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Abstract

The general solution of SL(2,R)/U(1) WZNW theory is constructed by a gauge
invariant reduction. This is done within both Lagrangian and Hamiltonian frame-
works.

1. Introduction

About ten years ago the Dublin group [1] showed that Toda theories can be obtained via
nilpotent gauging (or Hamiltonian reduction) of Wess-Zumino- Novikov-Witten (WZNW)
theory. Due to their relationship with Lie algebras, the Toda systems are among the
models of the theory of integrable non-linear equations [2]. More recently U. Muller
and G. Weigt found a Lax pair representation for non-nilpotent gaugings of WZNW
theory [3]. Without integrating the Lax pair the authors gave the general solution for
the SL(2,R)/U(1) case [3]. In this note we show how one can obtain the solution given
in [4] in systematic way directly from the gauge invariant reduction procedure.

∗Talk presented by G. Jorjadze in Regional Conference on Mathematical Physics IX held at Feza
Gürsey Institute, Istanbul, August 1999.
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2. Classical Dynamics and Reduction

2.1. Lagrangian for SL(2,R) WZNW Model

Let us introduce a 2-form

Fuv =
2

a+ 〈u g v g−1〉 Lu ∧Rv, (1)

given on SL(2,R) group manifold. Here g ∈ SL(2,R), a is a parameter, u and v are
some fixed non-zero elements of sl(2.R) algebra, 〈u g v g−1〉 := −1/2 tr (ugvg−1) and
the ‘left’, ‘right’ 1-forms are defined by

Lu = 〈u dg g−1〉, Rv = 〈v g−1 dg〉. (2)

One can verify (see Appendix) that, for a2 = 〈uu〉〈vv〉, (1) provides

dFuv =
2
3
〈g−1dg ∧ g−1dg ∧ g−1dg〉. (3)

The function Λ(u, v; g) = 〈u g v g−1〉 is positive (see Appendix) for ‘time-like’ u and v
(〈uu〉 > 0, 〈vv〉 > 0). Choosing a =

√
〈uu〉〈vv〉 one gets the globally well defined 2-form

Fûv̂ =
2

1 + 〈û g v̂ g−1〉 Lû ∧Rv̂, (4)

with normalized vectors û, v̂ (〈ûû〉 = 1, 〈v̂v̂〉 = 1), which satisfies (3).
Integration of F over 2d closed surface gives the topological Wess-Zumino term of

SL(2,R) WZNW theory. As a result, we find the Lagrangian

L = L0 + LWZ , with L0 = 〈g−1∂+g g
−1∂−g〉, (x± := x± t)

LWZ =
〈û ∂+g g

−1〉〈v̂ g−1∂−g〉 − 〈û ∂−g g−1〉〈v̂ g−1 ∂+g〉
1 + 〈û g v̂ g−1〉 , (5)

which leads to the same dynamical equations as WZNW theory

∂−(∂+g g
−1) = 0, ∂+(g−1∂−g ) = 0. (6)

Lagrangian (5) is invariant under the global U(1) transformations

g 7→ hû(ε)ghv̂(ε), with hû(ε) = eεû and hv̂(ε) = eεv̂, (7)

We construct the coset SL(2,R)/U(1) model by gauging of (7) symmetry.
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2.2. Coset Model

The gauging procedure amounts to the introduction of auxiliary gauge fields A± and
construction of a new Lagrangian

LG(g, A±, ∂±g) = L(g, ∂±g −A±(ûg + gv̂)), (8)

which is invariant under the gauge transformations

A± 7→ A± + ∂±ε, g 7→ hû(ε)ghv̂(ε) (ε = ε(x+, x−)).

The gauge fields A± can be easily eliminated from (8) using the corresponding variational
equations ∂LG/∂A± = 0. These equations define

A+ =
〈û ∂+g g

−1〉
1 + 〈û g v̂ g−1〉 , A− =

〈v̂ g−1 ∂−g〉
1 + 〈û g v̂ g−1〉 (9)

and after elimination of A± we obtain the gauged Lagrangian

LG| = 〈g−1∂+g g
−1∂−g〉 −

〈û ∂+g g
−1〉〈v̂ g−1∂−g〉 + 〈û ∂−g g−1〉〈v̂ g−1 ∂+g〉

1 + 〈û g v̂ g−1〉 . (10)

The gauged Lagrangian (10) can be rewritten in terms of gauge invariant variables. Let
us consider the case û = v̂. To analyze (10) it is convenient to introduce the basis of
sl(2,R) algebra Tn (n = 0, 1, 2)

T0 =
(

0 −1
1 0

)
, T1 =

(
0 1
1 0

)
, T2 =

(
1 0
0 −1

)
. (11)

Without loss of generality, we can assume û = T0. Then, the gauge invariant fields are
(see Appendix)

q1 = 〈T1g〉, q2 = 〈T2g〉. (12)

Introducing q0 = 〈T0g〉, one can parameterize g ∈ SL(2,R) by

g = cI + qn Tn =
(

c− q2 −q1 − q0

−q1 + q0 c+ q2

)
, with c2 + qnqn = 1. (13)

Inserting this parameterization in (10) we find the gauged Lagrangian expressed only in
terms of gauge invariant fields

LG| = −
1

1 + q2
1 + q2

2

(∂+q1∂−q1 + ∂+q2∂−q2) . (14)

This Lagrangian has a natural complex structure and for the complex valued field w =
q1 + iq2 we get the dynamical equation

∂2
+,−w = w̄

∂+w ∂−w

1 + w̄w
. (15)
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Described gauging procedure can be done for arbitrary time-like u and v. It can also
be generalized for the cases when both u and v are space-like (〈uu〉 < 0, 〈vv〉 < 0) or one
of them is light-like (〈uu〉 = 0 or/and 〈vv〉 = 0). For all these cases the Wess-Zumino
term LWZ has singularities at 〈u g v g−1〉+

√
〈uu〉〈vv〉 = 0.

Note that the space of gauge orbits (which defines the space of gauge invariant vari-
ables) essentially depends on the choice of u and v generators. For example, in the case
û = −v̂ = T0 the gauge invariant fields are c = −〈g〉 and q0 = 〈T0g〉. According to (13)
c2 + q2

0 ≥ 1. Therefore, in this case the configuration space of the reduced system is the
manifold with edge. Consistent quantization of coset models should take into account
this peculiarities.

2.3. Integrability of the Coset Model

The dynamical equations (6) are invariant under the transformations

g(x+, x−) 7→ g+(x+) g(x+, x−) g−(x−), (16)

where g±(x±) are arbitrary SL(2,R) group valued functions. This symmetry provides
integrability of WZNW theory and the general solution has the form

g(x+, x−) = g+(x+) g−(x−). (17)

One can check that the Lagrangian (5) is invariant under (16) upto a total derivative.
Let g̃(x+, x−) be a solution of (6), which satisfies the conditions

〈T̂0 ∂+g̃ g̃
−1〉 = 0 and 〈T̂0 g̃

−1 ∂−g̃〉 = 0. (18)

Then, the set (g̃, A+, A−), with A± = 0 (see (9)) is a solution of the dynamical equations
for the system (8), and vice-versa, if the set (g̃, A+ = 0, A− = 0) is a solution for (8),
then g̃ satisfies (6) and provides (18). Since the dynamics of the gauge invariant fields
q1 and q2 does not depend on the choice of gauge fields A±, the solution to (15) can be
written as

q1 = 〈T1 g+(x+) g−(x−)〉, q2 = 〈T2 g+(x+) g−(x−)〉, (19)

where g±(x±) satisfy the restrictions

〈T̂0 g
′
+(x+) g−1

+ (x+)〉 = 0 and 〈T̂0 g
−1
− (x−) g′−(x−)〉 = 0. (20)

Using (19) and (20) one can derive the general solution of (15). To give the explicit
form we use the representation (13) for the chiral and anti-chiral fields

g±(x±) = c±(x±)I + qn±(x±)Tn (21)

and introduce polar coordinates for the components (c±, qn±):

c± = R± cosβ±, q0
± = R± sinβ±,

q1
± = −r± cosα±, q2

± = ±r± sinα±. (22)
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Conditions (20) lead to R2
±β
′
± − r2

±α
′
± = 0. Since R2

± − r2
± = 1 (see (13)), we find

R± =

√
α′±

α′± − β′±
, r± =

√
β′±

α′± − β′±
. (23)

Inserting (21) and (22) in (19), we get

w = q1 + iq2 = R+r−e
i(α−−β+) + r+R−e

−i(α+−β−). (24)

One can check that (24) indeed satisfies (15) if R± and r± are given by (23). Since the
solution (24)–(23) depends on four arbitrary functions α±(x±), β±(x±) we get the general
solution of (15).

As a conformal field theory (14) has a traceless energy momentum tensor (T+− = 0)
and for the chiral and anti-chiral parts we find

T±± =
1

1 + w̄w
∂±w̄∂±w = α′±β

′
± +

(α′′±β
′
± − β′′±α′±)2

4α′±β′±(α′± − β′±)2
. (25)

2.4. Hamiltonian approach

Hamiltonian reduction of WZNW theory is an alternative method for the construction
of coset models. Passing to the Hamiltonian approach we introduces the phase space
as a set of functions R(x), g(x) (x ∈ [a, b]), where R(x) and g(x) take values in the
sl(2,R) algebra and SL(2,R) group respectively. The boundary behaviour of these fields
should provide non-degeneracy of the symplectic form. The 1-form and the Hamiltonian
obtained from (5) are

θ =
∫ b

a

dx

[
−〈Rg−1dg〉+ 〈T0 g

−1g′〉〈T0 dg g
−1〉 − 〈T0 g

′g−1〉〈T0 g
−1dg〉

1 + 〈T0 g T0 g−1〉

]
, (26)

H = −1
2

∫ b

a

dx [〈R R〉 + 〈g−1 g′ g−1 g′〉]. (27)

The functions R(x) and g(x) are dynamically related by g−1ġ = R. Taking into account
this relation and the form of the general solution (17) we introduce the ‘chiral’ and ‘anti-
chiral’ fields g±(x), which parameterize the phase space

g(x) = g+(x)g−(x), R(x) = g−1
− (x)[g−1

+ (x) g′+(x)− g′−(x)g−1
− (x)]g−(x). (28)

The Hamiltonian (27) splits into chiral and anti-chiral parts H = H+ +H−, with

H± = −1
2

∫ b

a

dx 〈g−1
± g′± g

−1
± g′±〉 . (29)
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The 1-form (26) leads to the symplectic form of WZNW theory [4]

Ω = dθ =
∫ b

a

dx
[
〈g−1

+ dg+ (g−1
+ dg+)′〉 − 〈dg− g−1

− (dg− g−1
− )′〉

]
+

+〈g−1
+ dg+ dg− g

−1
− 〉|ba. (30)

One can check that the differential of the 1-form θ̃ = θ+ + θ− gives the same symplectic
form Ω, if the θ± are given by

θ± =
∫ b

a

dx [−〈g−1
± g′±g

−1
± dg±〉 +

+
〈T0 g

−1
± g′±〉〈T0 dg± g

−1
± 〉 − 〈T0 g

′
± g
−1
± 〉〈T0 g

−1
± dg±〉

1 + 〈T0 g± T0 g
−1
± 〉

]. (31)

Thus, 1-form (26) can also be split into chiral and anti-chiral parts (up to an exact form
and boundary terms).

The gauging procedure of SL(2,R) WZNW theory, which leads to the coset model
(14) corresponds to Hamiltonian reduction with the constraints

〈T0 g
′
+g
−1
+ 〉 = 0 and 〈T0 g

−1
+ g′+〉 = 0.

Using the parameterization of g± functions (21) we obtain the reduced HamiltonianH| =
H|+ +H|−, with

H|± =
∫ b

a

dx [f ′2± + α′±β
′
±], where tanh2 f =

β′±
α′±

(32)

and the reduced 1-form θ̃| = θ|+ + θ|−, with

θ|± =
∫ b

a

dx [f ′±df± + β′±dα±]. (33)

Differentiating of (33) reproduces the symplectic form of the (14) model and the integrand
in (32) coincides with the energy-momentum tensor (25).

To get the canonical form of the chiral Hamiltonians (32) and chiral 1-forms (33) we
pass to the new fields φ±,1 and φ±,2:

e∓iα± = eiφ±,2
sinhφ±,1 + ieφ±,1F±√
sinh2 φ±,1 + e2φ±,1F 2

±

, where F ′± = e−2φ±,1φ′±,2 .

e∓iβ± = eiφ±,2
coshφ±,1 − ieφ±,1F±√
cosh2 φ±,1 + e2φ±,1F 2

±

, (34)
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These equations provide

f ′2± + α′±β
′
± = φ′2±,1 + φ′2±,2,

f ′±df± + β′±dα± = φ′±,1dφ±,1 + φ′±,2dφ±,2 . (35)

Substituting (34) into the general solution (24), we obtain (see [3])

w =
1
2
eiφ+,2eiφ−,2 [eφ+,1eφ−,1 (1 + 4F+F−) − e−φ+,1e−φ−,1

+2i(F+e
φ+,1e−φ−,1 + F−e

−φ+,1eφ−,1 )]. (36)
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3. Appendix

The matrices (11) satisfy the relations

Tm Tn = −ηmn I + εmn
l Tl, (A.1)

where I is the unit matrix, ηmn is a metric tensor of 3d Minkowski space: ηmn =
diag(+,−,−), ε012 = 1. The normalized trace of matrixes 〈A〉 := −1/2 tr (A) gives

〈Tm Tn〉 = ηmn, 〈Tl Tm Tn〉 = εlmn. (A.2)

For u = unTn and v = vnTn, we have 〈u Tn〉 = un, 〈u v〉 = unvn and we get the isometry
between sl(2,R) algebra and 3d Minkowski space.

The ‘left’ and ‘right’ 1-forms

Ln = 〈Tn dg g−1〉, Rn = 〈Tn g−1 dg〉 (A.3)

are related by
Lm = Λ n

m (g)Rn, (A.4)

where Λ n
m (g) = 〈Tm g Tn g−1〉. The 3-form h = 〈g−1dg ∧ g−1dg ∧ g−1dg〉 can be

expressed in terms of ‘right’‘ (or ‘left’) 1-forms, since from (A.3) we have

g−1 dg = TnRn, dg g−1 = TnLn. (A.5)
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Using (A.2) we get
h = 6 R0 ∧R1 ∧R2. (A.6)

The differentials of (A.3) and (A.4) give

dLn = ε lm
n Ll ∧Lm, dRn = −ε lm

n Rl ∧Rm,
dΛmn = 2εn kl Λmk(g) Rl. (A.7)

Taking differential of (1) and using (A.6), (A.7) we obtain (3).
The matrices Λ n

m (g) belong to the group SO↑(2.1). The property Λ 0
0 ≥ 1 can be seen

by direct computation (Λ 0
0 = 1 + 2(q2

1 + q2
2) (see (13)). The property 〈u g v g−1〉 > 0 for

time-like u and v follows from the isometry between the sl(2.R) algebra and 3d Minkowski
space.

Since T 2
0 = I, we have exp(εT0) = I cos ε+ T0 sin ε. From (A.1) we find

exp(εT0) Tn exp(εT0) = Tn for n = 1, 2,

which provides gauge invariance of (12).
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