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Abstract

A generic model of a random polypeptide chain, with discrete torsional degrees
of freedom and Hookean springs connecting pairs of hydrophobic residues, repro-
duces the energy probability distribution of real proteins over a very large range of
energies. We show that this system with harmonic interactions, under dissipative
dynamics driven by random noise, leads to a distribution of energy states obeying
a modified one-dimensional Ornstein-Uhlenbeck process with reflecting boundary
conditions, and giving rise to distributions of the Wigner or inverse Gaussian form.
A continuum approximation leads to a path integral formulation of the problem.
PACS 5.65+b,5.70Ln,87.17.Aa

1. Introduction

It has recently begun to be appreciated [1, 2, 3, 4, 5], that such features of real proteins
as the density of vibrational energy states [6] may be reproduced by coarse-grained model
hamiltonians which capture the essential mechanism driving the folding process, namely
hydrophobic interactions. [3, 4, 5] At least for relatively short polypeptide chains, it may
not be unreasonable to assume that a kind of self-similarity holds over the entire energy
landscape, such that not only vibrational but conformational energy states obey the
same overall statistics. This self-similarity of the energy spectrum is indeed encountered
in other complex systems such as large nuclei. [7, 8]
∗Talk presented in Regional Conference on Mathematical Physics IX held at Feza Gürsey Institute,

Istanbul, August 1999.
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We take the view here that the protein in its native state must essentially correspond
to a self-organized system, i.e., the “native state” should be concieved of as the attractor
of a dynamics.This typically corresponds not to a unique conformation but to a set of
conformations to which the trajectory of the phase point representing the molecule is
confined after asymptotically long times. Therefore, the aim should eventually be to
model the dynamics of the molecule which puts it on the correct attractor.

Our model involves N coupled, discrete, over–damped torsional degrees of freedom
coupled by Hookean forces and driven by random noise. We find that the distributions
of energy states may be very well represented by a Wigner distribution [7], or “Wigner
surmise” for the statistics of level spacings S encountered [8] in the study of large nuclei,

P (S) =
π

2
S exp(−π

4
S2) . (1)

The coarse grained energy level distributions are comparable with the statistics of the
n’th (n = 1, 2, 3 . . .) neighbor energy level spacing. The energy histograms can also be
very well fitted with an “inverse gaussian” (IG) distribution

P (E) =

√
A

2πE3
exp

[
−A(E − B)2

2B2E

]
. (2)

We find [9] that preferentially relaxing the maximal torques drives the system to less
stable, high energy states, whereas choosing the dihedral angles either with uniform prob-
ability or preferring minimal torques give rise to more successful strategies for reaching
low lying energy states [10].

We are able to show that for harmonic potentials, quite independently of the nature
of the sequence of hydrophobic and polar residues, or the dimensionality of the space,
the energy of the system obeys an Ornstein-Uhlenbeck (OU) process [11]. The steady
state distribution for this process with reflecting boundary conditions introduced due to
constraints may then be related to the energy distribution. As a bonus, we are thus also
able to understand quantitatively the distribution of relaxation times found for global
optimization problems [12] by Li and coworkers.

The paper is organized as follows. In section 2 we define our model, in section 3 we
present our simulation results for the “η–dynamics”, in section 4 we show that the energy
obeys a modified OU process. In section 5 we present a discussion of the path integral
formulation of the problem.

2. The Model

We consider a model [9, 10] consisting of N residues, treated as point vertices, in-
teracting via Hookean potentials. We have been motivated by the model proposed by
Haliloğlu, Bahar, Erman [3] where all interactions between different residues are governed
by confining square-law potentials [3, 4, 5]. In our model, however, the covalent bonds
between residues are treated as fixed rods of equal length. The residues located at the
vertices may be polar P or hydrophobic H . All the hydrophobic vertices are to be con-
nected to each other with springs of equal stiffness. This feature mimicks the effective
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pressure that is exerted on the hydrophobic residues by the ambient water molecules, and
results in their being driven to the relatively less exposed center of the molecule in the
low lying energy states, whereas the polar residues are closer to the surface (see Fig.1).
It is important to note that we treat all H −H pairs on an equal footing, regardless of
whether they end up close to each other in the “native” configuration.

a

b

Figure 1. A chain of N = 48 residues, half of which are randomly chosen to be hydrophobic,

(darker beads) shown a) in a random initial configuration and b) in a folded state reached under

Metropolis dynamics. The chain has folded in such a way as to leave the polar residues on the

outside. (Generated using RasMol V2.6)
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It is known that real proteins are distinguished by H − P sequences that lead to
unique ground states while a randomly chosen H − P sequence will typically give rise
to a highly degenerate ground state. In the absence of detailed knowledge regarding the
rules singling out the realistic H − P sequences we considered a generic H − P sequence
obtained by choosing fifty percent of the residues to be hydrophobic and distributing
them randomly along the chain. We have checked that our results were quite robust with
respect to changing the sequence of hydrophobic or hydrophilic residues, or even taking
all of them to be hydrophobic.

The energy of the molecule is

E =
K

2

∑
i,j

ci,j|ri − rj|2 = K
∑
i,j

r†iVijrj (3)

If we define Qi = 1 for the i’ th vertex being occupied by a hydrophobic residue, and
Qi = 0 otherwise, we may write ci,j = QiQj and

Vij = [(NH − 1)ci,i − ci,j−1 − ci,j+1]δi,j − (1 − δi,j)(1− δi,j−1 − δi,j+1)ci,j . (4)

The chemical bonds can be considered as directors Ri of unit length (see Fig.2).
The conformation of the chain is specified by the “bond” (or “chemical”) angles and the
dihedral angles. The bond angles between the directors of successive bonds are measured
from the director of the previous bond; thus the ith bond angle αi is measured from the
director of the i − 1st bond to the director of the ith bond. We take the bond angles
αi, i = 1 . . . , N − 1, to have the alternating values of (−1)iα, with α = 68◦. The dihedral
angles are related to the angle the ith bond makes with the plane of the i − 1st and
i− 2nd bonds as shown in Fig.2. The angle is defined on the base of the cone described
by the ith bond around the direction fixed by the i − 1st bond. It is measured as the
angle between the projection of the ith bond and the projection of the director of the
i − 2nd bond on the base of this cone. We allow the dihedral angles φi to take on the
values of 0 and ±2π/3. The state (conformation) of the system is uniquely specified
once the numbers {φi} are given. The constraints placed on the conformations due to
the rigid chemical bond lengths and by restricting the chemical and dihedral angles to
discrete values prevent the molecule from trivially collapsing to a point. The residues
effectively reside on the vertices of a tetrahedral lattice. The position vectors ri of each
of the vertices in the chain can be expressed in terms of a sum over the directors Ri,
which may be obtained from R1 by successive rotations Mk(αk) and Tk(φk) through the
bond and the dihedral angles [15], viz.,
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Figure 2. The bond angles αi, defined to be the angles between successive bonds, are shown

in the figure. Each αi is measured from the director of the i− 1st bond to the director of the ith

bond. The dihedral angles are related to the angle the ith bond (OB, OC or OD in the figure)

makes with the plane of the i− 1st and i − 2nd bonds. If we denote the direction fixed by the

i − 1st bond as n̂, then the dihedral angles are defined between line segments projected on to

the base of the cone described by the ith bond around n̂. If the ith bond takes the position OD,

then the dihedral angle is the angle between the projection (AB in the figure) of the director of

the i− 2nd bond and the projection (AD) of OD, namely B̂AD. If the ith bond is indicated by

OC , then the dihedral angle B̂AC is measured from AB to the projection of OC on the base of

the cone, namely AC. Finally, if the ith bond is the line segment OB, as shown in the figure,

then the dihedral angle takes the value 0 since the projection of the ith bond and AB coincide.

In the figure, the angles B̂AD, B̂AC are ±2π/3 respectively.

ri =
i−1∑
j=1

2∏
k=j

Tk(φk)Mk(αk)R1 . (5)

If we choose, without loss of generality, R1 = ŷ in our Cartesian laboratory frame, this
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is accomplished by use of the matrices

Mk =

 1 0 0
0 cosαk − sinαk
0 sinαk cosαk

 (6)

and

Tk =

 cos φk 0 − sinφk
0 1 0

sinφk 0 cosφk

 . (7)

We obtain the torques that act at each of the vertices i by substituting this in equation
(3) and taking the partial derivative with respect to φi, viz.,

τi = −∂E/∂φi . (8)

Clearly the torque on the `’ th vertex will be

τ` = −2K
∑
i,j

r†iVij
∂rj
∂φ`

. (9)

If we define the derivative of matrix T as follows

T̃` ≡
∂T`
∂φ`

, (10)

then we can write
∂ri
∂φ`

=
i−1∑
k=`

(T1M1 . . . T̃`M` . . . TkMk)R1. (11)

The system is assumed to evolve within a viscous environment, with friction coefficient
ζr , subject to random kicks from the ambient molecules. The dynamics is overdamped,
so that there is no acceleration, and the impulse received with each kick dies immediately.
We may write the Langevin equation for the positions of the vertices as,

dri(t)
dt

=
1
ζr

Fi + ξr(i, t) (12)

where ξr(i, t) is a Gaussian distributed noise term, delta correlated in i and in time.
Equivalently, for the state vector φ = (φ1, . . . , φN), we have the Langevin equation

dφi(t)
dt

=
1
ζτ
τi + ξτ (i, t) (13)

where the torque τi is a function of all the angles {φ}, ζτ is the appropriate friction
coefficient and ξτ is again a Gaussian random “force” delta correlated in i and time.
Viewed in this way the dynamics is similar to a pinned interface [16, 17] or a charge
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density wave system [18, 19, 20, 21] in 1 + 1 dimensions, where the phase angles of the
charge density wave are also cyclic variables. On the other hand, in the present system
the interactions are long ranged.

For the discrete, sequential numerical simulation of the evolution of this system, we
postulate the following set of rules:

1. Form the self-similar probability distribution

P (i) = |τi|η/
∑
i

|τi|η , (14)

2. Choose a pair of vertices (i, i′) according to this probability distribution over {τi >
0} and {τi < 0},

3. Set φi(t + 1) = φi(t) + sign(τi)(2π/3) .

Here η is a tunable parameter defining the dynamics. For large positive values of η,
those angles φi with the maximal conjugate torques are incremented; for negative values
of η the small values of the torque are preferred. For η = 0 the angles to be incremented
are picked randomly. If one choses η to be very large, then we find that there is a large
probability that the most recently updated φi still carries a very large torque, resulting
in a jamming of the dynamics. Incrementing the dihedral angles with the large conjugate
torques resulted not in the relaxation of these torques but in pumping energy into the
system, as when pushing a swing at the top of its arc. After applying the search strategy
based on changing the torques according to a distribution, we found that updating the
maximal torques (η > 0) drives the system to a state with relatively high energies, whereas
a random search (η = 0) or preferentially choosing the minimal torques (η < 0) gives rise
to more successful strategies for reaching low lying energy states.

It can be said that η here plays the role of a coarse–graining parameter in the ex-
ploration of the energy landscape. We would like to recall a recent paper [22] where an
effective inertial effect was introduced into the evolution of a pinned interface, by giving
an advantage to that point along the interface which moved last. This led to the coarse
graining of the interface, by introducing a persistence time and an associated length scale
into the system, whose long time and large scale scaling behaviour, however, was not
altered. (In contrast, discouraging the same point from moving at the next time step led
to no appereciable change, since this occurred rarely, to start with.) In the present case,
changing η has a similar effect; for large η we get very big persistence effects, while values
of η ≤ 0 seem to be qualitatively similar to each other.

Distribution of energy states and level spacings

The distribution of the energies of the discrete configurational states explored by
the chain of N = 48 residues shown in Fig.1, as it evolves under the above dynamics,
is shown in Figs.3-6, for both positive and negative η. After the first 5000 steps were
discarded, the statistics were taken over 5000 steps of the trajectory. It can be seen that
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the shape of the curve does not essentially change with η, while for positive η the peak
shifts to successively higher values of the energy, and the distribution is distorted towards
a Gaussian, indicating that the states explored are less correlated. These figures should
be compared with those reported by ben-Avraham [6] for the density of vibrational states
and by Mach et al. [23] for the ultraviolet absorption spectra, and also with the energy
histograms obtained by Socci and Onuchic [24] for a Monte Carlo simulation on a lattice
model of a proteinlike heteropolymer. Our model seems to be very successful in producing
realistic distributions of energy states over the whole range of relevant energies.

0 2000 4000 6000 8000 10000 12000
E

0

0.02

0.04

0.06

0.08

p(
E

)

 η = 0
 η = 1
 η = 3
 η = 8

Figure 3. The normalized energy histograms, averaged over 10 random initial states for

chains of N = 48, for different η ≥ 0, along paths of 104 steps, with the first 5000 steps discarded.

The fits are to the Wigner distribution for η = 0, 1, 3 and Gaussian distribution for η = 8.

We have been able to fit the simulation results very successfully with a distribution
of the Wigner form (Figs.3,4)

fW(E) = a(E − E0)e−b(E−E0)2
, (15)

for η = −6 to η = 3. Here E0 corresponds to the offset due to the lowest energy state
attained for the different η, and it can be seen that the distribution is shifted to higher
values of the energy for higher values of η. The curves become Gaussian for η = 6 and
η = 8. (See Ref. [9]for the fit parameters.)
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Figure 4. The normalized energy histograms, for chains of N = 48, for different η < 0 (see

Fig.3). The fits are to the Wigner distribution.
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Figure 5. The normalized energy histograms along trajectories in phase space for the

N = 48 chain, for η ≥ 0 as in Fig.3, fitted with the “inverse gaussian” distribution given in

Eq. (2).
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Figure 6. Energy histograms for η < 0 as in Fig.5, fitted with the “inverse gaussian”

distribution given in Eq. (2), for the N = 48 chain.

It should be mentioned that the same energy distributions may be fitted equally well
(see Figs.5,6) by the “inverse Gaussian” [12],

fIG(E) =

√
A

2πE3
exp

[
−A(E − B)2

2B2E

]
. (16)

It will be noted that this has the same functional form as the distribution of first passage
times over a distance d for an Ornstein Uhlenbeck process [11] with diffusion coefficient
D = σ2/2 and initial drift velocity v, in the regime of small times, if one makes the further
identifications A = d2/(2D) and B = d/v. We postpone until section 4 a discussion of
this result. The fit parameters A and B are plotted against η in Fig.7. We find that
both the “diffusion constant (mobility)” and the “drift velocity” of the phase point along
its trajectory in phase space depend on η, being maximum for η = 0 and decreasing for
positive values of η. For η < 0 they essentially stay the same.

4. Ornstein-Uhlenbeck Process and the Wigner Distribution

We would now like to show that the energy obeys a stochastic process which can be
modelled by Fokker-Planck equations with the Wigner (15) or the inverse gaussian (2)
forms as stationary solutions.

We remind the reader that an OU process describes the diffusive motion of a particle
subject to a drift velocity proportional to the distance from the origin [11]. It can easily
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be seen that such a process for a single particle in one dimension would be described by
the Langevin equation,

dx

dt
= −1

ζ
gx+ ξ(t) (17)

with a Hookean force F (x) = −gx and a delta correlated random force ξ(t), 〈(ξ(t))2〉 = σ2.

−8 −6 −4 −2 0 2 4 6 8 10
 η

0

10

20

30

40
A

 (
x1

03 )

A

1

2

3

4

5

6

B
 (

x1
03 )

B

Figure 7. The fit parameters A and B are plotted against η. Both A and B increase with

increasing η, therefore the diffusion coefficient and the drift velocity decrease as η gets bigger.

We would like to show that the energy E given in Eq.(3) obeys an OU process, under
the dynamics given by (12). Since there is no explicit time dependence of E, we have

dE

dt
=
∑
i

∂E

∂ri
· ∂ri
∂t

. (18)

Substituting from (12) we get,

dE

dt
= − 1

ζr

∑
i

(
∂E

∂ri

)2

+
∑
i

∂E

∂ri
· ξi(t) . (19)

From (3) we may compute that

∑
i

(
∂E

∂ri

)2

=
NE

ζr
+
∑
i,j,k
i6=j

cikcjk(ri − rk) · (rj − rk) . (20)

We see that the second term is like an average of the products (ri − rk) · (rj − rk) over
(i, j) pairs (i 6= j), and for a reasonably isotropic configuration, it vanishes. To the
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same approximation, we may assume that the second term in Eq.(19) is itself equal to
a Gaussian stochastic noise, i.e., set ξE(t) = K

∑
ij cij(ri − rj) · ξi(t) . This yields the

required result, namely,
dE

dt
= −NE

ζr
+ ξE(t) , (21)

which should be compared with (17).
This stochastic equation is equivalent [25] to the Fokker-Planck equation

∂P (E, t)
∂t

= − ∂

∂E
[−∂Φ̃(E)

∂E
P (E, t)−D∂P (E, t)

∂E
] , (22)

for the probability distribution of E, where D = 2〈ξ2
E〉 and Φ̃(E) =

∫ E
0

(N/ζr)x dx =
bE2/2, with b = N/ζr . The constraints we have placed on our configurational degrees of
freedom (see Eq.(22)ff.) require that there be some minimum value of the energy where
the probability current vanishes, implying reflecting boundary conditions there, as well
as at some Emax, which we may take to ∞ for all practical purposes. To mimick these
constraints we introduce an infinitely high potential barrier at E0, while at the same
time shifting the point of equilibrium of the Hookean “force” to this point. A convenient
choice for a singular potential to add to Φ̃, is − ln(E − E0). These reflecting boundary
conditions at E0 and at ∞ then lead to a stationary solution P (E),

P (E) = a e−Φ(E) , (23)

where Φ(E) = Φ̃− ln(E −E0), or,

Φ(E) =
1
2
b(E − E0)2 − ln(E −E0) (24)

and a is a normalization constant. Substituting (24) in (23) leads to the Wigner for-
mula (15).

A stationary distribution of the inverse gaussian form may be obtained if we modify
the quadratic potential Φ̃ in a different way to model the constraints in the system, viz.,

Φ(E) =
A

2B2E
(E −B)2 +

3
2

lnE . (25)

This also leads to reflecting boundary conditions, at E = 0 and E → ∞, and a point
of equilibrium at E = B. As the stationary solution we obtain the inverse gaussian
distribution (2), as can be seen from direct substitution into (23).

The distribution of first passage times for the attainment of the optimum solution in
such diverse high dimensional optimization problems as fits to X-ray patterns, travelling
salesman problems and determination of the lowest energy state for lattice models of
protein configurations, have been reported by Li and coworkers [12], to obey the Ornstein-
Uhlenbeck form. The plots of these distributions all display a striking similarity to each
other, and to the distribution of energy states which we have found in the present problem.
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Now we see that if an optimization problem has a quadratic cost function C which,
in terms of the large number of variational parameters in a reasonably isotropic phase
space, has the same form as our energy Eq.(3), then the optimization algorithm defines a
dynamics for C which may be described by means of an OU process as in Eq.(17), with
a repulsive barrier at Cmin and at ∞. This may be modelled by the same Fokker Planck
equation (22), and potentials Φ, as we have discussed above.

Recall that for an OU process, with an initial displacement x(0) = d, the solution for
the distribution of first passage times t through the origin is given by [11],

f(t) =
2yd
π1/2σ

(
ρ

1− y2

)3/2

e
− ρy2d2

σ2(1−y2) , (26)

where ρ = g/ζ and y = exp(−ρt). We see that (26) goes over, in the limit of large times,
i.e. y � 1, to

fW(y) =
2dρ3/2

π1/2σ
y e−

ρd2y2

σ2 . (27)

On the other hand, for very small times, (26) becomes, to leading order,

fIG(t) =
2πdσ2

(2πσ2t)3/2
e−

(d−vt)2

2σ2t (28)

where we have defined ρd = v. It should be noted that these functions (27) and (28) have
the same form, as functions of y and t, respectively, as the Wigner and inverse gaussian
distributions which we have found above.

5. Path Integral Formulation

In this section we discuss a path integral approach to the computation of the statistics
of the energy levels. This work is not yet complete, and we will only indicate the general
direction.

Let us postulate the following weight for a given configuration of a continuously de-
formable chain, parametrized by s, the distance along the chain,

P [r(s)] = exp

[
−
∫ L

0

ds[λ|r(s)|2 + a0|∂s
⇀

` (s)|2 + a1|∂2
sr(s)|2 + . . .

]
. (29)

The first term in the exponential is proportional to a radius of gyration squared, and
tends to prevent the chain from folding out completely; the value of λ is immaterial for
the moment. The gradient squared term is the same as for a path integral representation of
a random walk. Its derivation may be found in standard text books on path integrals. [28]
The next term makes sure that the chain does not fold too abruptly - i.e., mimicks a sort
of self-avoiding potential. In the Fourier transform representation, the integral in the
exponential becomes

∫ dq
2π [λ − a0q

2 + a1q
4]r̃(q)r̃(−q) . To simplify life, we will take all
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the residues to be hydrophobic, so that the energy functional, in this continuum approach
becomes,

E[r(s)] = K/2
∫
ds ds′|r(s)− r(s′)|2

= K/2
∫
ds

∫
d`|r(s)− r(s+ `)|2

= LK{
∫

dq

2π
r̃(q)r̃(−q) −

∫
dq

2π
r̃(q)r̃(−q)δ(q)} , (30)

where δ(q) is the Dirac delta-function. Since, strictly speaking, the chain consists of
rigid segments, (which, to be able to keep track of the dimensional quantities we will
henceforth take to be of length a), and is of finite length L = Na, the q values are
restricted to qn = nπ/L, ranging from π/L to Nπ/L ≡ πa. This tells us that the second
term in the above expression for the energy actually vanishes.

Now we may write the probability distribution for the energy states E,

P (E) =
∫
D(r(s))P [r(s)]δ(E −K/2

∫
ds

∫
d`|r(s)− r(s+ `)|2) . (31)

Going over to the Fourier representation, we get,

P (E) =
∫
dω

2π
eiωE

∫
JD(r̃(q)) exp[−

∫
dq

2π
[iωk + λ − a0q

2 + a1q
4]r̃(q)r̃(−q)] . (32)

where we have defined k ≡ LK, and J is the (as yet to be calculated) Jacobean of the
transformation of variables from the r(s) to the r̃(q). The meaning of the functional
integral is

D(r̃(q)) =
N∏
n=1

dr̃(qn)
(2π)d/2

[
ε(λ − a0q

2
n + a1q

4
n)
]d/2 (33)

where d is the Euclidean dimensionality of space and ε = 1/L. The square brackets is the
normalization factor for the Gaussian measure. Performing the Gaussian integrals one
gets,

P (E) =
∫ ∞
−∞

dω

2π
eiωE

N∏
n=1

[
1

iωk + λ− a0q2
n + a1q4

n

]d/2
. (34)

For d = 2 and d = 4 the integral over ω may actually be done via the calculus of residues,
and with λ large enough, all the poles may be arranged to lie in the upper half plane.
Nevertheless, the resulting integrals over q are very rapidly varying and have so far defied
computation.

On the basis of the spectral representation of the Wiener integral, however, we believe
that we will be able to elucidate the connection between the form we have found for the
distribution of energy states and the Wigner distribution, which arises as the distribution
of eigenvalue spacings for Gaussian orthagonal matrices [7, 8, 26, 27].

308



ERZAN, TÜZEL
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