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Abstract

Using the ground state candidates for Hydrophobic-Polar lattice model on a two
dimensional square lattice, we exactly enumerate the native states of proteins with
length up to 20 for a wide range of energy parameters. We find the reduced set of
contact maps, ground state candidates, perfectly stable sequences and designability
of configurations.

1. Introduction

The proteins are bio-macromolecules, which are made from thousands of atoms. These
atoms are in interaction with each other and water molecules, which surround them.
A feasible approach to the problem of protien folding is based on a coarse-grained view.
From this viewpoint the proteins are made from 20 types of monomers (amino acids). The
most important point in this approach is the determination of the effective interactions
between the amino acids [1].

The structural information for protein structures can be coded in a contact map [2].
A contact map is a binary L×L matrix C. The element cij of this matrix is nonzero if ith
and jth monomers are in contact. Because of the short-range nature of inter-monomer
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interactions, one can determine the configuration energy in terms of contacts. There are
many papers, which study the thermodynamical and structural properties of proteins, by
using contact maps [3].

It is well known that the biological functionality of proteins depends on the shape of
their native states. The native structure is the unique minimum free energy structure for
the protein sequence [4]. Thus searching the configuration space to find native states has
been the subject of many papers. In most of previous works, the problem was studied for
given values of inter-monomer energy parameters. As our knowledge about the effective
interactions is not certain, and the native structures of proteins may be sensitive to these
parameters [5], looking at the native states for different energy parameters is relevant
[6, 7]. Recently, we have shown that the number of ground state candidates for any
sequence is unexpectedly small [8]. This suggests that the problem can be studied for a
wide range of interaction parameters by exact enumeration. We study this problem on a
two dimensional square lattice. In this approach a protein structure is modeled by a self
avoiding walk on the lattice, and, any pair of monomers which are nearest neighbors and
are not adjacent according to sequence (non-sequential neighbor) are in contact.

The number of possible configurations for an L-mer is equal to the number of self-
avoiding walks (NSAW) with L − 1 steps. Since many of these walks give the same
contact matrix, the number of possible contact matrices (physical maps) Nc, is much
smaller, although it is still very large [9]. If one is interested only in the native structure
of proteins, the set of the contact maps can be reduced further, by removing all maps,
which have no chance to be a native state. We call the remaining maps, the reduced
set of contact maps [10]. This reduced set of contact maps can be used in enumeration
studies to find the possible ground states and the native states of proteins. In this paper
we want to focuse on some important and interested properties of reduced set of contact
maps and the ground state candidates.

2. The reduced contact maps

The effective potential energies between the 20 types of amino acids can be described by
a 20× 20 interaction matrix [1]. The energy of a given sequence σin any structure can
be determined from

E =
∑
i,j

cijmσiσj . (1)

The cij and mij are respectively the elements of the contact matrix (C) and the interac-
tion matrix (M). This shows that, all configurations, which have the same contact map,
have equal energies. If we look at the energy spectrum of one sequence, the states corre-
sponding to such maps are degenerate. We call such degeneracies, type-one degeneracies
to distinguish them from other kinds of degeneracies [10]. If the energy of a sequence
is minimum in such states, this sequence does not have a unique native state. Such se-
quences are not protein-like. The states corresponding to such degenerate contact maps
can never be a native state, however, we cannot exclude them from our search, because
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they compete with other maps. On the other hand, there are some maps, which cannot
be the ground state, and do not have a role in the competition for the ground state. To
see that, consider two contact matrices C1 and C2 and their subtraction (C ′ = C1−C2).
We call C2, a component of C1 if all elements of C ′ are non-negative (c′ij = 0 or 1). Note
that C ′ has at least one non-zero element. Using equation 1, the energy of an arbitrary
sequence σin the configuration(s) corresponding to the map C1 can be written as:

E1 =
∑
i,j

c1,ijmσiσj

=
∑
i,j

c2,ijmσiσj +
∑
i,j

c′ijmσiσj

= E2 +
∑
i,j

c′ijmσiσj . (2)

According to experimental data all elements of interaction matrix M are negative [1].
Thus the second term in the rhs gives a negative contribution to energy, and, E1 < E2,
for any sequence. Then map C2 can never be a ground state. One can find all component
maps such as C2, and remove them from the set of contact maps. Indeed such component
maps are related to configurations, which can fold to more compact shapes without losing
any of their old contacts. By this procedure the reduced set of contact maps is found
[10]. In figure 1 the number of reduced maps (Nr) are compared with the number of
self-avoiding walks (Nsaw) and the number of physical maps (Nc), on a two dimensional
square lattice for sequences with length up to 20. Although, all of these quantities have
similar behaviors, the growth rate of Nr is very slower than the others.

Let’s consider the ratio of the number of contacts, b = 1
2

∑
i,j ci,j, to the maximum

number of possible contacts for sequences of the same length, bMax, as a measure for the
compactness of configurations Γ,

Γ =
b

bMax
. (3)

If one scales the number of reduced maps (Nr) by the number of total structures
(NSAW) at each compactness, a scale-independent behavior can be seen (figure 2). It also
seems that there is a critical compactness, below which the compactness of the members
of reduced set never drops. This shows why the results of studies on compact structure
spaces are reasonable. We do not have an exact analytical proof, but it seems from these
data that a transition occurs in the number of reduced maps, near the compactness of
0.8 and it vanishes for a compactness below 0.5.
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Figure 1. The number of self avoiding walk structures, physical contact maps, reduced set of
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3. The ground state candidates for HP model

The native states of proteins are to be found among the structures corresponding to the
reduced set of contact maps. The sequence of the amino acids along the protein chain
and their interactions have an essential role in the selection of a particular structure as
the native state. In the coarse-grained viewpoint, the the interaction between the amino
acids is characterized by the effective energies. These effective interactions depend on the
properties of the solutions. A relevant question is how sensitive the native structures are
to changes in these interactions. We address this question by enumerating the possible
ground states of protein sequences for a wide range of effective inter-monomer interaction
energies.

Without any loss of generality, we use a hydrophobic-polar (HP) two-dimensional
lattice model [11] in this paper. The general form of the interactions between H and P
monomers in an HP model can be written as follows [8, 10]:

EHH = −2− γ −Ec,
EHP = −1− Ec,
EPP = −Ec, (4)

where Eσσ′ is the contact energy between monomers of types σ and σ′. These poten-
tial energies are only between non-sequential nearest neighbors. Here γ and Ec are the
mixing and compactness potentials respectively, two parameters which are determined
from experimental data. There are many publications based on this model, and in most
of them the values of γ and Ec are fixed [11, 12]. Here, we consider them as two free
parameters and discuss our results in terms of them.

It has been argued that the following relations should hold between inter-monomer
energies:

EHH < EHP < EPP ,

EHH + EPP < 2EHP . (5)

These arguments are based on the compactness of the native states [13] and some calcu-
lations on 20× 20 inter-monomer interaction matrix M [14]. These restrict γ and Ec to
positive values (γ, Ec > 0).

At first sight, it might seem possible to arrive at any native state for a given sequence
by changing γ and Ec. But when we consider the geometrical properties of the ground
state, we will find that these parameters are not powerful enough to select any configu-
ration as the native state. In other words, the native states are stable against the change
of interaction parameters.

If we consider H = −1 for hydrophobic monomers and P = 0 for polar monomers, a
given sequence can then be represented by a binary vector (σ) [6]. The energy of this
sequence in a configuration characterized by a contact matrix C, can be written as:

E = −m− aγ − bEc, (6)
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where m, a and b are three integers, related to σand C as follows:

m = −σt · C · 1,

a =
1
2
σt · C ·σ,

b =
1
2
1t · C · 1. (7)

It can be seen that m is equal to the number of all non-sequential neighbors of H
monomers in the configuration, a is the number of H − H contacts and b is the num-
ber of all contacts. It can be shown that the following inequalities hold between these
parameters [16].

m− b ≤ a ≤ m

2
≤ b. (8)

Equation 6 suggests that the energy levels of a given sequence can be described by
three integer numbers (m, a, b). It is highly probable that these states are degenerate.
There are three types of degeneracy:

• Type 1: C = C ′

In which case two or more configurations with different shapes have the same contact
matrix. These configurations will remain degenerate for any sequence, and any
choice of γ and Ec. These are the configurations corresponding to the degenerate
maps already mentioned in section 2. This type of degeneracy, is more probable for
configurations with low compactness (see figure 2). Note that we are not talking
about the configurations which are related to each other by spatial symmetries, i.e.
rotation, reflection, etc., for our purpose such configurations are identical.

• Type 2: (m, a, b) = (m′, a′, b′) but C 6= C ′

In this case one particular sequence has the same m, a and b values in two or
more configurations. This degeneracy persists for any value of γ and Ec, but may
disappear for another sequence. Although, this degeneracy depends on sequence
coding, the b = b′ condition is purely geometrical, and is a necessary condition for
this degeneracy.

• Type 3: E = E′, but (m, a, b) 6= (m′, a′, b′)
One sequence has the same energy in two different states (m, a, b) and (m′, a′, b′),
provided that γ and Ec obey the following relation:

(m−m′) + (a − a′)γ + (b − b′)Ec = 0. (9)

This degeneracy is related to both sequence coding σand inter-monomer interac-
tions.

The first type of these degeneracies is completely geometric. The second one depends
on both geometry and the amino acids’ coding sequence. These two types do not depend
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on the values of the interaction energies. Thus, in the energy spectrum of any sequence
there are some states, which are degenerate independently from the potential. If the
ground state of a particular sequence is one of these degenerate states, that sequence
does not have a unique native structure.

The third type is not actually a degeneracy at all. Equation 9 corresponds to a line in
the parameter space of Ec and γ. This line is a level crossing line. Degeneracy actually
occurs only on the line, and a highly accurate fine-tuning is needed to reach a point on
this line. For the two sets of interaction energy parameters on the two sides of this line,
the energy ordering of the states is different. For any pair of states such an ordering
line exists. By drawing all ordering lines in the space of Ec and γ, this space is divided
into many ordering zones. We are only interested in the ground state, which means that
many of these ordering lines are not relevant. Some of them only govern the ordering of
the excited states. By removing the irrelevant lines, one gets a diagram which shows the
ground state cells (Fig. 3). As mentioned before changing the inter-monomer interaction
parameters inside any of these cells does not change the ground state. By looking at
the whole energy space, one can find all possible ground states and their corresponding
cells. Any such cell in the space of energy parameters is associated with one ground
state candidate. The number of cells is equal to the number of ground state candidates
(Gc(σ)). By drawing such diagrams, one can easily find the ground state for any choice
of Ec and γ. Fig. 3 shows this diagram for a 20-mer. In this example there are only
six possible ground states. The cells marked with the numbers “1” and “2” correspond
to type-1 and type-2 degenerate states respectively, therefore there is no unique native
structure for these cells. The sequence in this example has 3 non-degenerate states. These
structures are shown in the figure. It is possible that all the ground state candidates of
a given sequence are degenerate. These sequences constitute universally bad sequences
i.e. for any set of interaction parameter values they do not have a native structure.
Any sequence which is not a bad sequence, we call a good sequence. Nearly 54% of the
sequences of length 20 are good sequences, i.e. for some specific set of energy parameters
they have a native state.

The interesting point in figure 3 is that the number of ground state candidates is
very small. The largest value of Gc, for sequences with length 6, 8, 10, 12, 14, 16, 18, 20
are 1, 1, 1, 3, 4, 5, 6, 7 respectively. Fig. 4 shows the histogram of Gc(σ) for all sequences
with L = 20. The light gray area in this figure shows the result for all 220 sequences, and
the dark area shows the results for good ones. From this diagram it can be seen that the
mean value of Gc(σ) is very small. The average of Gc(σ) for various lengths is shown in
figure 5. However, the data in hand is not enough to draw a reliable conclusion about the
number of ground state candidates for sequences of large length, but the average number
does not seem to grow very rapidly, and the growth rate appears to be linear. Comparison
of the average value of Gc(σ) for these sequences with the number of all configurations
(i.e. for sequences with length 20 the number of sequences is on the order of 108), shows
that the geometric constraints play an important role in selecting a state as the ground
state. The reason that there are few ground state candidates for any sequence can be
given by a geometrical argument. Consider a three dimensional space with axes X, Y
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and Z. Any state is represented by a point with coordinates a, b and m in this space
(Fig. 6). All the states will be inside a pyramid according to equation 8. For any value
of γ and Ec, let’s consider the following plane perpendicular to the vector (γ, Ec, 1):

z = −γx −Ecy + (z0 + γx0 + Ecy0). (10)
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Figure 3. The space of energy parameters for sequence HPPPHPHPHPPHPHPHPHHP

is divided to six cells. The integer numbers (m,a, b), inside any cell indicate the ground state

corresponding to the cells. Three of these states are degenerate. The types of degeneracies for

degenerate states and shape of structures for non-degenerates are indicated in the cells.

If this plane contains the point (x0, y0, z0) = (a, b,m), the z value on the Z axis will
be equal to −E. Thus, to find the ground state it is enough to move this plane from
above until it touches a state. This state is the ground state. When the plane is moving
down, the first contact is occurred in one of the corners of the convex hull of the set of
points (i.e. the polyhedral envelope of the states, see Fig. 6). It is possible that for
special values of energy parameters in the first contact, the surface matches to one of the
edges or planes of polyhedron. In these cases, the energy parameters are exactly in level
crossing lines, which are introduced by eq. (9). Thus the possible ground states are in
the corners of the convex hull. If γ and Ec can become negative, all the corner points
which can be seen from the top view of this polyhedron, are ground state candidates, but
clearly that for positive values of γ and Ec the number of possible ground states is even
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smaller. The cross section of the pyramid with a horizontal plane is a rectangle. For
positive values of Ec and γ there is an upper limit for possible ground sates. It is equal
to the number of possible states in the biggest horizontal rectangular cross section of the
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pyramid. The maximum number of contacts is of the order of the length of the sequence,
i.e. bMax ∼ L. Thus this upper limit grows as L2. This shows that the number of
ground state candidates grows much more slowly than the number of configurations. For
example, for 18-mers bMax = 10, the biggest cross section is a 6 × 6 rectangle. It thus
gives 36 as the maximum number of ground state candidates.

Z

X

Y

Figure 6. State space of the particular sequence which is shown in figure 1. All states are

inside a diamond like polygon inside a pyramid. Top viewed corner points of this polygon are

the ground state candidates.
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As figure 4 shows, there are some good sequences with Gc = 1. This means that
for any set of energy parameter values, they have the same unique ground state. Indeed
the native states of these sequences have perfect stability with respect to a change of
the energy parameters. Our enumeration shows that these absolute native structures are
to be found among the most compact structures. Although the ratio of the number of
perfectly stable sequences to the number of all possible proteins decreases with increasing
L, their actual number increases [10]. This suggests that for the proteins with typical
lengths near that of natural proteins, perfectly stable sequences constitute a small but
non-zero fraction of all possible sequences.

The existence of these sequences may answer some questions about protein folding.
Their number is small compared with the huge number of the possible amino-acids se-
quences, their native states are highly compact and are stable against the changes in the
inter-monomer interactions (i.e the properties of the solution).

4. Native structures

In section II we introduced the reduced set of contact maps. As it was shown the number
of maps belonging to this set Nr , is very smaller than number of structures NSAW. But
the number of those structures which can be the native state, is still much less. The
number of possible native structures, Nnative, is shown in figure 1. In this figure all those
structures which have been the native state of some sequence for at least one set of energy
parameter values, have been counted.

We can introduce a designability parameter D for these native states. However our
definition is a bit different from the commonly used definition [15]. According to the
common definition, designability shows how many times a structure is selected as the
native state for a fixed set of interaction parameters. In our case we count how many
times a structure becomes the candidate for a non-degenerate ground state.

Figure 7 shows the histogram of designability for structures with length 20. As one can
see the results are very similar to those for a fixed set of energy parameters in the space
of compact structures [6, 15]. The average designability as a function of compactness for
L = 20 is shown in figure 8. As the diagram shows the peak average designability occurs
for the most compact structures and it falls sharply with decreasing compactness. Thus if
one is only interested in highly designable structures, it is reasonable to search the space
of compact structures.

A very interesting result in designability of structures is that, Altough by looking at
the histogram of designability one can see that the designability of structures depends
on the interaction parameters (Fig. 9), but the highly disignable structures are fixed and
don’t change by changing the interacrtion parameters.
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Figure 9. The Histogram of designability for two different sets of energy parameters; a) γ = 0.3

and Ec = 1.5, b) γ = 0.3 and Ec = 20.

5. The space of Energy parameters, Ec and γ

One of the important aspects of the work done in this paper, is that we can find the exact
results for any range of energy parameters. The time it takes for this program to find the
ground state candidates for all sequences by exact enumeration, is on the same order as
that of the usual enumeration schemes for only one particular set of energy parameters.
Because the average number of ground state candidates is very small, the determination
of the native ground states for any range of interest only takes a little time. We found
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the native states of all sequences of length 20, for all pairs of energy parameters within a
12 × 12 square in arbitrary units, with a grid size of 0.1 (14400 points). The number of
protein-like sequences (sequences which have unique ground states) is shown in figure 10.
As one can see, there are jumps in the number of protein-like sequences. These jumps
specify the borders of regions of relative stability within the space of energy parameters.
The large changes in the number of protein-like sequences shows that when we cross these
borders the ground states of many sequences change, and the degenerate ground states
are replaced by non-degenerate ones (or vice versa). However, nothing can be said about
the details of these changes. One can get some idea about what is happening on these
border lines by comparing the contour plot for figure 10.a (figure 10.b) with the ordering
lines diagram for one particular sequence (figure 3).

In addition to obtaining information about the sequences, with this procedure also
finds the ground states. Since the energy parameters determine which states are the
ground states, the number of structures which can be the native state of some particular
sequence also depends on the energy parameters. Figure 11 shows the number of native
states as a function of the energy parameters. The importance of compactness at for
large values of Ec can also be seen in this diagram. Note that the smallest value for
the number of native states is 503. This number corresponds to the number of most
compact structures of length 20. Again, large jumps in the number of native states are
observed. One can also find the average designability of the structures by dividing the
data of figures 10 and 11 (the ratio of the number of sequences to corresponding number
of native structures).

6. Conclusion

Due to the short-range nature of inter-monomer interactions, the configuration energy
of protein sequences can be determined by using configuration contact matrices. In this
paper, it has been shown that for this class of problems, where one is interested in native
states of proteins, the space of physical contact maps can be reduced to a very smaller
set by removing all irrelevant maps. We have found the reduced set of contact maps for
sequences of lengths up to 20 in this paper by exact enumeration. This reduced set of
contact maps shows a scale-independent behavior.

Using the reduced set of contact maps, the ground state candidates for all sequences
were found in the HP model. The number of these ground state candidates is quite
small. The ground state candidates divide the space of energy parameters into several
cells. By finding this cell structure for all sequences, we have found the native states
for all sequences of different lengths, for a wide range of energy parameters. Jumps are
observed in the number of protein-like sequences. These jumps are related to boundaries
of the aforementioned cells.

Another interesting result is that we find some sequences with absolute native states
i.e. their native states are not sensitive to the values of energy parameters. Our results
show that the number of such perfectly stable sequences grows with length, however, their
percentage decreases.

290



EJTEHADI, SHAHREZAEI, HAMEDANI

Figure 10. The number of protein-like sequences of length 20, for given values of energy

parameters in a 12× 12 square region (arbitrary units); a) Three dimensional plot, b) Contour

plot.
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Figure 11. The number of native states for sequences of length 20, for given values of energy

parameters in a 12× 12 square region (arbitrary units).

Our results shows that teh exictance of some highly designable structurs is a ge-
ometical property of such lattice models and it does not depend on interaction energy
parameters.

Because the key tool used in this paper has been the structural information contained
in the contact maps, the qualitative results can be generalized to all contact models,
regardless of the details of the lattice and the contact rules. The dimension of state
space is related to the model and the number of energy parameters. For example, If
we look for the ground state in the space of compact configurations, Ec is an irrelevant
parameter. In this special case the space of energy parameters is one dimensional (only
γ), and the space of states is two dimensional (a and m) [6]. This argument can be
generalized to models with more than two kinds of monomers, and also to off-lattice
models. If the inter-monomer interaction has t free parameters, the energy levels can
be described by t + 1 integer. Similar to our case, these integers can be explained in
terms of kind of contacts between the monomers. The simplest choice is the number of
contacts between monomers type i and j (nij), but there is no reason that it is the most
convenient choice. Because of geometrical constraints on the number of contacts, there
are some relations between these parameters similar to eq. 8, and our argument can be
followed in the same way. The argument even can be generalized to models with n-body
interaction (n > 2). The introduction of n-body interaction only increases the difference
the dimensionalities of state space and the space of energy parameters [16]. Therefore,
quite generally, the ground state candidates of any given sequence are between the corner
states of a hyper polyhedron in a hyper space which is very smaller than the number of
all possible structures.
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