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Abstract

We study the Coulomb drag rate for electrons in a double quantum-wire structure
in the presence of disorder. We use the particle number-conserving relaxation-time
approximation to phenomenologically broaden the response functions entering the
drag rate expression to account for the disorder effects. In contrast to the usual
low-temperature regime investigated by various researchers, we focus our attention
on the high-temperature drag rate to which plasmon modes are known to make
substantial contribution. The full wave vector and frequency dependent random-
phase approximation (RPA) at finite temperature and disorder strength is employed
to describe the effective interlayer Coulomb interaction. The interplay between the
screening effects and disorder at high temperature yields a nonmonotone behavior of
the drag rate on the disorder parameter. The reduction in the interwire momentum
transfer rate may be used as a probe to investigate localization properties of coupled
quantum-wire systems.

PACS numbers: 73.50.Dn, 73.20.Mf, 73.20.Dx

1. Introduction

Recent developments in the semiconductor growth and fabrication techniques have
led to the production of high-quality quantum structures to study various aspects of
electron-electron interactions in low-dimensional systems. Coupled quantum-well systems
are especially well-suited to probe many-body effects because of the interplay between the
in-layer and across the layer interaction strengths. A particular example is the Coulomb
drag effect, when the well separation is large enough so that tunneling effects are not
important, a current flowing in one layer induces a current or voltage in the other layer
[1]. The origin of the effect lies in fact that the interactions between the charge carriers
in different layers lead to momentum and energy transfer from the current carrying layer
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to the passive one. The initial experiments [2-5] performed at low temperature gave way
to a surge of theoretical activity [6-10] to understand the transport properties of spatially
separated electronic systems.

The temperature dependent behavior of the observed [2, 3] drag rate (viz., Tp ~
T?) identifies the Coulomb interaction as the drag mechanism. However, deviations
from the T2-behavior in the drag rate led Gramila et al [3]. to suggest the exchange of
virtual phonons as an alternative mechanism. When the high temperature behavior of
the Coulomb drag rate was investigated [8] it was found that the collective mode effects
influence the effective interlayer interaction significantly and the drag rate is enhanced
compared to the low temperature regime. Recent experiments [11] support this view even
if the role of correlation effects are not entirely clear.

The quasi-one-dimensional (Q1D) semiconductor structures provide another example
to study the momentum and energy transfer between two electron gases of close prox-
imity. The Coulomb drag effect for quantum wire systems was considered by Sirenko
and Vasilopoulos [12] in their comparative study of dimensionality effects. In particular,
their calculation for degenerate and nondegenerate systems distinguishes the regions of
phase space contributing to the scattering process. Qin [13] used a cylindrical confine-
ment model to determine the temperature and wire radius dependence of the momentum
transfer rate. Relatively few works are devoted to the study of drag effect in double-wire
systems. Since the level of sophistication of quantum wire fabrication is not as advanced
as that of coupled quantum-wells, no experimental results on the drag rate for Q1D
systems are reported.

In this paper, we study the effects of disorder on the Coulomb drag rate in coupled
quantum wires in the plasmon dominated high temperature region. There are several mo-
tivations for investigating the disorder effects. The interplay between the electron-electron
interactions and disorder has been a long standing subject of interest [14] accentuated with
the recent observation of metal-insulator transitions [15] in Si metal-oxide-semiconductor
field-effect transistors (MOSFETSs) at zero magnetic field. The Coulomb drag effect in
double-layer and double-wire systems offers an interesting probe in diagnosing the in-
sulating phase as suggested by Shimshoni [16]. Since the drag rate is predicted to be
enhanced by the plasmon modes the disorder effects would be more easily discerned at
higher temperatures than the low temperature region where virtual phonon exchange
mechanism is also believed to influence the observed behavior. Recent drag experiments
[11] on double quantum-well systems at high temperature demonstrated the importance of
collective modes and their careful treatment in the theoretical calculations. Similar effects
should take place in double quantum-wire systems and we hope that our investigations
will stimulate experimental work to test some of our predictions. Transport properties
of coupled 1D systems are also interesting from the point of view of restoration of the
Fermi-liquid behavior, as disorder-free, single quantum-wire systems are believed to be
Luttinger liquids.

Owing to the present technology of producing quantum wires, the impurity effects
such as surface roughness are expected to influence the transport properties. In the typ-
ical experiments high mobility samples are used. The Coulomb drag contribution to the
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observed momentum transfer rate or resistivity is then calculated with the assumption
that intralayer impurity scattering is small and independent of energy [8, 9]. In the de-
tailed derivation of Flensberg et al. [9] the necessary modifications to the drag resistivity
in the case of energy-dependent electron-impurity scattering are discussed. Recently,
Swierkowski et al. [17] presented a linear-response theory for transresistance in double-
layer semiconductor structures. In their treatment the disorder scattering through the
relaxation time approximation is accounted for. Our aim is to study the effects of the
disorder on the Coulomb drag rate at high temperature. We calculate the interwire mo-
mentum transfer rate for a coupled quantum wire system by systematically increasing the
strength of the disorder parameter. This amounts to decreasing the mobilities in each
wire and can be achieved experimentally by taking more and more disordered samples in
a systematic study. We find that the interplay between the disorder effects and effective
electron-electron interactions gives rise to an increase in the drag rate for small values of
the disorder parameter. As the strength of disorder is further increased we find that the
drag rate decreases.

The rest of this paper is organized as follows. In the next section we outline the model
we use for the description of coupled quantum-wire system, the drag rate expression, and
the calculation of response functions in the presence of disorder. In Sec.III we present
our results for the Coulomb drag rate, and provide comparisons with other theoretical
works. We conclude with a brief summary.

2. Model and Theory

We consider two cylindrical quantum wires of radius R in parallel and infinite potential
barriers [18]. The axes of the wires are separated by a distance d. We assume that only
the lowest subband in each wire is occupied. The separation distance is assumed to be
large enough to prevent interlayer tunneling. The bare Coulomb interaction between the
electrons is written as V;;(q) = (2¢%/e0)F;;j(q), in which the form factors F;;(q) describe
the intra and interwire interactions [18]. The one-dimensional electron density N in each
wire is related to the Fermi wave vector by N = 2kp /7. We also define the dimensionless
electron gas parameter ry = 7/(4kpa¥), in which af = €o/(e?m*) is the effective Bohr
radius in the semiconducting layer with background dielectric constant ¢y and electron
effective mass m*.

We adopt the Coulomb drag rate expression derived for double-layer systems to the
present case of double wire problem [6-10]

_ 1 > > Wi2(q,w) Imx(q, w) 2
1 2 12\4, 5
DT L NT /O 74 /O “ 17 sinh (w/27) ’ (1)

in which we have also assumed that the electron system in each wire has the same density
N (we take h and kp equal to unity). The above expression has been derived in a variety
of approaches [6-10] from the Boltzmann transport theory to memory function formalism.
It measures the rate of momentum transferred from one quantum-wire to the other. Here,
X(gq,w) is the 1D dynamic susceptibility, describing the density-density response function
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of a single wire. We take Wia(g,w) to be the dynamically screened effective interaction
between electrons in quantum-wire 1 and 2. Within the random-phase approximation
(RPA), the effective interlayer interaction is given by

Wia(q,w) = ;/(1;(5)) : (2)
in which
e(q,w) = [1 = Vi1(q)x(q,w)]* = Vi2(q)x (g, w)]?, (3)

is the total screening function for the coupled quantum wire system. In this RPA ex-
pression, the bare intra and interwire electron-electron interactions V17 and Vi5 are used,
thus the correlation effects are ignored. Recent numerical calculations [19, 20] indicate
the importance of correlation effects in coupled quantum wire systems, and we discuss
their influence on the drag rate in the next section. It is also assumed that only the
lowest subband in each wire is occupied. Thus, the energy difference between the second
and first subband levels Agy &~ 10(4/7)%*r2(R/a’)Er should be greater than the thermal
energy T. For reasonable densities and wire radii of experimental interest, the single
subband assumption holds.

In this work, we retain the full wave vector, frequency, disorder, and temperature
dependence of the dynamic susceptibility x(¢,w) which enters the numerator of the drag
rate expression Eq. (1) as well as the screening function (g, w). We account for disorder
by considering an impurity scattering induced broadening v which should be regarded
as a phenomenological parameter. More explicitly, the real and imaginary parts of x are
given by

Re[x(q,w; T)) = = [F(t, 24, 21) = F(t, 2, )] )

Im[x(q,w; T)] = 7-% [G(ta 24y %) — G(ta Z— Zi)] ) (5)

where

F(t,z,2) = , (6)

1 /°° dx ! (V2tx +2)? + 22
- n
4 Jo cosh?(z—[/2) (V2tx — 2)2 + 22

Gt 2, 2) = ﬂf<2>+§ /Ooo ﬁ [ta“_l <@7—> e <m27]>

in which we have used the scaled variables t = T/Ep, i = p/T, z+ = (/4 £ §)/2,
where Q = w/Ep and ¢ = q/kp, and z; = v/(2ErqG). The chemical potential u at
finite temperature is calculated from the normalization integral N = 2 [(dk/2x)f(k),
where f(k) is the Fermi-Dirac distribution function for noninteracting electrons at finite
temperature T. The quadrature formulae for F(t, z, z;) and G(t, z, z;) are the adaptation
of Maldague’s approach [21] to the 1D case. Screening properties of a 1D electron gas
including both the thermal and collisional broadening effects were first calculated by Das
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Sarma and Lai [22]. Once the finite temperature polarizability is obtained we impose the
number-conserving approximation given by the Mermin formula [23]:

(w+1iy)x(g,w +iv) ()

X9 = o o+ /X 0)

Thus, in the drag rate integral we use the above polarizability expression (after separating
real and imaginary parts) which includes both the temperature and impurity scattering
effects. In the limit ¢, w — 0, the number-conserving approximation above gives the
correct diffusive behavior for the response function

2m*  Dg?

b :_—7', 9
X9 ) rkr Dg? +iw )

where D = k2./ m*?y is the diffusion constant in a 1D system.

3. Results and discussion

We use the material parameters appropriate for a GaAs system for which the recent
experiments [2-5, 11] on drag rate between coupled quantum-wells are performed. The
static dielectric constant is given by ¢y = 12.9. The effective Bohr radius for GaAsis a}; ~
100 A. For a typical linear electron density N ~ 106 cm™—!, the electron gas parameter is
rs = 0.5. We first examine 7, 1 at low temperatures. In coupled quantum wire systems
with a single filled subband, the drag rate 7, ! is dominated by back scattering (g ~ 2kp).
At low temperatures (T' < Tr), the use of approximate expressions for the response
function x(g,w) of a clean system, and neglecting the screening effects result in a linear
temperature dependence [12, 24]

_1_ [Wa(kp)Pm** T
TD ~Y k2 .
F

(10)
In the presence of disorder, the diffusive limit of x(g,w) gives rise to a different w and ¢

behavior of the integrand, and we find to leading order

1 Wha(2kR) P m® T A
TD ~Y ks .
F

(11)

In two-dimensional systems, Zheng and MacDonald [6], using similar approximations,
have found a logarithmic correction to the low-temperature drag rate. Kamenev and
Oreg [9] have also reached similar results, and in particular have shown that for extremely
dirty samples the drag resistivity goes as pp ~ T7.

Next, we evaluate numerically the Coulomb drag rate 7, ! using the effective inter-
action obtained for a double-wire system as a function of temperature. We retain the
full wave vector, frequency, disorder, and temperature dependence in x(¢,w) and &(q, w),
using the formalism outlined in the previous section. Similar to the double quantum-well
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system [8, 11], at high temperature, the drag rate is dominated by collective excitation
modes described by the zeros of the dielectric function €(q,w). The plasmon disper-
sion wpi(g) in a double wire system has two branches, both lying above the particle-hole
continuum. As the temperature increases, the particle-hole continuum embodying the
single-particle excitation region broadens to render coupling between the collective modes
more feasible, and the drag rate is enhanced. The effect of phenomenological broadening
to simulate disorder effects on the plasmon dispersions is such that wpi(g) is depressed
25, 26].

In Figs. 1-2 we show the scaled drag rate 7 L/T as a function of temperature for two
different coupled wire systems. That TBI /T exhibits a broad enhancement for T 2 0.3 Ep
indicates a much stronger T-dependence at high temperature. The phenomenological
disorder parameter v/ EF is taken to be 0 (clean system), 0.05, 0.1, and 0.5. We observe,
that with increasing disorder (for small ) the drag rate 7, ! increases in magnitude and
shifts towards the low temperature side. This effect is more visible in coupled quantum-
wire systems with larger radius. However, at the largest disorder parameter considered
(v/Er = 0.5) the drag rate is actually lower than that of a clean system (y = 0). This
may be due to the breakdown of weak-disorder approximation adopted in our formalism.
When the density of electrons in each wire is lowered, the correlations are expected to
become more effective. The drag rate 7, Lin the low-density case (rs = 1.5) is peaked
at a higher temperature with increasing magnitude. In contrast, small radius quantum
wires are better suited to observe this effect.

A
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Figure 1. The scaled drag rate 75'/7 within the RPA as a function of temperature for a
double quantum-wire system with R = a3, d = 3aj, at (a) rs = 1 and (b) rs = 1.5. The dotted,
dot-dashed, dashed, and solid lines are for v/FEr = 0, 0.05, 0.1, and 0.5, respectively.
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Figure 2. The scaled drag rate 7' /T within the RPA as a function of temperature for a double
quantum-wire system with R = 2aj, d = 6ap, at (a) rs = 1 and (b) rs = 1.5. The dotted,
dot-dashed, dashed, and solid lines are for v/FEr = 0, 0.05, 0.1, and 0.5, respectively.

To trace the origin of dependence on the disorder parameter v of the momentum
transfer rate we investigate the integrand of Eq. (1) in detail. After performing the
frequency integral, we end up with 7, Lo | dg ¢* F(q) which we plot in Fig. 3 as a function
of ¢q. Specializing to the coupled wire system with parameters R = o} and d = 3aj;, at
rs =1 and T = Ep, we observe that the peak position in the integrand is shifted towards
the long-wavelength side as v increases. However, the peak height of the integrand after
increasing for low disorder (v & 0.1 Er), starts to decease for greater disorder compared to
its value of the clean system. In Fig. 4 we show the frequency dependence of the response
function Im[x(q,w)]. Figure 4a shows Im[x(q,w)] for v =0, 0.1, and 0.5 Er, denoted by
the dotted, dashed and solid lines, respectively. The calculated behavior shows similar
trends as those treated by Das Sarma and Hwang [25]. In the same figure shown by
the thick lines are the dynamically screened response functions, i.e. Im[x(g,w)]/|e(g,w)|.
Again we observe a steady decrease as the disorder parameter =y increases. However, at
a smaller wave vector (¢ = 0.1kp) we find in Fig. 4b, a rather different behavior for the
screened quantity Im[x(q,w)]/|e(g,w)|. As the integral over ¢ and w is performed in the
calculation of 7, ! the observed nonmonotone behavior manifests itself.

We have based our systematic study of disorder scattering effects on the drag rate,
on the theoretical formalism developed by Swierkowski et al. [17]. In this approach
momentum-independent relaxation-time approximation is used to phenomenologically
broaden the response function x(¢,w). A number of theoretical calculations are devoted
to the low temperature behavior of drag rate for coupled quantum-wells in the presence
of disorder. By splitting the contributions of ballistic and diffusive regimes Zheng and
MacDonald [6] calculated the correction to the interlayer scattering rate due to disorder
enhanced interactions. Similar enhancement in the drag resistivity pp was also calculated
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by Kamenev and Oreg [9] who used diagrammatic perturbation theory methods. In a
recent paper, Shimshoni [16] considered the Coulomb drag between two parallel layers in
the Anderson insulating state, treating the Mott and Efros-Shklovskii types separately.
In his low-temperature analysis, Shimshoni [16] found that pp is suppressed for a Mott
insulator with decreasing localization length (i.e. increasing disorder). In all these at-
tempts the disorder has the effect of enhancing the drag rate 7, L of the resistivity pp
as a function of T'. In the Boltzmann equation theory based calculation of the drag rate
Flensberg and Hu [8] found that the charged impurities located a distance s away from
the quantum wells influenced 7, ! significantly for s < 400 A. Classical simulations to de-
termine the influence of ionized impurities on Coulomb drag has also been performed [27].
We also point out that disorder effects in Coulomb drag problems are gaining attention
recently in a variety of related contexts [28].
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Figure 3. The integrand of Eq. (1) after the w-integration is carried out. The system parameters
are R=ap,d=3ag,rs =1,and T = Er. The dotted, dashed, and solid lines are for v/FEr = 0,
0.1, and 0.5, respectively.

Our approach is different than considered by Shimshoni [16] in that we assume from
the outset that the electronic state of quantum wires are metallic. The phenomenological
disorder parameter has the effect of lowering the mean free path of electrons as the
magnitude of v increases. Thus, the density fluctuations described by Im[x(g,w)] in the
numerator of Eq. (1), and e(¢q,w) appearing in the denominator are nontrivially altered at
higher temperatures. Taking the mean-free path and localization length in a 1D system
to be the same, we estimate lkp = 2Ep/v ~ 4 for the largest value of the disorder
parameter used, which is close to the weak to strong localization crossover. Our results
indicate that coming from the metallic phase, the drag rate may potentially signal the
localization properties of coupled quantum-wire systems.
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Figure 4. The frequency dependence of the imaginary part of the response function for a
R = ap, d = 3a} double wire system at 7s = 1 and T = EFr. (a) Thin lines are for the non-
interacting system Im[g, w), whereas the thick lines denote Im[x(q, w)/|e(q,w)| at ¢ = 0.5 kr. (b)
Im[x(q,w)/|e(q,w)| for the same parameters at ¢ = 0.1kp.

As the electron density in each wire is lowered the exchange-correlation effects become
stronger. The RPA employed to screen the bare interwire interaction becomes inadequate.
In the detailed studies of drag resistivity and drag rate in double-layer systems it has
been found important to include correlation effects beyond those described by the RPA
to achieve agreement with experimental data at low densities [17, 29]. We incorporate
the correlation effects in an approximate way using local-field corrections within the self-
consistent STLS scheme [30]. In a recent calculation [19] of intra and interwire correlation
effects in double quantum wire systems, we have accounted for the disorder effects through
the use of Eq. (8). In this number-conserving approximation with v acting as a parameter
throughout the self-consistent evaluation of the correlation effects, we find that the local-
field factors are slightly modified. Figure 5 shows the intrawire (thick lines) and interwire
(thin lines) local-field corrections for two different coupled quantum wire systems. It is
found that the phenomenological disorder parameter v changes G;;(q) for ¢/kp 2 1. It
has the general effect of increasing the intrawire correlations and decreasing the interwire
correlations. Recently, Thakur and Neilson [26] have combined the STLS scheme and
mode-coupling theory to treat the disorder and correlation effects self-consistently. It
would be interesting to apply their method to a coupled quantum wire system to obtain
a more realistic assessment of the disorder effects in a strongly correlated system. In the
STLS scheme the bare Coulomb interactions are replaced by Vi;(q) — Vi;(¢)[1 — Gij(q)].
A calculation by Swierkowski et al. [17] shows that the G2 affects the transresistivity in
double-layer electron systems very little. However, the short-range intra-layer correlations
built in via the self-consistent scheme yield a substantial increase. Similar behavior in
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double-wire systems is also seen to hold. In Fig. 6, we show the drag rate with (thick lines)
and without (thin lines, RPA) the local-field corrections for rs = 1 (Fig.6a) and rs = 1.5
(Fig.6b). In general, the correlation effects increase the calculated drag rate. The peak
position in 7, ! /T due to plasmon enhancement also shows a slight shift, but we have
not systematically studied this effect. We note that the local-field corrections used in the
present calculation are temperature independent. Although it would be interesting to
develop more accurate temperature dependent local-field corrections [31], we conjecture
that their effect would be small in the temperature regime of interest. Finally, we mention
that Das Sarma and Hwang [25] have criticized the use of local-field factor, arguing that
the vanishing of vertex corrections to the polarizability renders the RPA exact in 1D
systems. It would be most useful to have experimental results on the strongly correlated
double quantum-wires to resolve some of these issues. Controlled experiments would also
be helpful in distinguishing the non-Fermi liquid (i.e. Luttinger liquid) manifestations
thought to occur in strongly coupled 1D systems [32].

L L L 08— T
I ] L (v) ]

0 1 2 3 4 o 1 2 3 4
q/kg q/kg

Figure 5. The intrawire (thick lines) and interwire (thin lines) local-field corrections in the
presence of disorder in a coupled quantum-wire system. The system parameters are (a) R = 2a}p,
d=6ap (b) R=3aj,d=9aj at rs = 1. The dotted, dashed and solid lines are for v/Er = 0,
0.1, and 0.5, respectively. The interwire local-field factors are multiplied by a factor 10 to enhance
visibility.

In summary, we have considered the Coulomb drag effect between two parallel quantum-
wires in the presence of disorder treated phenomenologically. The temperature depen-
dence of the drag rate is known to be significantly enhanced at high temperature when
a dynamically screened effective interlayer interaction is used [8]. This enhancement is
due to the collective density fluctuations (plasmons) in the double quantum-wire system.
We find that at small values of the disorder parameter, the drag rate is further increased.
At larger values of the disorder parameter, the density fluctuations are suppressed with
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a reduced localization length and the drag rate is reduced. Thus, the drag rate 7'51
exhibits a non-monotonous behavior with respect to the strength of disorder, and may
be used as a possible probe to understand the localization properties in Coulomb coupled
systems. Similar effects are also expected to take place in double-layer structures. So
far, the experiments [2-5, 11] measuring the Coulomb drag rate were carried out with
high-mobility samples. A systematic study with varying degrees of disorder, should in
principle be able to test some of our predictions.
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Figure 6. The scaled drag rate 7,,' /T with (thick lines) and without (thin lines, RPA) the local-
field corrections as a function of temperature for a double quantum-wire system with R = 2aJj,
d=6ap, at (a) rs =1 and (b) rs = 1.5. The dotted, dot-dashed, dashed, and solid lines are for
~v/Er =0, 0.05, 0.1, and 0.5, respectively.
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