expression (1), the calculation of TPA coefficient is reduced to a calculation
of intraband and interband matrix elements, and we must know the explicit form of wave
functions and energy spectrum of electrons in the well.

2. Spectrum and wavefunctions

In Fig. 1 and energy band diagram of bulk semiconductor with degenerated valence
band is shown. We shall find the carriers energy spectrum and wavefunctions in the
bands using the two band Kane model with spin taken into account. We proceed from
Schrödinger equation;

HΨ(
→
r ) = EΨ(

→
r ). (2)

Suppose that the normal of a two dimensional surface is in z direction. Then the Hamil-
tonian has the form:

H =
→
p

2

2m
+ V (

→
r ) +

h̄

4m2c2

(→
σ ×

→
∇ V

) →
p +U (z) , (3)

where
→
σ is a Pauli operator, V

(→
r
)

is the periodic crystal potential, U(z) is potential of
a two dimensional layer.We look for solution of Eq.(2) in the form:
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Ψ
(→
r
)

=
∑
l

fl

(→
r
)
ul

(→
r
)
, (4)

where fl

(→
r
)

is a slowly changing envelope function and ul

(→
r
)

are Luttinger-Kohn
amplitudes. Substituting expression (4) into (2) and taking into account (3), we have

   c

ε k

u1,u2
k

u3, u6

u4, u5

u7, u8

h

l

s

∆

gε

Figure 1. Band structure of Hg1−xCdxTe (x > 0.16) near
→
k= 0.

∑
l

{(→
p

2

2m
+ εl,0 − ε+ U

)
δl‘l+

→
p l‘l
→
k +

[
h̄

4m2c2

(
→
σ ×

→
∇ V

) →
P

]
l‘l

}
fl

(
→
r
)

= 0, (5)

where εl,0 are the solutions of the following equation:→p 2

2m
+ V (

→
r ) +

h̄

4m2c2

(→
σ ×

→
∇ V

) →
p

ul (→r ) = εl,0ul

(→
r
)
. (6)
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In the above we also have:

ul

(→
r +

→
a
)

= ul

(→
r
)
, 〈ul‘ | ul〉 = δl‘l ,

→
p l‘l=

h̄

m

〈
ul‘

∣∣∣∣→p +
h̄

4m2c2

(→
σ ×

→
∇ V

) →
p

∣∣∣∣ ul〉 , (7)

u1

(→
r
)

= iS ↓, ε1,0 = −εg ,

u2

(→
r
)

= iS ↑, ε1,0 = −εg ,

u3

(→
r
)

= R− ↓, ε3,0 = 0,

u4

(→
r
)

=

√
2
3
Z ↓ +

√
1
3
R− ↑, ε4,0 = 0, (8)

u5

(→
r
)

=

√
2
3
Z ↑ +

√
1
3
R+ ↓, ε5,0 = 0,

u6

(→
r
)

= R+ ↑, ε6,0 = 0,

u7

(→
r
)

=

√
1
3
Z ↓ −

√
2
3
R− ↑, ε7,0 = −∆,

u8

(→
r
)

=

√
1
3
Z ↑ +

√
2
3
R+ ↓, ε7,0 = −∆,

R± =

√
1
2

(X ± iY ) .

If solutions of Eq. (5) are seeked in the form fl = ei(kxx+kyy) · ϕl(z), then ϕl(z) will
satisfy the following equation:

H11 0 H13 H14 H15 0 H17 H18
0 H22 0 H24 H25 H26 H27 H28

H31 0 H33 0 0 0 0 0
H41 H42 0 H44 0 0 0 0
H51 H52 0 0 H55 0 0 0

0 H62 0 0 0 H66 0 0
H71 H72 0 0 0 0 H77 0
H81 H73 0 0 0 0 0 H88





ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

ϕ6

ϕ7

ϕ8


= 0, (9)
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where

H11 = −ε + U (z) H13 = 1√
2
Pk− H24 = 1√

6
Pk−

H22 = −ε + U (z) H14 =
√

2
3P

∧
kz H25 =

√
2
3P

∧
kz

H33 = −ε− εg + U (z) H15 = − 1√
6
Pk+ H26 = 1√

2
Pk+

H44 = −ε− εg + U (z) H17 = 1√
3
P
∧
kz H27 = − 1√

3
Pk−

H55 = −ε− εg + U (z) H18 = 1√
3
Pk+ H28 = 1√

3
P
∧
kz

H66 = −ε− εg + U (z) Hij = (Hji)∗

H77 = −ε − εg −∆ + U (z)
∧
kz= −i ∂∂z

H88 = −ε − εg −∆ + U (z) k± = kx ± iky.

(10)

There P = − ih̄
m
〈S |pz|Z〉 is the Kane constant, ∆ = − 3eh̄

4m2c2
〈X
∣∣∣∂V∂x py − ∂V

∂y
px

∣∣∣Y 〉 is the
distance of split off energy band. By expressing ϕ3, ϕ4, ..., ϕ8 in terms of ϕ1 and ϕ2 in
the last six equations and then substituting into first two equations, we have:

{
−ε+ U + P2

3

[
2

ε+εg−U + 1
∆+ε+εg−U

](
k2
⊥+

∧
k2
z

)
+ P2

3

[
2

(ε+εg−U)2 + 1

(∆+ε+εg−U)2

]
∧
kz U

∧
kz

}
ϕ1 +

√
2P2k+

3

[
∧
kzU

(ε+εg−U)2 +
∧
kzU

(∆+ε+εg−U)2

]
ϕ2 = 0

(11)

{
−ε+ U + P2

3

[
2

ε+εg−U + 1
∆+ε+εg−U

](
k2
⊥+

∧
k2
z

)
+

+ P2

3

[
2

(ε+εg−U)2 + 1

(∆+ε+εg−U)2

]
∧
kz U

∧
kz

}
ϕ2 −

√
2P2k−

3

[
∧
kzU

(ε+εg−U)2 +
∧
kzU

(∆+ε+εg−U)2

]
ϕ1 = 0

(12)

This equation system is very complicated,therefore we shall consider the case ∆ → ∞,
which is also called a two-band Kane model. Then we have:{

−ε+ U + 2P2

3
1

ε+εg−U

(
k2
⊥+

∧
k2
z

)
+ 2P2

3
1

(ε+εg−U)2

∧
kz U

∧
kz

}
ϕ1+

+
√

2
3

P2k+

∧
kzU

(ε+εg−U)2ϕ2 = 0.
(13)

{
−ε+ U + 2P2

3
1

ε+εg−U

(
k2
⊥+

∧
k2
z

)
+ 2P2

3
1

(ε+εg−U)2

∧
kz U

∧
kz

}
ϕ2−

−
√

2
3

P2k−
∧
kzU

(ε+εg−U)2ϕ1 = 0
(14)

In order to solve the above equation system we choose for U (z) the infinitely deep
square well potential:

161



ISMAILOV, BAGIROV & ÜNAL

U(z) =

 ∞, z < 0,
0, 0 ≤ z ≤ d,
∞, z > d.

(15)

Thus, with the potential in Eq.(15) Eqs.(13)-(14) take the form:

d2ϕ1,2 (z)
dz2

+ α2ϕ1,2(z) = 0, (16)

where

α2 =
3
2
· ε(ε+ εg)

P 2
− k2
⊥. (17)

We seek a solution of Eqs.(13)-(14) in the form:

ϕ1,2(z) = c1e
iαz + c2e

−iαz (18)

Substituting the so obtained expressions of fl
(→
r
)

into Eq. (4) we get the expression
for total wave function Ψ, that contains now the constants c1 and c2.. From boundary
conditions Ψ(z = 0) = 0 and Ψ(z = d) = 0, we find the conditions (1 + Rj

∂
∂z )ϕj(z =

zbound) = 0 for the envelopes as in [11] . But in our case, Rj are defined by the expressions:

Rj↑,↓ = −i


√

2
3
P
εj
u4

u1,2 + u3,6
Pk±√

2εj
∓ u5,4

Pk∓√
6εj


z=zbound

, (19)

where the first position indices and upper signs correspond to spin up (↑) state and second
position indices together with lower signs correspond to spin down (↓) state. We limit
ourselves to the cases when the film thickness d much greater than lattice constant a0,
i.e. d = Na0 � a0, where N is the number of unit cells in the z direction and that the
film boundaries are placed at the center of a unit cell. Then p-type amplitudes u3,.....u6

are equal to zero on the boundaries and c1↑
c2↑

= c1↓
c2↓

= −1.
Under the simplifications made above, for wavefunctions of light carriers we finally

obtain:

Ψ
νnν

→
k⊥σν

(→
r
)

=

√
2
Sd

{
A
νnν

→
k⊥σν

(→
r
)

sin (ανz) + B
νnν

→
k⊥σν

(→
r
)

cos (ανz)
}
ei
→
k⊥
→
r⊥ .

(20)

Here, σν = (↑↓), ν = (c, h, l) , k⊥ = (kx, ky, 0), and
∧
R=

∧
K ·

∧
I, where

∧
K is time inversion

operator and is defined as K = −iσyK1 and K1 is complex conjugating operator, σy =(
0 −1
1 0

)
[12].

From (17) for energy spectrum of conduction electrons and light holes we have

162



ISMAILOV, BAGIROV & ÜNAL

εj = −1
2
εg ±

[
1
4
ε2g +

2P 2

3
(
k2
⊥ + α2

j

)] 1
2

, αj =
πnj
d
, nj = 1, 2, 3, .., (21)

where the signs (+) and (−) indicate the conduction (c) and light hole (l) bands respec-
tively and j = c, l.

In considered two-band model the heavy hole band doesn’t interact with the other
bands and therefore is parabolic:

Ψ
hnh

→
k⊥↑

(
→
r
)

=

√
2

Sd

[(√
3

2

k+

k
u4 −

1

2

k−
k
u6

)
sinαhz +

iαh
k

k2
+

k2
⊥
u3 cosαhz

]
ei
→
k⊥
→
r ⊥ , (22)

Ψ
hnh

→
k⊥↓

(→
r
)

=
∧
R Ψ

hnh
→
k⊥↑

(→
r
)

(23)

εh =
h̄2

2m
(
k2
⊥ + α2

h

)
, αh =

πnh
d
, nh = 1, 2, 3, ... (24)

3. TPA calculations

In Fig. 2 the band structure of size-quantized semiconductor with degenerated valence
band and all possible six TPA processes are shown in the framework of a two-band Kane
model without taking spin into account. Since bands c, h and l are spin degenerated,then
the number of possible processes giving contribution to TPA is equal to 48. If one takes
into account that the matrix elements between spin up and spin down states within the
same band are zero, 〈c

→
k ↑|
→
e
→
p | c

→
k ↓〉 = 〈h

→
k ↑|
→
e
→
p | h

→
k ↓〉 = 〈l

→
k ↑|
→
e
→
p | l

→
k ↓〉, and if one

neglects the matrix elements
〈
h
→
k ↑|
→
e
→
p | h

→
k ↑
〉

= 〈h
→
k ↓|
→
e
→
p | h

→
k ↓〉 as might be allowed

by of the small parameter (ml/mh), then the number of TPA processes are reduced
to 28. By taking all these circumstances into account, TPA coefficient for small gap
semiconductors of type InSb was calculated in [13− 14] for bulk case and nonparabolic
electron spectrum for arbitrary

→
k .

We have calculated the TPA coefficient for size-quantized semiconductor films with
degenerated valence band. In the presence of the size-quantized states, a number of
TPA processes are drastically increased due to the additional interband (intersubband
transitions between the different bands) and intraband (intersubband transitions within
one band) transitions both for ∆n = 0 and ∆n 6= 0 cases, where ∆n = nf− ni are
subband number differences. In contrast to the bulk case, in size quantized structures
the transitions between the spin up and spin down states are possible for processes with
∆n 6= 0. For simplicity, consider the parabolic case. In Fig. 2 four processes corresponding
to two photon transitions from the valence subband to conduction subband are shown,
when the intermediate states are the conduction band subbands. If one takes into account
that valence band subbands are also involved in intermediate states then the total number

163



ISMAILOV, BAGIROV & ÜNAL

of possible TPA processes increases by two.

ε k

k⊥

1 2 3 4

Figure 2. Band structure of size-quantized semiconductor Hg1−xCdxTe with x > 0.16 and

possible TPA processes.

Intraband and interband matrix elements have been calculated in [15− 18]. However,
the explicit form of wave functions, i.e. the dependencies of Bloch factors u

nν
→
k⊥

(→
r
)

on

wave vector
→
k⊥ and subband number nν , were not taken into account. Yet, the optical

properties of size-quantized films are very sensitive to the geometry of the experiment
and therefore it is vital to consider the explicit form of Bloch factors.

As a result of tedious calculations for the TPA coefficient we obtain the following
expression:

K2 (h̄ω) =
8π2e4P 2

n1n2c2h̄d

∑(
mcj

mc

)2∑∑
fij (ω1, ω2)

Θ (Λcj)
h̄ω1 (h̄ω2)2

, (25)
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where fji(ω1, ω2) for zz and ”++” polarizations has the form:

.fzzh1 = 0,
fzzh2 = ε0ch

π2 ξ
2
1hh

(
acnhhah

+ bcnhhah

)2 |Tncnh |2 ,
fzzh3 = 0,

(26)

fzzl1 = 0,

fzzl2 =
ε0
cl

3π2

[
ξ1ll(a

cnl
ln l

+ bcnlln l
) + ξ1lc(a

ln c
ln l

+ bln c )
]2 |Tncnl |2 ,

fzzl3 =
4ε0cl
3π2

∑
n
′
c

ξ2ll · Tncn′c · Tn′cnl · (a
cn′c
ln l

+ bcncln l
) +
∑
n
′
l

ξ2ll · Tncn′l · Tn
′
l
nc

(a
ln
′
l

ln l
+ b

ln
′
l

ln l
)

2

,

(27)

f++
h1 = 1

2 Λchξ2
1hh ·

(
acnchnh

+ bcnchnh

)2
δncnh ,

f++
h2 = 1

2
Λchξ2

2hh ·
(
acnchnh

+ bcnchnh

)2 · |Tncnh |2 ,
f++
h3 = 0,

(28)

f++
l1 = 5

12Λclξ2
1ll ·

(
acncln l

+ bcncln l
+ aln l

ln l
+ bln lln l

)2

· δncnl,

f++
l2 = 1

6
Λclξ2

2ll ·
(
acncln l

+ bcncln l + aln l
ln l

+ bln lln l

)2

· |Tncnl|
2
,

fzz13 = 0,

(29)

ε0cj = ε0c + ε0j ,Λcj = h̄ (ω1 + ω2)− εg − ε0cn2
c − ε0jn2

j , (30)

ξ1jν =
Λcj

Λcj + εcjn2
ν

, ξ2jν =
1
π2

εcj
Λcj + εcjn2

ν

, (31)

acnνjnj
=
[
h̄ω1 + ε0c(n

2
ν − n2

j )
]−1

, bcnνjnj
= acnνjnj · δω1ω2 , (32)

aln ν
ln l

=
[
−h̄ω2 − ε0l (n2

ν − n2
l )
]−1

, bln νln l
= aln ν

ln l
· δω1ω2 , (33)

Θ(x) =
{

1,x≥0
0 ,x<0

}
, δij =

{
1,i=j
0 ,i 6=j

}
,
ν= (c , j)
j=(h ,l) , (34)

1
mcj

=
1
mc

+
1
mj

; Tncnj =
[
1− (−1)nc+nj

]
· 2ncnj
n2
c − n2

j

. (35)

In Fig. 3 the dependencies of TPA coefficient K2 on the parameter h̄ω/εg with
ω1 = ω2 = ω, as calculated from Eq.(25) for geometries zz and ”++” for d = 400Å and
εg = 0.31eV , mh = 0.4m0, ml =

(
3h̄2εg

)
/
(
4P 2

)
, P = 8 · 10−8eV · cm are shown. The

continuous curve corresponds to zz geometry and the dashed curve corresponds to ”++”
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geometry. Arrows indicate transitions to conduction band from heavy hole subbands
(1-1h → 1c, 2-2h → 1c, 3-1h → 2c and 5-2h → 3c) and from light hole subbands (4-
2l → 1c or 1l → 2c and 6-3l → 2c or 2l → 3c). As follows from the figure for the zz
geometry case the size quantization is clearly exhibited in TPA spectrum. TPA begins
from threshold that corresponds to the energy difference between first conduction band
subband and second heavy hole subband, shown as arrow 2. The other arrows indicate
transitions with selection rules ∆ncj = nc − nj = 2k + 1(k = 0, ±1, ±2, ...), where
j = (h, l), i.e. 3-1h → 2c, 4-2l → 1c or 1l − 2c, 5-2h → 3c and 6-3l → 2c or 2l → 3c.
As also seen from the figure for ”++” geometry, the size levels do not appear. This is
associated with the fact that, in this case the main contribution comes from transitions
with ∆ncj = 0. Looking at expressions (26)−(29) we see that for ”++” geometry there is
also possible the transitions with selection rule ∆ncj = 2k+1 (k = 0,±1,±2, ..); however
their contribution is considerably small.

2.0

1.6

1.2

0.8

0.4

0
0.50 0.54 0.58 0.62 0.66 0.70

1 2
3

4

5
6

K
2,

 c
m

-M
W

-1

hω/εg

ZZ

“++”

Figure 3. Dependence of TPA coefficient on the parameter h̄ω/εg with ω1 = ω2 = ω for

d = 400
o

A and εg = 0.31eV .

Fig.4 shows the TPA coefficient K2 versus h̄ω/εg for two different thicknesses. It
follows that, with decreasing thickness the energetic distances, between size subbands
increase and TPA spectrum shifts toward short waves.
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2.0

1.6

1.2

0.8

0.4

0
0.50 0.54 0.58 0.62 0.66 0.70

1

3

4
K

2,
 c

m
-M

W
-1

hω/εg

2

2

1

a

b

3

a – d = 200 Å

b - d = 300 Å

5

Figure 4. TPA coefficient K2 versus h̄ω/εg for ZZ geometry for different thicknesses.

Fig. 5 shows h̄ω/εg dependence of K2 for the same parameters as used in Fig.3 for
d = 200Å in the case of ”++” geometry with selection rule ∆ncj = 2k+1. The threshold
corresponds to 2h → 1c transition, which is shown by arrow 1. Arrow 2 indicates the
transitions 3h→ 1c, 3h→ 1h, and 4-3h→ 2c.

4. Concluding remarks

In the framework of the two-band Kane’s model we have carried out a detailed inves-
tigation of TPA of light by two-dimensional electron gas which can be realized in various
structures on the basis of semiconductors with the degenerated valence band. The cal-
culations are made for a thin film of semiconductors of type of GaAs, InSb, HgCdTe,
HgMnTe.

The general formula for TPA coefficient K2 is obtained with taking into account all
the possible two-photon processes allowed by this model. The formula involves also the
all possible polarizations of incident photons.

It is stated that K2 is essentially determined by dependences of Bloch factors on the
electron wave vector. The values of K2 in various geometries differ from each other by
∼20-40%. In ZZ geometry the TPA coefficient K2 as a function of frequency has an
step-like behavior, but for (++) geometry K2 is monotonic.

It is shown that in addition to processes with selection rule ∆n = 0, the processes
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with ∆n = ±1,±3,±5, ... take place. The values of K2 for these processes are smaller
approximately by two order than that of ∆n = 0.

2.0

1.6

1.2

0.8

0.4

0
0.50 0.54 0.58 0.62 0.66 0.70

1

3

4

K
2.

10
2 ,

 c
m

-M
W

-1

hω/εg

2

Figure 5. TPA coefficient with selection rules ∆n = ±1,±3, ... for ” + +” geometry for εg =

0.31eV and d = 200
o

A.
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