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Abstract

Gauged WZNW models are integrable conformal field theories with non-local
canonical free-field transformations. Canonical quantisation requires quantum de-
formations.

1. Introduction

We discuss the non-nilpotent SL(2,R)/U(1) gauged Wess-Zumino-Novikov-Witten (WZNW)
theory. It has attracted much interest in the past [1-9] because it is a conformal field
theory with a curved target space metric, and it is integrable [10].

The talk is based on refs [10, 11]. We consider the general solution of the equations
of motion, look at the symplectic structure of the theory and derive canonical trans-
formations of the physical fields onto free fields. This will be done mainly for periodic
boundary conditions, which describe the interesting case of a closed string moving in
the background of a black hole target-space metric. We finally quantise parafermionic
conserved quantities.

*Talk presented by G.Weigt in Regional Conference on Mathematical Physics IX held at Feza Giirsey
Institute, Istanbul, August 1999.
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2. The Solution of the SL(2,R)/U(1) Theory and Conservation Laws

The classical action of the SL(2,R)/U(1) gauged WZNW theory [1, 10] (z = 7 + o,
Z=T—0)

k
SWZNW, gauged [T t] = o /dzdé (827“857“ + tanh?r azté)gt) . (1)
M

describes a conformal and integrable theory [10]. Its target-space metric
ds* = dr? + tanh?r dt? (2)
shows in Kruskal coordinates
u = —sinhr e, @ =sinhr e~ (3)

after Wick rotation, t — it, a two-dimensional black hole singularity

dudu
ds® = — 4
s 1 —wuu )
with singular curvature tensor.
The equations of motion, which follow from the action (1)
inh
0.0:r = —— 0.t 0:t,
cosh”r
1
0,0;t = ————— (0,r 0zt + 0.t 0z 5
sinhr coshr (Ozr * ) (5)
have the general solution
sinh’r = XX,
_ i X
= i(B-B)+=-In—=
t = i(B-B)+5nz (6)
with the definitions
B -
X = A—i—E(l + AA),
_ _ B’ _
X = A—i—z(l + AA). (7)

A= A(z), B= B(z), A= A(2) and B = B(z) are complex (anti-)chiral functions and A’
their derivatives, which are only restricted in order to render r and ¢ real. The solution
(6,7) is invariant under GL(2,C) transformations of these functions. Therefore, these
(anti-)chiral functions are determined by the physical fields at most up to four complex
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constants.

The theory is also characterised by conservation laws. The equations of motion (5)
guarantee, in particular, conservation and chirality of the energy-momentum tensor (we

shall omit the similar anti-chiral parts whenever possible, and use v = /27/k)
1
T="T,, = = ((827“)2 + tanh?r (azt)Q) , (8)

and in addition of parafermionic observables [1]

1 .
Vi = —Qei“’ (0,r £itanhr 0,t), ©)
Y
if v satisfies
o.v=_1+ tanh?r )O.t, Osv = cosh™2r dt. (10)

Since the integrability conditions of these equations just yield the second equation of (5),
the general solution (6, 7) also integrates egs (10).

The vanishing trace of the energy-momentum tensor
ng + ng - 0 (11)

shows the conformal invariance of the theory. Surprisingly, as in the ungauged theory,
the energy-momentum tensor has a Sugawara form

T =2V, V., (12)

although the conformal spin-one quantities V1 are not standard Kac-Moody currents.
Using the general solution (6, 7), from the conserved quantities (8, 9) we can easily derive
a differential equation of the Gelfand-Dikii type

y' = (0-V_/V_)y —+*Ty =0. (13)

This equation becomes important for the calculation of the symplectic structure of the
theory, because its solutions

Y1 = eBa Y2 = AeBa (14)
and - o

= GB, Yo = AGB (15)
for the corresponding anti-chiral Gelfand-Dikii equation, usefully parametrize the general

solution of the equations of motion (5). A very symmetrical expression results for the
transformed fields u, @ (3)

u— DY) + Y21 i— Y+ Y20

: el (16)
yl?/z - 9'192 yl?/z - 9'192
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Here for simplicity we shall restrict ourselves in the following to the regular solutions by
assuming that for finite z, Z

Yy —Yiy2 0,  This — hy2 # 0. (17)

The already mentioned GL(2, C) invariance now becomes

(e)=(e 2)(e) (2)-(0 () o

( ch _db > € GL(2,C).

3. The Symplectic Structure of the SL(2,R)/U(1) Theory

In ref. [10] we have shown that the different (anti-)chiral functions of the theory can
be calculated, in principle, in terms of the physical fields by solving the Gelfand-Dikii
equations after we have chosen for the physical fields the initial values at ‘time’ 7y

u(o, 1) = ug(o), a(o,70) = (o), o, 1) =ui(0), u(o, 1) = u1(0), (19)

and fixed the GL(2,C) invariance. Although this procedure does not give explicit func-
tions in terms of the physical fields, we can, nevertheless, get the Poisson brackets. In [10]
we have calculated the variations dyx(2), 7k (Z) explicitely as functions of the variations
du(r, o), 6u(r, o), dm,(1,0) and d7s(7, o) by solving the varied Gelfand-Dikii equations
(not writing here the anti-chiral part)

oy — (0.V_ /V_)oyh, — ¥ Ty = 6(9.V_ /V_)y), + 76T yk (20)

and using the varied initial states.
We give here an example for periodic boundary conditions

u(o + 2w, 7) =u(o,7), u(o+2m,71)="1u(o,T1). (21)
Assuming the canonical Poisson brackets of the physical fields

{u(o,
{u(o)

where o, is the periodic §-function defined by

), (0", )} = {u(o, ), u(o’, )} = 29*(1 4+ utt)dar (00 — o),
(o))} = 292 (Ut — wii)daq (0 — o), (22)

dor(oc —0') = Z §(o — o’ + 2mn). (23)

n=—oo
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The periodic Poisson brackets of the parameter functions are than non-linearly realised

{Ilnyi(2),Iny1 ()} = {lngi(2),In5:(2)} =0,
’72 z— ZI
nnGtnn) = T (ant - - 255
9 9 27
Y / Y " "o
_ s E
5 E(z,7)+ 87r/dz (2", 2",
0
2
{lnyi(z), Inp(x)} = ——(z— Z') (24)
where
ear(z)=2n+1 for 2mn<z<2r(n+1), neZ (25)
and
exp (u62 (2 _Z/)>
E(Z ZI) — 2 T yQ(Z)yl(ZI) (26)
’ ginp &L 2 y1(2)y2(2')

2

However, the field-theoretic case with asymptotic boundary conditions has a much simpler
form

{Iny1(2),Iny1 ()} = {Ingi(2),ng(2")} =0,
2 2 /
/ gl n_ () (@)
2),y2(2 = —€(z—2)—— . 27
{y1(2),92(2")} 9 ( ) 2 y1(2) y2(2') (27)
€(2) is here the sign function
—1 for z < 0,
e(z) = 0 for z =0, (28)
1 for z > 0.

We see that the zero modes in the periodic model complicate the algebra considerably.
Although we have unique mappings between the physical fields u, @ and the parame-
ter functions yg, 9k, our calculations are not finished until we have found a free-field
realization of this symplectic structure.

4. The Canonical Free-Field Transformation

There are several methods to find relations between yy (2), 7k(Z) and the chiral, respec-
tively anti-chiral components ¢x(2), ¢r(Z) of canonical free fields (k = 1,2)

Ui(0,7) = ¢i(2) + di(2). (29)
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The easiest and most straightforward approach identifies the energy-momentum tensors

Ly —yiys
T(z) = (8.01)% + (0,¢0)* = = 2222192 30
(2) = (9:01)" + (0:02) Y2 Y1 — Yiy2 (30)

Here we assume that
1. the free fields 11, 12 are local expressions of the parameter functions y, and

2. the energy-momentum tensor has, indeed, the free-field form in terms of the free
fields.

We again take into consideration the periodic boundary conditions and obtain the result

. 1 Y1 : 1
P1+ipe=—In—F———, @1 —ig2=—Iny,
Y Y1Ys — Y192 Y
. 1 4 - - 1,
¢1 — iy = —In ————, ¢1+ig2 = —Inyr. (31)
Y Y1Ys — Y192 Y

As expected, the non-local Poisson bracket relations (24) yield for the fields ¢y, ¢5 the
local free-field Poisson brackets

Gt alr+a)y = <2 (anlo-0) - 727,
(oulr—oldr =)y = % (enlo-0) - 727,
{or(t+0),i(r—0")} = —%(0’4—0”). (32)
Solving now (31) for yx, ¥ yields the non-local free-field representation
yi(z) = exp(x(2))
27
y2(2) = —% /dZ' X' (2) exp (—yprean(z — 2') — 27¢1(2))
0
n(z) = exp(x(z)) (33)

L exp (vx(2)) i o, - -
= _QSiT(’ﬂh) O/dz vx' (Z") exp (—’)/p16271—(2 — 7)) —29¢1(Z ))

where the zero mode momentum is given by

27

p1 = /w'l(r, o)do. (34)

0
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We have checked that the free-field Poisson brackets yield, consistently, the Poisson brack-
ets of the yx(2), §x(Z), and we could show that these results also follow from the Gelfand-
Dikii equations, in case, their coefficients are expressed in terms of the free fields and the
initial state problem is solved anew.

This proves that the non-local free-field transformations of the physical fields r, ¢, or
u, 4 are canonical transformations, and we can show they are one to one.

The results could be summarised, finally, in terms of local Backlund transformations
which would be identical, both, for the periodic as well as for the asymptotic case. Instead,
we give here the complete canonical transformation of the fields u(c, 7), a(c, 7) onto the
free fields

w o= @ (14 0d) ie—Wﬂ) n % (evw—q’s)q) n e—v(x—ic)(i)) ,
i = eYét0 (1+®d) — ie—v(qﬁﬂ’c) _ % (ev(x—ic)q) + e—v(qﬁ—q?)(i)) ) (35)
This transformation is non-locally defined by
27
1 P11
®(2) ~2sinh(rp1/2) /dzl V5 (2") exp (—76%(2 —2) = 2’Y¢1(ZI)) ;
0
27 (36)
= 1 T WL L T /s
®(z) = ~2sinh(rp1/2) /dzl V95(2') exp (—76%(2 ~7) - 2’Y¢1(ZI)) -
0

This result was rederived by the Hamilton reduction method and it is given in formula
(2.36) of G. Jorjadze’s contribution to these proceedings.

5. Quantum Parafermions

The parafermions are especially simple in terms of the free fields (29), which have the
usual mode expansion

1 1 i an® i
¢i(z) = §qi+Epiz+—T7rE e
n#0
) _(4)
- 1 1 1 n’ _inz
¢i(2) = §q¢+ﬂpiz+—fﬂn§#o: g (37)

In order to guarantee the periodicity properties of the parafermionic currents and the
closure of their algebra we need a special mode distribution, e.g., the classical chiral
parafermions are defined as

Vi(z) = % (9261 % 1062) exp (£2i702(2)) | (38)
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where @; is ¢; with the linear term in z removed and the whole q zero mode of the free
field (29) is included. Then we get periodic parafermionic currents which have a closed
canonical algebra

{Vi(z), Ve(2)}
{Vi(2), V=(2')}

VAV (2) Vi (2)earn (2 — 2'),
1
VeV ez — )+ (e~ )

+ &5277(0- - Ul)a
™

2
{p2, Vi ()} = F2inVe(7), (39)
which provides the Virasoro algebra, and conformal weight one for the Vi
{T(2),Ve(2)} = = (02 Ve(2)02r (2 = &) = Vi(2')05 (2 — &)
$%Vi(z')5gw(z - 2. (40)

For quantisation let us define normal ordered periodic operators as follows

Vi(z) =: (ad,d1 £ 180.02) exp (£2iypa(2)) (41)

Classically, we have o = 3 = y~!. At the quantum level the parafermionic algebra closes
[11], provided the deformation parameters satisfy the condition

2,2
h
2o By (42)
T
Using the definition

1 z 1 z

) = _z _ in2 Z
h*(z) = 5 (6271-(2) 7r) F5- In (4 sin 2) , (43)

the deformed quantum parafermionic algebra takes the regularised form
Vi()Va(2)  Vi(2)Vi(z)

Qih Pt (z—2')  g—ihyPh (z—2') 0,
Vi(z)V:F(ZI) V:F(ZI)Vi(Z) h’YﬁQPQ / 3 92 ¢l ’
o—ih2ht (z—2)  gity?h-(2—2) _  ox Oor (2 — 2') +ihB7 05, (2 — 27).  (44)

The parafermionic operators are primary operators only if the energy-momentum-
tensor takes an improvement term. This means that quantum mechanically a dilaton
arises. More details will be given in [11].

6. Conclusion

Having completely integrated the classical SL(2,R)/U(1) theory, its full quantisation
remains still a challange. Although the classical solution of the SL(2,R)/U(1) gauged
WZNW model bears strong resemblance to Liouville or Toda theories its quantum struc-
ture might be different. The possible interelation of the quantum mechanically arising
dilaton with the space-time black hole of the theory seems to be especially interesting.
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