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Abstract

We give a brief review of the problems connected with the model of spinning
particle based on the Kerr geometry. We consider peculiarities of the Kerr rotating
black hole solution in gravity, supergravity and low energy string theory. A non-
trivial supergeneralization of the Kerr-Newman solution to broken N=2 supergravity
is considered.

The problem of source of the Kerr geometry is discussed, and we consider some
arguments in favor of the supersymmetric Fermi-ball model for the Kerr source
based on the Witten U(1) × U(1̃) field model for superconducting strings.

1. Introduction

The Kerr solution is well known as a field of the rotating black hole. However, for the
case of a large angular momentum L; | a |= L/m ≥ m all the horizons of the Kerr metric
are absent, and the naked ring-like singularity is appeared. This naked singularity has
many unpleasant manifestations and must be hidden inside a rotating disk-like source.
The Kerr solution with | a |�m displays some remarkable features indicating a relation
to the structure of the spinning elementary particles.

In the 1969 Carter [1] observed, that if three parameters of the Kerr - Newman metric
are adopted to be (h̄=c=1 ) e2 ≈ 1/137, m ≈ 10−22, a ≈ 1022, ma = 1/2,
then one obtains a model for the four parameters of the electron: charge, mass, spin
and magnetic moment, and the giromagnetic ratio is automatically the same as that
of the Dirac electron. Keres [2], and then Israel [3] have introduced a disk-like source
for the Kerr field, and it was shown by Hamity [4] that this source represents a rigid
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relativistic rotator. A model of “microgeon” with Kerr metric was suggested [5] and
an analogy of this model with string models [6]. Then a model of the Kerr-Newman
source in the form of oblate spheroid was suggested [7]. It was shown that material of
the source must have very exotic properties: null energy density and negative pressure.
The electromagnetic properties of the material are close to those of a superconductor
[8,7,9], that allows to consider singular ring of the Kerr source as a closed vortex string
like the Nielsen-Olesen [10] and Witten [11] superconducting strings. Since 1992 black
holes have paid attention of string theory. In 1992 the Kerr solution was generalized by
Sen to a solution to low energy string theory [12]. It was shown that black holes can be
considered as fundamental string states, and the point of view has appeared that some
of black holes can be treated as elementary particles [13]. Here we consider the obtained
recently super-Kerr-Newman solution [14,15] representing a natural combination of the
Kerr spinning particle and superparticle models, and also consider briefly one new idea
concerning the possible structure of the disk-like “core” of the Kerr solution.

2. Main Peculiarities of the Kerr Solution

Kerr singular ring

The Kerr singular ring appears in the rotating BH solutions instead of the point-like
singularity of the non-rotating BH. The simplest solution possessing the Kerr singular
ring was obtained by Appel in 1887 (!) [16]. It can be considered as a Newton or a
Coulomb analogue to the Kerr solution.

On the real space-time the singular ring arises in the Coulomb solution f = e/r̃, where
r̃ =

√
(x− xo)2 + (y − yo)2 + (z − zo)2, when the point-like source is shifted to a complex

point of space (xo(t), yo(t), zo(t)) → (0, 0, ia). Radial distance r̃ is complex in this case
and can be expressed in the oblated spheroidal coordinates r and θ as r̃ = r + ia cos θ.
Singular ring corresponds to complex equation r̃ = 0 representing intersection of plane
and sphere in Cartesian coordinates. The Kerr singular ring is a branch line of the space
on two sheets: “positive” one, the real world covered by r ≥ 0, and “negative” one (
an anti-world) covered by r ≤ 0. The sheets are connected by disk r = 0 spanned by
singular ring. The physical fields change signs and directions on the “negative ”sheet.
To avoid this twosheetedness, one can truncate the negative sheet. In this case the fields
will acquire a shock crossing the disk, and some material sources (masse and charge)
have to be spread on the disk surface to satisfy the field equations. The structure of
electromagnetic field near the disk suggests then that the “negative” sheet of space can
be considered as an image of the real world in the rotating superconducting mirror.

Complex interpretation

Like the Appel solution, the source of Kerr-Newman solution can be considered from
complex point of view as a “particle” propagating along a complex world-line [17,18,20,21]
parametrized by complex time. The objects described by the complex world-lines occupy
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an intermediate position between particle and string. Like the string they form the two-
dimensional surfaces or the world-sheets in the space-time. It was shown that the complex
Kerr source may be considered as a complex hyperbolic string which requires an orbifold-
like structure of the world-sheet. It induces a related orbifold-like structure of the Kerr
geometry [17,18] which is closely connected with the above mentioned twosheetedness.

Principal null congruence (PNC)

Next remarkable peculiarity of the Kerr solution is the PNC which can be considered
as a vortex of null radiation. This vortex propagates via disk from negative sheet of space
onto positive one forming a caustic at singular ring. PNC plays a fundamental role in the
structure of the Kerr geometry. The Kerr metric can be represented in the Kerr-Schild
form

gµν = ηµν + 2he3
µe

3
ν , (1)

where η is metric of an auxiliary Minkowski space and h is a scalar function. Vector field
e3 is null, e3

µe
3µ = 0, and tangent to PNC of the Kerr geometry. The Kerr PNC has the

properties to be twisting, geodesic and shear free [19]. All the PNC with such properties
are described by the Kerr theorem via a complex function Y (x)

e3 = du+ Ȳ dζ + Y dζ̄ − Y Ȳ dv, (2)

where the null Cartesian coordinates are used

2
1
2 ζ = x+ iy, 2

1
2 ζ̄ = x− iy, 2

1
2u = z + t, 2

1
2 v = z − t. (3)

The Kerr theorem

The Kerr theorem [20,17,18,19] gives a general rule to construct the twisting, geodesic
and shear free congruences in twistor terms. PNC is determined by function Y (x) which
is a solution of the equation

F = 0,

where F (l1, l2, Y ) is an arbitrary analytic function of projective twistor coordinates

l1 = ζ − Y v, l2 = u+ Y ζ̄, Y. (4)

The singularities of the solutions are caustics of the congruence and they are defined by
the system of equations

F = 0, ∂Y F = 0. (5)

The Kerr PNC may be obtained from the complex source by a retarded-time construc-
tion. The rays of PNC are the tracks of null planes of the complex light cones emanated
from the complex world line [18,20,21]. The complex light cone with the vertex at some
point x0 of the complex world line xµ0 (τ )

(xµ − x0µ)(xµ − xµ0 ) = 0, (6)
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can be split into two families of null planes: “left” planes

xL = x0(τ ) + αe1 + βe3, (7)

spanned by null vectors e1 and e3, and“right”planes

xR = x0(τ ) + αe2 + βe3 , (8)

spanned by null vectors e2 and e3. 1 The Kerr PNC arises as the real slice of the family of
the “left” null planes of the complex light cones which vertices lie on the straight complex
world line x0(τ ).

Stringy Suggestions

In 1974, the model of microgeon with the Kerr-Newman metric was considered [5],
where singular ring was used as a waveguide for wave excitations. It was recognized soon
[6] that singular ring represents in fact a string with traveling waves. Further, in dilaton
gravity, the string solutions with traveling waves have paid considerable attention [22].

In 1992 Sen generalized the Kerr solution to low energy string theory with axion and
dilaton [12]. This solution was analyzed in [23]. It was shown that in spite of the strong
deformation of metric by dilaton (leading to a change the type of metric from type D
to type I) the Kerr PN congruence survives in the Kerr-Sen solution and retains the
properties to be geodesic and shear free. It means that the Kerr theorem and the above
complex representation are valid for the Kerr-Sen solution too. It has also been obtained
that the field of the Kerr-Sen solution near the Kerr singular ring is similar to the field
around the fundamental heterotic string that suggested stringy interpretation of the Kerr
singular ring.

3. Non-trivial Super-Kerr-Newman Solution

Description of spinning particle based only on the bosonic fields cannot be complete,
and involving fermionic degrees of freedom is required. The most natural way to involve
fermions is to treat corresponding super black holes in supergravity. On the other hand
the models of spinning particles and superparticles based on Grassmann coordinates
have paid great attention. A natural way to combine the Kerr spinning particle and
superparticle, leading to a non-trivial supergeneralization of the Kerr-Newman solution
to N=2 supergravity broken by Goldstone fermion, was suggested in [14,15].

Problem of Triviality for Super-Black-Hole Solutions

Consistent supergravity [24] represents an unification of the gravitational field gik =
eai e

a
k, with a spin 3/2 Rarita-Schwinger field ψi . The combined Lagrangian has the form

Lsg = −eR/2k2 − i

2
εijklψ̄iγ5γjDkψl, (9)

1The null tetrad vector e1 = dζ − Y dv, and e2 = dζ̄ − Ȳ dv.
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where e = det eia; Di = ∂i + nonlin.terms. Corresponding action I =
∫
Lsgd4x is

invariant under the local supersymmetry transformations, and all the supergauge-related
solutions are physically equivalent. It leads to the problem of obtaining non-trivial su-
pergravity solutions [25]. Any exact solution of the Einstein gravity is indeed a trivial
solution of supergravity field equations with a zero field ψi Ṡtarting from an exact solution
of Einstein gravity, and using the supergauge freedom one can easily turn the gravity so-
lution into a form containing spin-3/2 field ψi satisfying the supergravity field equations.
However, since this spin-3/2 field can be gauged away by the reverse transformation,
such supersolutions have to be considered as trivial. It was shown [14] that non-trivial
super-Kerr geometry can be obtained by a trivial supershift of the Kerr solution taking
into account some non-linear body-slice (B-slice) constraints selecting the “body-part” of
the bosonic space-time coordinates xi similarly to real slice of the complex Kerr geometry
discussed above.

Hints from the complex structure of the Kerr geometry

The considered above complex representation of the Kerr geometry shows that from
complex point of view the Schwarzschild and Kerr geometries are equivalent and con-
nected by a trivial complex shift.

The non-trivial twisting structure of the Kerr geometry arises as a result of the shifted
real slice of the complex retarded-time construction [17,20]. If the real slice is passing via
‘center’ of the solution x0 there appears a usual spherical symmetry of the Schwarzschild
geometry. The specific twisting structure results from the complex shift of the real slice
regarding the source.

Similarly, it is possible to turn a trivial super black hole solution into a non-trivial if
one finds an analogue to the real slice in superspace.

The trivial supershift can be represented as a replacement of the complex world line
by a superworldline

Xi
0(τ ) = xi0(τ ) − iθσi ζ̄ + iζσi θ̄, (10)

parametrized by Grassmann coordinates ζ, ζ̄, or as a corresponding coordinate replace-
ment in the Kerr solution

x′i = xi + iθσi ζ̄ − iζσiθ̄; θ′ = θ + ζ, θ̄′ = θ̄ + ζ̄, (11)

Assuming that coordinates xi before the supershift are the usual c-number coordinates
one sees that coordinates acquire nilpotent Grassmann contributions after supertransla-
tions. Therefore, there appears a natural splitting of the space-time coordinates on the
c-number ‘body’-part and a nilpotent part - the so called ‘soul’. The ‘body’ subspace of
superspace, or B-slice, is a submanifold where the nilpotent part is equal to zero, and it
is a natural analogue to the real slice in complex case.

Superlightcone Constraints, and Supergravity Broken by Goldstone Fermion

Reproducing the real slice procedure of the Kerr geometry in superspace one has to
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consider superlightcone constraints 2

s2 = [xi −X0i(τ )][xi −Xi
0(τ )] = 0, (12)

and B-slice, where coordinates xi do not contain nilpotent contributions. Selecting the
body and nilpotent parts of this equation we obtain three equations. The first one is the
discussed above real slice condition of the complex Kerr geometry claiming that complex
light cones can reach the real slice.

The nilpotent part of (12) yields two B-slice conditions

[xi − xi0(τ )](θσiζ̄ − ζσiθ̄) = 0; (13)

(θσζ̄ − ζσθ̄)2 = 0. (14)

These equations can be resolved by representing the complex light cone equation via
the commuting two-component spinors Ψ and Ψ̃

xi = x0i + ΨσiΨ̃. (15)

“Right” (or “left”) null planes of the complex light cone can be obtained keeping Ψ
constant and varying Ψ̃ (or keeping Ψ̃ constant and varying Ψ.) As a result we obtain
the equation

Ψ̄θ̄ = 0, Ψ̄ζ̄ = 0, (16)

which in turn is a condition of proportionality of the commuting spinors Ψ̄(x) determin-
ing the PNC of the Kerr geometry and anticommuting spinors θ̄ and ζ̄, this condition
providing the left null superplanes of the supercones to reach B-slice.

Finally, by introducing the Kerr projective spinor coordinate Y (x) we have Ψ̄2̇ =
Y (x), Ψ̄1̇ = 1, and we obtain 3

θ̄α̇ =

(
θ̄1̇

Y (x)θ̄1̇

)
, (17)

ζ̄α̇ =

(
ζ̄ 1̇

Y (x)ζ̄ 1̇

)
. (18)

It also leads to θ̄θ̄ = ζ̄ ζ̄ = 0, and equation (14) is satisfied automatically.
Thus, as a consequence of the B-slice and superlightcone constraints we obtain a non-

linear submanifold of superspace θ = θ(x), θ̄ = θ̄(x). The original four-dimensional
supersymmetry is broken, and the initial supergauge freedom which allowed to turn the
super geometry into trivial one is lost. Nevertheless, there is a residual supersymmetry
based on free Grassmann parameters θ1, θ̄1.

2These constraints are similar to the complex light cone constraints of the standard Kerr geometry
and demand existence of the body-slice for the superlightcones placed at the points of the superworldline.

3Vector e3 can be expressed now via Ψ as e3i (x) = ΨσiΨ̄/(Ψ
1Ψ̄1̇).
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The above B-slice constraints yield in fact the non-linear realization of broken super-
symmetry introduced by Volkov and Akulov [26,27] and considered in N=1 supergravity
by Deser and Zumino [28]. It is assumed that this construction is similar to the Higgs
mechanism of the usual gauge theories and ζα(x), ζ̄α̇(x) represent Goldstone fermion
which can be eaten by appropriate local supertransformation ε(x) with a corresponding
redefinition of the tetrad and spin-3/2 field. It means that starting from the gravity
solution with zero spin-3/2 field and some Goldstone fermion field λ one can obtain
in such a way a non-trivial supergravity solution with non-linear realization of broken
supersymmetry.

There are two obstacles for indirect application of this scheme to the Kerr-Newman
case. First one is the electromagnetic charge which demands to change the expression
for supercovariant derivative that leads to non-Majorana values for spin-3/2 field. The
second one is the complex character of supertranslations in the Kerr case that also yields
the non-Majorana supershifts. Thus, this scheme has to be extended to N=2 supergravity.

4. Self-Consistent Super-Kerr-Newman Solutions to Broken N=2 Super-
gravity

The generalized to broken N=2 supergravity Deser-Zumino Lagrangian [28] takes the
form

L = −(i/2)[λ̄γD̃λ − ¯̃Dλ̄γλ]− (i/2b)[λ̄γiχi − χ̄iγiλ] + L2−sg, (19)

where the N=2 supergravity Lagrangian

L2−sg = −eR/2k2 − 1/4FijF ij − iεijklχ̄iγ5γjD̃kχl (20)

was given by Ferrara and Nieuwenhuizen [29]. The spin-3/2 field χi is a complex
combination of two Majorana fields χi = ψ1

i + iψ2
i . It follows from (19) that the self-

consistent solutions to broken N=2 supergravity has to take into account the energy-
momentum tensor of the Grassmann fields. In particular, when considering the initiate
trivial solutions in the super-gauge with zero Rarita–Schwinger field, one can use this
Lagrangian with χ = 0 that yields the Einstein–Maxwell–Dirac system of equations. We
note that the energy-momentum tensor of the Goldstone field λ acts here as fermionic
matter. However, when using the exact Kerr-Newman solution as trivial one to perform
the super-gauge with absorption of the Goldstone fermion, we do not take into account
the energy-momentum tensor of the Goldstone field. Therefore, in general case, the
obtained by a supershift super-geometries cannot be treated as self-consistent. However,
one exclusive case can be selected when the self-consistency is guaranteed. It takes place
for the ghost Goldstone field possessing the zero energy-momentum tensor.

In this case, starting from the Lagrangian with χ = 0, we have in fact the Einstein-
Maxwell system of equation leading to the exact Kerr-Newman solution and the Dirac
equation ( on the Kerr-Newman background ) for the Goldstone fermion λ.

This solution can be considered as an exact super-solution to N=2 supergravity cou-
pled to Goldstone field. Then, absorption of the Goldstone field by the complex Rarita-
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Schwinger field χ turns this solution into self-consistent solution with broken N=2 super-
symmetry.

In the aligned to e3 case

λ =


0
B
C
0

 . (21)

The solution of the massless Dirac equation on the Kerr-Newman background gives for
the functions B and C following expressions

B = Z̄fB(Ȳ , τ̄)/P, C = ZfC (Y, τ)/P, (22)

where fB and fC are arbitrary analytic functions of the complex angular variable

Y = eiφ tan(θ/2), (23)

and the retarded-time
τ = t − r − ia cos θ (24)

satisfies the relations τ,2 = τ,4 = 0, and Y,2 = Y,4 = 0.
Details of this treatment can be found in [15].

Peculiarities of the Super-Kerr-Newman Solution.

Performing calculations one sees that the energy-momentum tensor of the Goldstone
field λ with C = B̄ cancels, Tik = 0, and the field takes the ghost character. The torsion
and Grassmann contributions to tetrad cancel, and metric takes the exact Kerr-Newman
form.

The main features of the resulting super-Kerr-Newman solutions are the extra wave
fields on the bosonic Kerr-Newman background: the complex Rarita-Schwinger field χi
and a nilpotent contributions to electromagnetic field.

The expressions for B and C are singular on the Kerr singular ring, Z−1 ≡ P−1(r +
ia cos θ) = 0, and contain traveling waves if there is an oscillating dependence on complex
time parameter τ . Indeed, near the Kerr singular ring tan θ ' 1, and angular dependence
of these solutions on φ is determined by the degree of function Y = eiφ tan(θ/2). One
sees that any non-trivial analytic dependence on Y will lead to a singularity in θ. Thus,
besides the Kerr singular ring the solutions contain an extra axial singularity which is
coupled topologically with singular ring threading it. One should also note that this ‘axial’
singularity in some solutions can change the position in time scanning the space-time.

Elementary fermionic wave excitations have the form

C = B̄ = (Z/P )Y neiωτ =
1

r + ia cos θ
einφ tann(θ/2). (25)

The first factor contains the singular branch line corresponding to the known twofold-
edness of the Kerr geometry. Because of that parameter n can take both integer and
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half-integer values. Electromagnetic field contains the term representing the null electro-
magnetic field propagating along PNC. Near the Kerr singular ring PNC is tangent to
ring leading to traveling waves propagating along the ring.

The ‘axial’ singularity coincides with z-axis and can be placed either at θ = 0 (Y = 0)
or at θ = π (Y = ∞). It is a half-infinite line threading the Kerr singular ring and
passing to ‘negative’ sheet of the Kerr geometry. Its position and character depend on
the values of n. By introducing the distance from ‘axial’ singularity ρ =

√
x2 + y2 , one

can describe its behavior in the asymptotic region of large r by the following expressions:
- if θ ' 0 then

δgA ∼ ρ2nr−3−2n(dx+ idy),

δFA ∼ ρ2nr−4−2n(dz + dt),

- if θ ' π then
δgA ∼ ρ−2n−2r2n−1(dx− idy),

δFA ∼ ρ−2n−2r2n−2(dz − dt).

One sees that this singularity can be increasing or decreasing function of distance r. For
some n (for example n=1/2,-3/2) dependence on r can disappear. The solutions with
‘increasing’ and ‘even’ singularities cannot be stable. In the cases n = 0 and n = −1
singularity represents a ‘decreasing’ half-infinite line like the string of the Dirac monopole.
The case n = −1/2 is exclusive: there are two ‘decreasing’ singularities which are situated
symmetrically at θ = 0 and θ = π. The space part of the null vector e3 is tangent to
axial singularity, and electromagnetic field grows near this singularity and contains in
asymptotic region the leading term in the form of the null traveling wave

F ' −(s̄s23/2/k)[C2r̃−1ωe1 ∧ e3 + c.c.term]. (26)

5. Problem of the Kerr Source, and Fermi Ball Models

The above consideration of super-Kerr-Newman solution is based on the massless fields
providing description of the rotating super-black-hole with a source hidden behind hori-
zon.

However, for the known parameters of spinning particles, the value of angular mo-
mentum is very high, regarding the mass parameter. In this case the black hole horizons
disappear, and the Kerr singular ring is naked. Besides there appears a narrow region of
causality violation near the Kerr singular ring. This region has to be covered by a matter
source. The massless fields of the above super-black-hole solution have to get a mass in
this region of matter source. Structure of the Kerr source represents an old problem, and
few distinct models of this source were suggested.

Kerr Ring Model.

The line source generated by the Kerr singular ring was considered by Israel [30],
and also was suggested by microgeon model [5] and by stringy interpretation of the Kerr
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singular ring [6], in particular, by low energy string theory [23]. This source represents an
‘Alice’ string [11,31] which is a branch line of space leading to the topological twosheet-
edness of the Kerr space.

Thin Shell Model.

The Kerr twosheetedness can be removed by a truncation the negative sheet. As
a result there appears a source distribution on the surface of truncation. Truncation at
r = 0 (ellipsoidal coordinate) gives the model of the rotating infinitely thin disk considered
by Israel [3] as a model of electron. The model of source was then specified by Hamity
[4] who obtained the exotic structure of matter of the source and pointed out that the
Kerr disk represents a rigid and relativistic rotator. In the development of model given
by López [7], negative sheet is truncated at the coordinate surface r = re = e2

2m . As
a result the region of causality violation is covered by source in the form of the highly
oblated elliptic shell. It has the Compton radius a = 1

2m
and thickness of the classical

Dirac electron. The resulting oblateness of the disk is a/re ≈ 137. For small angular
momentum the source takes the spherical form of the Dirac electron model. The fields
out of the shell have the exact Kerr-Newman form. Interior of the shell is flat. The
shell is in rigid relativistic rotation, charged and built of a superconducting matter with
negative pressure and zero energy density in corotating frame.

Solid Disk Model

Attempt to find a physical reason for origin of the exotic matter of the Kerr source
have led to the model of solid disk built of a superdense matter confined by the vacuum
Casimir energy [9]. Negative contribution of the Casimir energy is diverging, however, for
superdense and superconducting matter it can be regularized by a cutoff parameter which
is determined by interparticle distances of constituents. It was shown that for the limiting
ultrahigh densities of matter, when the interparticle distances tend to their Compton
sizes, the negative Casimir contribution to energy is extremely strong and achieves the
energy density of matter. As a result, the superdense matter turns into a pseudovacuum
state with zero energy density. Constituents became massless in superdense region that
provides confinement. The unique predicted difference of this pseudovacuum state from
the true vacuum is its impenetrability for electromagnetic field. It was proposed that the
Kerr source represents a rotating bag filled by a matter in such pseudovacuum state.

Fermi ball Model

The above models look incompatible. We will consider briefly here one new proposal
concerning the structure of the Kerr source which, probably, will allows one to remove in-
compatibility of these models. The new approach is based on a similarity of the structure
of the Kerr source with the structure of cosmological Fermi-ball models.

Fermi ball model [32,33] represents a bag of false vacuum that is inhabited by Fermi
gas. Bag is restricted by tiny wall trapping fermions which became massless near the
wall. One can see that the shell and disk-like bag models of the Kerr source can be
combined forming the Fermi ball model. Unfortunately, analytic solutions for the fermi
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balls exist only for the simplest field models [32,33] and in the case of the simplest
geometry corresponding to the flat wall surface. However, like the diverse field models
for superconducting strings [10,11], the Fermi ball models can also be considered on the
base of diverse field models. Taking into account superconducting character of the Kerr
source, one sees that many of the field models used for the modelling superconducting
strings can be also used for modelling the Fermi balls. Supersymmetric generalizations of
these models [33,34] have a special interest since they allow one to get the supersymmetric
vacuum providing the flat asymptotical solutions in supergravity. Because of the necessity
to have the long range electromagnetic field in the region out of the Kerr source, the flavor
has to be given to a super-version of the Witten U(1) × U(1̃) field model. Besides the
unification of the bag and shell models, the Fermi ball models give some suggestions in
the flavor of the existence of a central singularity inside the ball allowing one to involve in
the model also the stringy source. In the simplest field models with a flat wall surface the
vacuum states are homogenous at the distance from wall. However, if the wall surface is
not flat, there appears an instability of the vacuum regarding the appearance of singularity
inside the ball.

In the case of the Kerr geometry, it shall lead to the appearance of the Kerr singularity
inside the bag that is compatible with the above stringy model of the Kerr source. Because
of the high oblateness of the Kerr disk ∼ α−1 ≈ 137, the Kerr singularity will be placed
very close to the shell, at the distance α2a ≈ 10−4a. It can be a trapping zone of the
wall where the fermions are massless. Therefore, fermions will be trapped by the Kerr
singular ring reproducing the superconducting string effect described by Witten [11].

We propose that fermi ball model of the Kerr source shall allow one to unite the bag,
shell and string models. Experience of the string-like solutions does not give a hope on
analytic solution of this problem even for the simplest case of spherical bag. At first stage,
a detailed analysis of the different field models and models of broken gauge symmetry and
supersymmetry will be necessary with the attempt to get a spherical Fermi ball model
with appropriate properties of the vacuum and matter fields inside and out of bag.
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