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Abstract

A multi-species generalization of the asymmetric simple exclusion process (ASEP)
is studied in ordered sequential and sub-lattice parallel updating schemes. In this
model, particles hop with their own specific probabilities to their rightmost empty
site and fast particles overtake slow ones with a definite probability. Using Matrix
Product Ansatz (MPA), we obtain the relevant algebra, and study the uncorrelated
stationary state of the model both for an open system and on a ring. A complete
comparison between the physical results in these updates and those of random se-
quential introduced in [20,21] is made.

1. Introduction

One dimensional models of particles hopping in a preferred direction provide simple
nontrivial realizations of systems out of thermal equilibrium [1,2,3,4]. In the past few years
these systems have been extensively studied and now there is a relatively rich amount of
results, both analytical and numerical, in the literature, (see [1,4] and references therein).
These types of models which are examples of driven diffusive systems, exhibit interesting
cooperative phenomena such as boundary-induced phase transition [5], spontaneous sym-
metry breaking [6,7] and single-defect induced phase transitions [8,9,10,11,12,24] which
are absent in one dimensional equilibrium systems.
∗Talk presented in Regional Conference on Mathematical Physics IX held at Feza Gürsey Institute,

Istanbul, August 1999.
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A rather simple model which captures most of the mentioned features is the Asymmetric
Simple Exclusion Process (ASEP) for which many analytical results have been obtained
in one dimension [1,4,13]. Besides its usefulness in describing various problems such as
kinetic of biopolymerization , surface growth , Burgers equation and many others (see [4]
and references therein), ASEP has a natural interpretation as a prototype model describ-
ing traffic flow on a one-lane road and constitutes the basis for more sophisticated traffic
flow models [14,15,16].

Derrida et al were first to apply Matrix Product Ansatz (MPA) in ASEP with open
boundaries [17]. Since then, MPA has been applied to many other interesting stochastic
models such as ASEP with a defect in the form of an additional particle with a different
hopping rate [11], the two species ASEP with oppositely charged particles moving in
same (opposite) directions [6,12,18] and many others. MPA has also been shown to be
successful in describing disorderd ASEP- like models. Evans [19] considered a model on
a ring where each particle hops with its own specific rate to its right empty site if it is
empty and stops otherwise (This model was simultaneously solved by Ferrari and Krug
[19]). The model shows two phases. In low densities the hopping rate of slowest particle
determines the average velocities of particles (phase I). When the density of particles
exceeds a critical value, it is then the total density which determines the average velocity
and the slowest particle looses its predominant role (phase II). This model has many
nice features both theoretically and idealistic but the possibility of exchanging between
particles has not been considered.

Very recently in [20], a multi-species generalization of ASEP has been proposed such
that exchange processes among different species has been implemented. In this model,
there are p-species of particles present in an open chain with injection (extraction) of each
species at boundaries. Each particle of i-type ( 1 ≤ i ≤ p ) hops forward with rate vi and
can exchange its position with its right neighbour particle of j-type with rate vi−vj . The
subtractive form of exchange rates allows that only fast particles exchange their positions
with slow ones.

Most of the above mentioned models have been defined in continuous time, where the
master equation of the stochastic process can be written as a schrödinger- like equation
for a “Hamiltonian” between nearest-neighbours [4,22]. In contrast, one can use discrete-
time formulation of such random processes and adopts other type of updating schemes
such as parallel, sub-parallel, forward and backward ordered sequential and particle or-
dered sequential (see [23] for a review). The MPA technique has been extended to a
sublattice parallel updating scheme [25,26] and in the case of open boundary conditions,
to ordered sequential scheme [27,28]. Although in traffic flow problems, parallel updating
is the most suitable one, only few exact results are known [15,29,30].

In general, it’s of prime interest to determine whether distinct updating schemes can
produce different types of behaviour. The present analytical results show that with chang-
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ing the updating scheme of the model, general features and phase structure remains the
same but the value of critical parameters may undergo some changes. In [23], Schreck-
enberg et al have considered ASEP under three basic updating procedures. Similarities
and differences have fully been discussed. Evans [29] has obtained analytical results in
ordered and parallel updates for his model which was first solved in random sequential
updating in [19]. He has demonstrated that the phase transition observed in [19] persists
under parallel and ordered sequential updating.

In this paper, we aim to study the p-species model introduced in [20] under ordered
sequential update scheme and will show that the features observed in [20] are reproduced
in ordered updating as well. Our results will be reduced to those of [23] when we set p=1.

2. The Model

2.1 p-species ASEP in ordered sequential updating

In this section we first briefly describe the p-species ASEP introduced in [20]. This
model consists of a one dimensional open chain of length L. There are p species of particles
and each site contains one particle at most. The dynamics of the model is exclusive and
totally asymmetric to right. Particles jump to their rightmost site provided that site is
empty, time is continuous and hopping of a particles of type i (1 ≤ i ≤ p) occurs with
the rate vi. To cast a more realastic model for describing traffic flow, there has been
considered the possibility of exchanging of two adjacent particles i.e. two neighbouring
particles of types (j) and (i) swap their positions with rate vj − vi , vj > vi. This
automatically forbids the exchange between low-speed and high-speed particles so it’s
a natural model for a one way traffic flow where fast cars can overtake the slow ones.
Denoting an i-type particle by Ai and a vacancy by φ, the bulk of the process is defined
by:

Aiφ −→ φAi with rate vi (i = 1, ..., p) (1)
AjAi −→ AiAj with rate vj − vi (j > i = 1, ..., p) (2)

In order for all the rates to be positive, the range of vi’s should be restricted as:

v1 ≤ v2 ≤ v3....≤ vp (3)

To complete the process, one should consider the possibility of injection and extraction
of particles at left and right boundaries. The injection (extraction) of particles of type i
at left (right) boundary occurs with the rate αi (βi).
This completes the definition of the model. Denoting the probability that at time t, the
system contains particles of type τi (τi = 0 refers to vacancy) at site i (0 ≤ τi ≤ p, 1 ≤
i ≤ L) by P (τ1, τ2, ..., τL, t), one can write the stationary state Ps(τ1, τ2, ..., τL) in form
of a Matrix-Product-State (MPS)
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Ps(τ1, ..., τL) ∼ < W |Dτ1 ...DτL|V > (4)

in which Dτi (0 ≤ τi ≤ p) is an ordinary matrix to be satisfied in some quadratic
algebra induced by the dynamical rules of the model and the vectors |V > < W | (reflecting
the effect of the boundaries) act in some auxiliary space [31,32]. Denoting D0 by E, the
quadratic algebra reads [20]

DiE =
1
vi
Di +E (1 ≤ i ≤ p) (5)

DjDi =
1

(vi − vj)
(viDj − vjDi) (1 ≤ i < j ≤ p) (6)

The vectors |V > and < W | satisfy

Di|V >=
vi
βi
|V > (7)

< W |E =< W | vi
pαi

(8)

In [20] using MPA, an infinite dimensional representation of the quadratic algebra is
obtained but the form of currents and density profiles could not been obtained by this
infinite dimensional representation. Instead, the simple case of one dimensional repre-
sentation was considered. Although restricting the algebra to be one dimensional, will
cause to loose all the correlations, but still many interesting features such as a kind of
Bose-Einstein condensation and boundary induced negative current [21], appear even in
this simple uncorrelated case.

In what follows, we describe p-species model under ordered sequential update.
As stated in the introduction, in ordered sequential updating, time is discrete and the
following events can happen in each time-step

Aiφ −→ φAi with probability vi (i = 1, ..., p) (9)
AjAi −→ AiAj with probability fji (j > i = 1, ..., p) (10)

We do not fix the form of fji’s and as will be seen, they will be fixed later. Particles are
also injected (extracted) at the first (last) site with the probability αi (βi). We denote the
probability of the configuration (τ1, ..., τL) at N’th time-step by P (τ1, ..., τL;N). We make
a Hilbert space for each site of the lattice consisting of basis vectors {|τ >, τ = 0, ..., p}
where |τ > denotes that the site contains a particle of type τ (vacancy is a particle of
type 0). The total Hilbert space of the chain is the tensor product of these local Hilbert
spaces. With these constructions, the state of the system at the N’th time-step is defined
to be |P,N > so that
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P (τ1, ..., τL;N) :=< τ1, ..., τL|P ;N > (11)

In ordered sequential updating one can update the system from right to left or from
left to right. In general these two schemes do not produce identical results, so it is
necessary to consider both of them separately. We first consider updating from right to
left (backward). The state of the system at (j + 1)’th time-step is obtained from j’th
time-step as follows

|P, j + 1 >= T←|P, j > (12)

where T← is

T← = L1T1,2T2,3 · · ·TL−2,L−1TL−1,LRL (13)

with

L1 = L⊗ 1⊗ · · · ⊗ 1 , RL = 1⊗ 1⊗ ...⊗ R (14)

Ti,i+1 = 1⊗ 1 · · · 1︸︷︷︸
i−1

⊗T ⊗ 1︸︷︷︸
i+2

· · ·1⊗ 1 (15)

According to (13), updating the state of the system in the next time-step consists
of the L + 1 sub-steps. First the site L is updated: if it is empty it is left unchanged,
but if it contains a j-type particle (1 ≤ j ≤ p) , this particle will be removed with the
probability βi from the site L of the chain, then the sites L and L − 1 are updated by
acting TL−1,L on |τL−1 > ⊗R|τL >. The effect of TL−1,L is to update the site L− 1 and
L according to the stochastic rules (9) and (10). After updating all the links from right
to left, one finally updates the first site: if it is occupied it’s left unchanged, if it is empty
then a particle of type i (1 ≤ i ≤ p) is injected with the probability αi. This procedure
defines one updating time-step. After many steps, one expects the system to reach its
stationary state |Ps > which must not change under the action of T← and therefore is an
eigenvector of T← with eigenvalue one

|Ps >= T←|Ps > (16)

The explicit form of T , R and L can be written as

T =
p∑
i=1

vi(E0i ⊗Ei0 − Eii ⊗ E00) +
p∑

j>i=1

fji(Eij ⊗ Eji − Ejj ⊗ Eii) + I (17)

R =
p∑
i=1

βi(E0i − Eii) + I (18)
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L =
p∑
i=1

αi(Ei0 − E00) + I (19)

Here the matrices Eij act on the Hilbert space of one site and have the standard
definition (Eij)kl = δikδjl.

2.2 Matrix Product Ansatz (MPA) for ordered sequential scheme (backward)
In this section we introduce MPA for the p-species model with right to left ordered

sequential updating scheme. As shown by Krebs and Sandow [31], the stationary state of
an one dimensional stochastic process with arbitrary nearest-neighbour interactions and
random sequential update can always be written as matrix product state (MPS) [31]. In
[32] Rajewsky and Schreckenberg have genaralized this to ordered sequential and sub-
parallel updating schemes which are intimately related to each other. Following [17,23]
we demand that

Ps(τ1, ..., τL) ∼ < W |Dτ1 ...DτL|V > (0 ≤ τi ≤ p)
where the matrices D0, ..., Dp and the vectors |V > , < W | are to be determined. Let’s

first write the above MPS in a more compact form via introducing two column matrices
A and Â

A =



E
D1

D2

.

.

.
Dp


Â =



Ê

D̂1

D̂2

.

.

.

D̂p


(elements of A and Â are usual matrices) so we formally write

|Ps >=
1
ZL

<< W |A⊗A ⊗ ...⊗ A|V >> (20)

where the normalization constant ZL is equal to <W |CL|V > with C = E+
∑p

i=1 Di.
The bracket << · · · >> indicates that the scalar product is taken in each entry of the
vector A⊗A · · · ⊗A. One can easily check that (20) is indeed stationary i.e. T←|Ps >=
|Ps > , if the following conditions hold

RA|V >= Â|V >, (21)
T (A ⊗ Â) = Â⊗ A, (22)
< W |LÂ =< W |A (23)
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This simply means that a “defect” Â is created in the beginning of an update at site
j = L, which is then transfered through the chain until it reaches the left end where it
disappears. Equations (17-19) and (21-23) lead to the following quadratic algebra in the
bulk :

[Di, D̂i] = [E, Ê] = 0 , i = 1, ..., p (24)
(1− vi)DiÊ − D̂iE = 0 , i = 1, ..., p (25)
ED̂i + viDiÊ = ÊDi , i = 1, ..., p (26)

fjiDjD̂i + DiD̂j = D̂iDj , j > i = 1, ..., p (27)

(1− fji)DjD̂i = D̂jDi , i > i = 1, ..., p (28)

and following relations

<W |(1−
p∑
i=1

αi)Ê =< W |E (29)

< W |(αiÊ + D̂i) =< W |Di , i = 1, ..., p (30)

(E +
p∑
i=1

βiDi)|V >= Ê|V > (31)

(1− βi)Di|V >= D̂i|V > , i = 1, ..., p (32)

3. Mapping of the p-species Ordered Sequential Algebra onto Random Se-
quential Algebra

In this section we find a mapping between the algebra (24-32) and (5-8). This mapping
for p = 1 (usual ASEP) was first done in [33] where it was shown that apart from some
coefficians, ASEP in an open chain with either random or ordered update, leads to the
same quadratic algebra. Here we show that this correspondence again holds for p-species
ASEP. We first demand

Ê = E + e (33)
D̂i = Di − di , i = 1, ..., p (34)

where e and di are c-numbers. Putting (33,34) into (24-32) one arrives at

viDiE = (1− vi)eDi + diE , i = 1, ..., p (35)
fjiDjDi = djDi − di(1− fji)Dj , j > i = 1, ..., p (36)

< W |E =< W |e( 1
α
− 1) (37)
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Di|V >=
di
βi
|V > i = 1, ..., p (38)

in which α =
∑p

i=1 αi and the following constraints must be satisfied

e =
p∑
i=1

di , αi = (
α

e
)di (i = 1, ..., p) (39)

One should note that as soon as restricting the algebra (24-32) to the conditions
(33,34), the probabilities of injection are no longer free and are restricted by (39). Up
to now the exchange probabilities fji have been free, however we have not yet checked
associativity of the algebra (35,36). Demanding associativity fixes these exchange prob-
abilities to be

fji =
vj − vi
1− vi

, j > i = 1, ..., p (40)

Remark: according to the discrete-time nature of updating procedure, fji’s are more
precisely, the conditional probabilities i.e. they express the probability of exchanging
between j and i-type particles provided that the i-type particle does not hop forward
during the sub time-step. Thus

prob(· · ·AiAj · · · ;N + 1| · · ·AjAi · · · ;N) ∼ fji(1 − vi) = vj − vi (41)

Threfore we see that overtaking happens with a probability proportional to the the
relative speed. With this requirement (35-38) yield

viDiE = (1− vi)eDi + diE , i = 1, ..., p (42)

DjDi =
1

vj − vi
{dj(1− vi)Di − di(1− vj)Dj} , j > i = 1, ..., p (43)

< W |E =< W |e( 1
α
− 1) (44)

Di|V >=
di
βi
|V >, i = 1, ..., p (45)

(42-45) is the mapped algebra of p-species ASEP in backward ordered sequential
updating onto random sequential updating. It can be easily verified that similar to one-
species ASEP [17], any representation of the algebra are either one or infinite dimensional.
In the following Di’s and E are explicitly represented
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Ẽ =



0 . . . . . .
1 0 . . . . .
0 1 0 . . . .
. 0 1 0 . . .
. . 0 . . . .
. . . . . . .
. . . . . . .



D̃i =



λi
λi(1−vi)

vi
λi

(1−vi)2

vi2
λi

(1−vi)3

vi3
. . .

0 1
vi

(1−vi)
vi

1
vi

(1−vi)2

vi2
1
vi

. .

0 0 1
vi

(1−vi)
vi

1
vi

. . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .


with λi = 1

(1+η)vi−η where η is a free parameter ( we have a class of representations).
Using (45), we multiply both side of (43) on |V > and we obtain

vj(1− βi) − vi(1− βj) = βj − βi , j > i = 1, ..., p (46)

solving this equations yields

βi = (1 + γ)vi − γ , i = 1, ..., p (47)

in which γ is a free parameter. Equation (47) gives the βi in terms of the vi, i.e. given
the hopping probability vi, the extraction probabilities βi’s are not free parameters any
more.

Requiring that all the probabilities to be positive, leads to the following condition on
vi’s

γ

γ + 1
≤ v1 ≤ v2... ≤ vp ≤ 1 , γε[0,∞[ (48)

We conclude this section with formulas for the current operators. In contrast to
random sequential updating where currents are local i.e. caused by at most a single
hopping of particles, in the ordered sequential updating, the currents are highly nonlocal
which to say can have many hoping sources according to the multiplicative nature of
transition matrix T←. In ordered sequential updating the mean current in the N ’th
time-step through the site k is defined by
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< n
(i)
k >N+1 − < n

(i)
k >N=< J

(i)
k−1,k >N − < J

(i)
k,k+1 >N (49)

Our attention is concentrated on the stationary state so N should go to ∞. With
introducing a bra vector

< S| :=
∑

τ1,...,τN

< τ1, ..., τL|

the l.h.s of (49) can be written as

< S|n(i)
k T←T

N
← |P (0) > − < S|n(i)

k TN← |P (0) > (50)

which in turn yields

< n
(i)
k >N+1 − < n

(i)
k >N=< S|[n(i)

k , T←]|Ps > (51)

We have used the fact that< S|T← =< S| which is justified if T← is the transfer matrix
of a stochastic process . Evaluating the commutator in (51), everything is expressed in
stationary state expectation values of densities which using MPS (20) would finally leads
to the expression for the current of i-type particles from the site k − 1 to k

< J
(i)
k−1,k >←=

< W |Ck−2J (i)CL−k|V >

< W |CL|V >
(52)

in which

J (i) = viDiÊ +
p∑
j>i

vi − vj
1− vj

DiD̂j −
p∑
j>i

vj − vi
1− vi

DjD̂i (53)

and

C = E +
p∑
i=1

Di (54)

The first term in (53) is due to hopping of the i-type particles, the second term corresponds
to the exchanges between an i-type and all the particles with lower hopping probabilities
than it and finally the last term expresses the exchanging between all the particles with
higher hopping probabilities and the i-type particle.

Using (33),(34) and the bulk algebra (42) and (43) one easily concludes that

J (i) = diC (55)

So the current and density of i-type particles through (at) site k are respectively given
by

< J
(i)
k >←= di

<W |CL−1|V >

< W |CL|V >
(56)
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< n
(i)
k >←=

< W |Ck−1DiC
L−k|V >

< W |CL|V >
(57)

Therefore all the currents are proportional to the average current J← , however J←
has a nontrivial dependence on hopping probabilities. The next section is devoted to
the one dimensional representation of the algebra (42-45). This case corresponds to the
steady state characterized by a Bernouli measure. In spite of its simplicity, still some
interesting features survive in a one dimensional representation.

4. One Dimensional Representation and Infinite-Species Limit

4.1 One dimensional representation

The simplest representation of the algebra (42-45) is to take the dimension of the
matrices to be one. For later convenience, let us replace all Di’s by Di

p
where p is

the number of species. Denoting Di
p

and E by c-numbers, Di
p

and E respectively, from
equations (44) and (45) we have

Di =
pdi

(1 + γ)vi − γ
, E = e(

1
α
− 1) (58)

Putting these numbers in (42) leads to

vi = 1 or
1
α
− 1
γ

= 1 (59)

The case vi = 1 corresponds to the ordinary 1-species ASEP which has been exten-
sively studied. Using (47) the second condition can be written as

(1 − α)(1− β̄) = (1− e) (60)

in which

α =
p∑
i=1

αi , β̄ =
p∑
i=1

βi
p

(61)

α is the total probability of injection of particles (note that α should be less than one)
and β̄ is the average probability of extraction of particles. In the special case of 1-species
(60) reduces to

(1− α1)(1− β1) = 1− d1

Comparing this with the usual ASEP [33] in which the condition for one dimensional
representation reads to be (1 − α)(1 − β) = 1 − p ( p is the hopping probability), make
us to take e as the average probability of hopping i.e. e =

∑p
i=1

vi
p . So a natural choice
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for di’s would be to take them vi
p . Now αi is proportional to 1

p and this guarantees the
convergence of the sum α =

∑p
i=1 αi in the large p limit. On the other hand, βi’s are

no longer proportional to 1
p

and the appearance of the factor 1
p

in β̄ is necessary for
making β̄ convergent in the large p limit. In one dimensional representation, the hopping
probabilities are restricted to

α ≤ v1 ≤ v2 ≤ v3....≤ vp ≤ 1 (62)

Within one dimensional representation, the stationary state is uncorrelated and is
given by |Ps >= |ρ >⊗L where

|ρ >=
1
c



E
D1
p
D2
p

.

.

.
Dp
p


, c = E +

1
p

(D1 + D2...Dp) ≡ E +
1
p
D (63)

The density and current of i-type particles are all site independent and are respectively
given by equations (57) and (56)

ρ←(α, i) =
Di
p

e( 1
α − 1) + D

p

J←(α, i) =
vi
p

e( 1
α − 1) + D

p

(64)

One can define total density and the total current by summing over all kind of species
and finds

ρ←(α) =
D
p

e( 1
α − 1) + D

p

J←(α) =
e

e( 1
α − 1) + D

p

(65)

4.2 Infinite-species limit

At this stage we consider the limit p → ∞, and we assume that the hopping proba-
bilities of particles are chosen from a continuous distribution P (v). Discrete quantities
1
pF (i) are transformed into f(v)P (v) and sums into integrals. Equations (64) and (65)
take the form

ρ←(α, v) =
D(α, v)P (v)

e( 1
α
− 1) + D(α)

J←(α, v) =
vP (v)

e( 1
α
− 1) + D(α)

(66)

340



FOULADVAND, JAFARPOUR

ρ←(α) =
D(α)

e( 1
α
− 1) + D(α)

J←(α) =
e

e( 1
α
− 1) + D(α)

(67)

where

D(α, v) =
(1− α)v
v − α and D(α) = (1− α)

∫ 1

α

v

v − αP (v)dv (68)

Although one has many choices for P (v), we first take the following [19]. It has the
merit that D(α) can be analytically evaluated.

P1(v) =
(m+ 1)

(1− α)m+1
(v − α)m , m ≥ 0 (69)

This is a normalized distribution that vanishes with some positive power in low-
velocities and increases up to v = 1. The average hopping probability e is found to
be

e =
∫ 1

α

vP1(v)dv =
(m+ 1)
(m+ 2)

(1− α) + α

expressing m in terms of e and α we have

m =
2e− α− 1

1− e (70)

for m to be positive, (70) implies (e, α ≤ 1)

2e− α− 1 ≥ 0 (71)

We first study the current-density relationship for a fixed hopping probability, e. In
order to do this, we evaluate D(α) with (68) and replace m from (70)

J←(α, e) =
e

e( 1
α − 1) + 2e−1−αe

2e−1−α
(72)

ρ←(α, e) =
2e−1−αe
2e−1−α

e( 1
α − 1) + 2e−1−αe

2e−1−α
(73)

The above expressions gives the total current and total density in terms of two control
parameters namely the total arrival probability α and the average hopping probabilty e.
We now eliminate α between J← and ρ← numerically which then gives the current density
diagram. This diagram is shown in Figure 1 for two values of e
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0.00
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ρ

e=0.71

e=0.71

e=0.81

e=0.81

Figure 1. The current versus the density for different values of e in backward updating. Con-

tinuous lines refer to P1(v) and dotted lines refer to P2(v).

Remark: Total current J← and total density ρ← are in general functions of three
control parameters e, α and m. Recalling that e is the average hopping probabilty , α is
the total rate of injection and m determines the shape of hopping distribution function.
Equation (70) implies that only two parameters are independent. There is a one-to-one
correspondence between the two dimensional parameter space defined by the surface (70)
and the current-density space. J← versus ρ← in Figure 1 corresponds to ntersection
of planes e = constant, with the surface defined by (70). We can instead look at the
intersection of α = constant planes with the surface and find the corresponding curves in
J← − ρ← plane. This is done by eliminating e between equations (72) and (73). Figure
2 shows these diagrams for some values of α.

Finally we consider the curves of constant m in J← − ρ← plane. To obtain these
curves, one should write J← and ρ← in terms of α and m as follows

J←(α,m) =
α(α+m+ 1)

(α+m+ 1)(1− α) + α(m+ 2)(1 + α
m )

(74)

ρ←(α,m) =
α(m+ 2)(1 + α

m )
(α+ m+ 1)(1− α) + α(m+ 2)(1 + α

m)
(75)

Eliminating α between ρ←(α,m) and J←(α,m) would give us the current-density
diagrams for a fixed value of m. Figure 3 shows these diagrams for some values of m. As
can be seen, the current does not vanish at ρ← = 1. This can be explained by noticing
that although at ρ← = 1, the chain is completely filled, still we have current via exchange
processes. At ρ← = 1, the more m decreases, the more J← approaches to zero.
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Figure 2. The current versus the density for different values of α in backward updating.

Continuous lines refer to P1(v) and filled squares refer to P2(v).
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Figure 3. The current versus the density for different values of m in backward updating.

Continuous lines refer to P1(v) and dotted lines refer to P2(v).

Using (72) and (74), we can also look at the behaviour of current itself as a function
of control parameters. In Figures 4 and 5, we show the dependence of J← on α ,e for
some fixed values of e and α. Note that for each α, there is a lower limit of e which can
be obtained through equation (70).

343



FOULADVAND, JAFARPOUR

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.00

0.10

0.20

0.30

J

α

e=0.71

e=0.71

e=0.81

e=0.81

Figure 4. The current versus the arrival probability of particles for different values of e in

backward updating. Continuous lines refer to P1(v) and dotted lines refer to P2(v).
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Figure 5. The current versus the total probability of hopping for different values of α in

backward updating. Continuous lines refer to P1(v) and dotted lines refer to P2(v).

Our second choice of velocity distribution function is the following

P2(v) =
(m+ 1)(m+ 2)

(1− α)m+2
(v − α)m(1− v) m ≥ 0 (76)
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It vanishes at v = α , v = 1 and has a maximum at vmax = m+α
m+1 . If m increases,

vmax approaches to one and if m decreases to zero , it approaches to α. Inserting P2(v)
into (39) we arrive at

m =
3e− 2α− 1

1− e (77)

using (67),(68) and (77), we express J← and ρ← in terms of e, α and α, m

J←(α, e) =
eα(2α+ 1− 3e)

e(1 − α)(2α− 3e+ 1) + α(2αe− 3e + 1)
(78)

ρ←(α, e) =
α(2αe+ 1− 3e)

e(1− α)(2α− 3e+ 1) + α(2αe− 3e+ 1)
(79)

J←(α,m) =
α(2α+ m+ 1)

(1− α)(2α+ m+ 1) + α(m+ 3)(2α
m

+ 1)
(80)

ρ←(α,m) =
α(m+ 3)(2α

m + 1)
(1− α)(2α+m+ 1) + α(m+ 3)(2α

m + 1)
(81)

We now eliminate α between J←(α, e) and ρ←(α, e) which leads to current-density
diagrams for fixed values of e. Dotted lines in Figure 1 shows these diagrams for the same
values of e.
Similar to P1(v), we can consider the current-density diagrams corresponding to constant
α and m. These diagrams are shown by dotted lines in figures (2) and (3) respectively.
Dependence of J← on α and e for P2(v) are also shown in Figures 4 and 5 by dotted lines.
Note that in Figure 5, the curves obtained from P1(v) asymptotically approach to those
of P2(v).
Here, we would like to discuss a feature of the infinite species limit which is somehow
reminiscent of Bose-Einestein condensation [19]. Equation (68) implies that the density
of particles with speed v is proportional to vP (v)

v−α . Taking (69,76) for P (v) we have

ρ(v) ∼ v(v − α)m−1 (82)

Recalling that α is the minimum speed of particles, equation (82) shows two different
kinds of behaviour depending on whether m > 1 or m < 1.

I) If m− 1 > 0 then ρ(v) → 0 for v → α

which means that density of low speed particles is small, i.e. most of the particles
move with rather high speed.

II) If m− 1 < 0 then ρ(v) →∞ for v → α.
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In contrast to the case I, here the density of low-speed particles are large and most of
the particles move with low speed , which can be interpreted as appearing of the traffic
jam phase.

5. p-Spesies ASEP with Forward Updating

5.1 Formulation

As stated in the introduction and section (2), instead of right to left (backward)
updating, one can change the direction of updating and starts from the first site of the
chain (forward updating) and updates from the left to the right in the same manner of
backward updating. Most of the steps are similar to backward updating and we only
write the results. The transfer matrix takes the following form

T→ = RLTL−1,L...T1,2L1 (83)
All the matrices are the same as in (17,18,19). The MPS for the steady state is written

as [23]

|Ps >→=<< W |Â⊗ Â⊗ ...⊗ Â|V >> (84)
Taking A and Â to satisfy the same algebra (21-23), makes |Ps >→ to be a stationary

state i.e. T→|Ps >→= |Ps >→. Here at first site i = 1 a “defect” A is created, then
transmited forward until it reaches the last site i = L where it disappears. Next we
consider formulae for the currents and densities. Here the situation is quite different and
the difference between forward and backward updating reveals itself. The definition of
currents reads from (49-51) and T← is replaced with (83). The mean current of i-type
particles through site k is found to be

< J
(i)
k−1,k >→=

< W |Ĉk−2J (i)ĈL−k|V >

< W |ĈL|V >
(85)

Where J (i) is the same as equation (53), and Ĉ = Ê +
∑p

i=1 D̂i. We again demand that
Ê and D̂i satisfy equation (33,34) which in turn let us revisit equation (42-45) and thus
we have

J (i) = diC (86)

Ĉ = C (87)
Putting (86,87) in (85) yields

< J (i) >→= di
<W |CL−2|V >

< W |CL|V >
(88)

346



FOULADVAND, JAFARPOUR

Also one can write the mean density of i-type particles at site k

< n
(i)
k >→=

<W |Ck−1(Di − vi)CL−k|V >

< W |CL|V >
(89)

5.2 One dimensional representation and infinite number of species limit in
forward updating

Again scaling all Di’s by a 1
p

factor, we now take Di
p

and E to be c-numbers. Similar
to backward update, they are Di

p
and E respectively and the equations (58-61) remain

the same. In one dimensional representation, the densities and the currents of i-type
particles are all site independent and are respectively given by

ρ→(α, i) =
(Dip −

vi
p )

e( 1
α − 1) + D

p

, J→(α, i) =
vi
p

e( 1
α − 1) + D

p

(90)

Comparing the above equations with their counterparts in backward updating, we see
that currents do not change but forward density undergoes the following modification

J→(α, i) = J←(α, i) = J(α, i) , ρ→(α, i) = ρ←(α, i)− J(α, i) (91)

The above relations reveals the difference between forward and backward updating.
Similar relation between backward and forward densities is seen in [23]. We again define
the total density and current by summing over densities and currents of all kind of species

J→(α) = J←(α) =
e

e( 1
α − 1) + D

p

, ρ→(α) = ρ←(α)− J(α) (92)

Now we take the limit of p → ∞. Adopting the same distribution functions P1(v) ,
P2(v) and using (92), one easily can obtain J→ and ρ→ as functions of e , α and m , both
for P1(v) and P2(v). Similar to the backward scheme, the corresponding current-density
diagrams can be obtained by eliminating one of the control parameters. These diagrams
are shown in Figures 6 to 8.
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Figure 6. The current versus the density for different values of e in forward updating. Contin-

uous lines refer to P1(v) and dotted lines refer to P2(v).
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Figure 7. The current versus the density for different values of α in forward updating. Contin-

uous lines refer to P1(v) and filled squares refer to P2(v).
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Figure 8. The current versus the density for different values of m in forward updating. Con-

tinuous lines refer to P1(v) and dotted lines refer to P2(v).

Remark:
Surprisingly as can be seen in fig(7), when ρ→ goes to zero, the value of J→ does not

vanish. This is an exclusive effect appearing only in forward updating.
It can be explained by noting that, according to the equations (92), (78) and (79), ρ→ = 0
yields e = 1. This means that we can only have one type of particles in the system which
deterministically hop with unit probability.
When the lattice is completely empty, i.e. ρ→ = 0, in the first site a particle is injected
with the probability α. Then according to the multiplicative nature of the transition
matrix, is transferred through the lattice, hence one has a non-zero current.
In general, the value of J→ at ρ→ is equal to α and this point refers to the point
(m =∞, e = 1, α) in parameter space.

We would like to end this section with some remarks on sub-parallel updating scheme.
In fact as stated in section 1, there are few exact results in parallel updating. The root of
this difficulty is the non-local nature of transfer matrix which in contrast to the ordered
sequential updating, can not be written as a product of local transfer matrices. A simpler
case is to consider a sub-parallel updating scheme [24]. In this scheme, one proceeds with
two half time-steps. In the first half, one updates the first site, last site and all pairs
(τi, τi+1) with an even i (L is taken to be even). Then in the second half time-step, one
updates all pairs (τi, τi+1) with i odd. So the transfer matrix is

Tsp = T (2)
sp T

(1)
sp (93)

with
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T (1)
sp = L1T2,3T4,5 · · ·TL−2,L−1RL (94)

T (2)
sp = T1,2T3,4 · · ·TL−1,L (95)

Defining MPS for sub-parallel updating as follows [25]

|Ps >sp=<< W |Â⊗ A⊗ Â⊗ · · · Â⊗ A|V >> (96)

It can be verified that Tsp|Ps >sp= |Ps >sp provided that equations (21-23) are
satisfied.

It is shown in [32] that sub-parallel and ordered sequential updating schemes are
intimately related to each other. It is proved that in general the following correspondence
exists

< n
(i)
k >sp=

{
< n

(i)
k >→ k odd

< n
(i)
k >← k even

(97)

< n
(i)
k n

(j)
l >sp=

{
< n

(i)
k n

(j)
l >→ k , l odd

< n
(i)
k n

(j)
l >← k , l even

(98)

where k and l refer to the lattice sites and i and j refer to the state of the site.
Using this general correspondence, we obtain the density profile of p-species ASEP under
sub-parallel updating ( one dimensional representation )

< n
(i)
k >sp=

Di
p

e( 1
α
− 1) + D

p

k = even (99)

< n
(i)
k >sp=

Di
p
− vi

p

e( 1
α − 1) + D

p

k = odd (100)

6. p-Species ASEP with Ordered Updating on a Ring

In this section we consider the p-species ASEP on a closed ring of N sites. We work
in a canonical ensemble in which the number of each species (i) is fixed to be mi and we
take the total number of particles to be M i.e.

∑p
i=1 mi = M .

The periodic system can be described by a one dimensional representation of the bulk
algebra (24-28). In this case the bulk algebra reduces to the following equations

(1− vi)diê = d̂ie (101)

(
1− vj
1− vi

)dj d̂i = d̂jdi (102)

The above equations yield
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d̂j =
ê

e
(1− vj)dj (103)

Here di and d̂i, correspond to one dimensional representations of Di and D̂i (not to
be confused with those introduced in (34)). Using (53) and (57) we obtain the following
forms for the density and the current of i-type particles :

ρ(i)
← =

di
e+

∑
i di

, J (i)
← = ê(vidi +

1
e

[vidi
∑
j

dj − di
∑
j

djvj ]) (104)

Summing over i, we obtain the total current and density

ρ← =
∑

i di
e+

∑
i di

, J← = ê
∑
i

vidi (105)

Defining the population averaged velocity < v > as follows

< v >=
∑

imivi∑
imi

(106)

and rescaling the di’s and e so that

e+
∑
i

di = ê +
∑
i

d̂i = 1 (107)

we arrive at

J← =
< v >ρ←(1− ρ←)

1−< v >ρ←
(108)

which is the current-density relation of p-species ASEP on a ring with backward updating.
Comparing it with the usual ASEP on ring with backward updating in [23], we see that
they both have the same form. In p species model, < v > plays the role of hopping
probability in usual ASEP. Figure 9 shows J← versus ρ← for different values of < v >.
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Figure 9. The current versus the density for different values of < v > in backward updating.

The maximum current occurs at

ρmax← (< v >) =
1− (1− (< v >)

1
2 )

< v >
≥ 1

2
(109)

We now consider the forward updating. Note that since we don’t have particle-hole
symmetry, the current-density relation in forward updating can not be obtain from the
one in backward updating and should be considered seperately. In forward updating we
have

ρ(i)
→ =

d̂i

ê+
∑
i d̂i

, J (i)
← = J (i)

→ (110)

Using (101-103) and (107), after straightforward calculations, we arrive at

J→ =
(1− ρ→)ρ→ < v

1−v >

1 + ρ→ < v
1−v >

(111)

where

<
v

1− v >=

∑
i

vi
1−vimi∑
imi

(112)

If we now take p = 1 , < v
1−v > will reduce to v1

1−v1
and (111) takes the following form

J→ =
v1ρ→(1− ρ→)

1− v1ρ→
(113)
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and the particle-hole symmetry is recovered [23] i.e. (113) is obtained from (108) by
changing ρ← to 1− ρ→.

Fig(10) shows J→ versus ρ→ for different values of < v
1−v >.

The maximum of J→ has moved to the left. This maximum occurs at

ρmax→ (<
v

1− v >) =
1

< v
1−v >

[(1+ <
v

1− v >)
1
2 − 1] ≤ 1

2
(114)
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Figure 10. The current versus the density for different values of < v
1−v > in backward updating.

7. Comparison and Concluding Remarks

Here we compare our results with those of [20] and specify the similarities and dif-
ferences between ordered and random sequential updating procedures. We first discuss
the similarities. Through the mapping procedure, the three type of update i.e Random
Sequential (RS), Backward Sequential (BS) and Forward Sequential (FS) have proven to
be described by quadratic algebras with similar structures. Rate (probability) of injection
of particles is proportional to their velocities in all three schemes. Also the extraction
rate (probability) of a particle appears as a function of its velocity (see table I). These
dependences are consequences of the form of the quadratic algebras (5-8, 42-45 ). In all
schemes, the steady current of each species is proportional to the total current. The pro-
portionality constant is the hopping rate. Another feature which is common in the large
p limit , is the sharp increase in the density of low speed particles which can somehow be
interpreted as a kind of Bose-Einstein condensation (see equations 82). Now we discuss
the differences of the schemes. When considering infinite species limit, one can inves-
tigate the characteristics of both schemes with a limited number of control parameters.
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As long as analytical calculations are concerned, these control parameters are α, e and
m in ordered schemes and α, m and λ in random scheme where m and λ determine the
shape of distribution function [20] (see Table 1). One of the advantages of the ordered
scheme is the appearance of the more physical parameter e in control parameters, which
is absent in random scheme. Recalling that e = average hopping probability, in RS, time
is so rescaled such that e equals one. On the contrary in ordered updating e remains as
a free parameter. This is one of the main differences between two updating schemes. In
this paper, we made a more complete investigation of the current- density and current
diagrams for different regions of parameter space.

Table 1.

Type of RSU BSU FSU
update

αi=injection rate αi = α
p
vi αi = vi

p
α
e

αi = vi
p
α
e

βi=extraction rate
vi=hopping rate βi = vi + β̄ − 1 βi = (1 + γ)vi − γ βi = (1 + γ)vi − γ

Velocity distribution P (v) ∼ (v − α)me
−(v−α)

λ P1(v) ∼ (v − α)m P1(v) ∼ (v − α)m

in large p limit
P2(v) ∼ P1(v)(1− v) P2(v) ∼ P1(v)(1− v)

Control parameters m,λ, α m, e, α m, e, α

J (i)=Current of i-type J (i) = vi
p
JRSU J

(i)
← = vi

p
J J

(i)
→ = vi

p
J

particles

Mean field line (α+ β) = 1 (1− α)(1− β̄) = (1− α)(1− β̄) =
1− e 1− e

We also evaluated the dependence of the current on the density for fixed values of α
in RS. The corresponding diagram is very similar to ours in Figure 2. Only the values of
current and minimum allowed value of the density are different.

Regarding BS and FS, one observes destinctive differences in their associated dia-
grams. Comparing Figures 1 and 6, the left-shifting of the value of the density where
the current is maximum is depicted. The main difference between Figures 2 and 7 is
the non-vanishing current at vanishing values of the density. This is due to the forward
nature of update which allows for the created particle at the first site to move freely
along the chain. Between Figures 3 and 8, one does not observe a qualitative difference.
It may worth noting that the curves corresponding to P1(v) undergoes heavier changes
than those of P2(v).

In the following table, we summerize some of the results.
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As demonstrated in the previous sections, setting p = 1, one recovers all the results
obtained in the usual ASEP [23]. All the result of this paper and [20] have been obtained
in a restricted region of parameters space (αi, βi, vi) where mean field approximation
becomes exact. It would be a highly nontrivial task to investigate the physical properties
of the hole regions of parameter space either by infinite dimensional representations or
by the explicit use of quadratic algebra.
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