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Abstract

2–Dim quantum Poincaré Group Eq(1, 1) at roots of unity, its dual Uq(e(1, 1))
and some of its homogeneous spaces are introduced. Invariant integrals on Eq(1, 1)
and its invariant discrete subgroup E(1, 1 | p) are constructed. ∗–Representations of
the quantum algebra Uq(e(1, 1)) constructed in the homogeneous space SO(1, 1 | p)
are integrated to the pseudo–unitary representations of Eq(1, 1) by means of the

universal T–matrix. Uq(e(1, 1)) is realized on the quantum plane E
(1,1)
q and the

eigenfunctions of the complete set of observables are obtained in the angular mo-
mentum and momentum basis. The matrix elements of the pseudo–unitary irre-
ducible representations are given in terms of the cut off q–exponential and q–Bessel
functions whose properties we also investigate.

1. Introduction

Finite dimensional representations of the quantum algebra Uq(g) for real q is very similar
to the representations of the universal enveloping algebra U(g) where g is the complex
simple Lie algebra [17, 19, 23, 24]. Theory of the algebraic quantum group Gq which is
the Hopf algebra of the quantized polynomials on the Lie group G is essentially the same
as that of G too (see [26] and references therein ). Matrix elements of the irreducible
representations of Gq are expressed in term of the q–special functions which are the
generalization of the ones related to the Lie group G. There also exist an invariant
distance [1], an invariant integral and Peter–Weyl approximation theorem [27] on the
compact quantum group Gq and its symmetric spaces.
∗Talk presented in Regional Conference on Mathematical Physics IX held at Feza Gürsey Institute,

Istanbul, August 1999.
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On the other hand the quantum algebra Uq(g) at roots of unity admits finite di-
mensional irreducible representations which have no classical analogs [6, 10, 11, 20, 22].
Because of the peculiar algebraic structure of these representations quantum algebras at
roots of unity have found interesting applications, especially in determining knot invari-
ants [21] and in the quantum Hall effect [13]. Unlike the case of real q theory of the dual
space Gq at roots of unity is not well established :

(i) what is the structure of the quantum group Gq at roots of unity ?
(ii) what are the q–special functions related to Gq at roots of unity?
(iii) are there invariants (integral, distance ) on Gq at roots of unity?
For the quantum group SLq(2, C) at roots of unity some aspects of this programm

was developed in the series of papers [2, 9, 16]. Quantum groups at roots of unity appear
to be a natural generalization of the usual supersymmetry to the fractional one ( FSUSY
) which replaces the Z2–grading of the SUSY algebra with a Zp–graded algebra in such
a way that the FSUSY transformation mix elements of all grades [3] (see also [12] and
references therein ).

The purpose of this paper is to solve the problems (i), (ii) and (iii) for the 2–dim
quantum Poincaré group Eq(1, 1) at qp = 1. This group is the Zp–graded product of
the p3–dimensional invariant E(1, 1 | p) and translation R2 subgroups. We define the
invariant integral on Eq(1, 1) and demonstrate that all the methods of representation
theory available at generic q can be extended on this group.

In Section 2 we define the quantum Poincaré group Eq(1, 1) at roots of unity, its
homogeneous spaces E(1, 1 | p), SO(1, 1 | p), M (1,1), E

(1,1)
q and the dual space Uq(e(1, 1)).

Section 3 is devoted to the construction of the invariant integral on Eq(1, 1) and its
invariant discrete subgroup E(1, 1 | p). The irreducible ∗–representation of Uq(e(1, 1))
constructed in Section 4 are integrated to the pseudo–unitary irreducible representations
of Eq(1, 1) by means of the universal T–matrix in Section 5. The matrix elements of
these representations and some of their properties are investigated in Section 5 also. In
Section 6 we realize the quantum algebra Uq(e(1, 1)) on the quantum plane E

(1,1)
q and

obtain the eigenfunctions of the complete set of commuting elements of Uq(e(1, 1)) in the
angular momentum and momentum basis.

2. 2–Dim Quantum Poincaré Group Eq(1, 1) at Roots of Unity

Let us start by reviewing the principal facts of the 2–dimensional complex quantum
Euclidean group Eq(2, C) and its dual Uq(e(2, C)) [4].

The quantum group Eq(2, C) is the Hopf algebra A(Eq(2, C)) generated by η± and
δ∓1 satisfying the relations

η−η+ = q2η+η−, η±δ = q2δη± (1)

and

∆(η±) = η± ⊗ 1A + δ±1 ⊗ η±, ∆(δ) = δ ⊗ δ,

ε(δ±1) = 1, ε(z±) = 0, S(δ±1) = δ∓1, S(η±) = −δ∓1η±. (2)
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The quantum algebra Uq(e(2, C)) is the Hopf algebra generated by p± and κ±1 satisfying
the relations

p+p− = p−p+, p±κ = q∓1κp± (3)

and

∆(p±) = p± ⊗ κ + κ−1 ⊗ p±, ∆(κ) = κ⊗ κ,

ε(p±) = 0, ε(κ±1) = 1, S(p±) = −q±1p±, S(κ±1) = κ∓1. (4)

The duality pairings between A(Eq(2, C)) and Uq(e(2, C)) are given by

〈κj , δj
′
〉 = qjj

′
, j, j′ ∈ Z (5)

and
〈pn±, ηm± 〉 = inq±

n
2 [n]!δnm, n, m ∈ N, (6)

where

[n] =
qn − q−n

q − q−1
, [n]! = [1][2] · · · [n].

Since ∆ is a homomorphism (2) implies that

∆(ηn±) =
n∑

m=0

[
n
m

]
±

ηn−m± δ±m ⊗ ηm± , (7)

where [
n
m

]
±

= q±m(m−n) [n]!
[n−m]![m]!

.

The Hopf algebra A(Eq(2, C)) has two real forms A(Eq(2)) and A(Eq(1, 1)) defined by
the involutions

δ∗ = δ−1, η∗± = η∓ for q ∈ R

and
δ∗ = δ, η∗± = η± for | q |= 1 (8)

respectively. The 2–dimensional quantum Euclidean group Eq(2) which is the ∗–Hopf
algebra A(Eq(2)) was treated in detail in [25, 28, 5]. A(Eq(1, 1)) is the 2–dimensional
quantum Poincaré group Eq(1, 1). The Hopf algebra Uq(e(2, C)) has two real forms
Uq(e(2)) and Uq(e(1, 1)) defined by the involutions

p∗± = p∓, κ∗ = κ for q ∈ R

and
p∗± = p±, κ∗ = κ for | q |= 1 (9)

respectively.
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For future convenience we would like to introduce the convolution product �. Let
ξ : A→ V be the homomorphic map of a Hopf algebra A to a linear space V . We set

ξ � f = (id⊗ ξ)∆(f), f � ξ = (ξ ⊗ id)∆(f), ξ � ξ = (ξ ⊗ ξ)∆.

Clearly ξ � f and f � ξ belong to A ⊗ V and V ⊗ A respectively; ξ � ξ is homomorphic
map of A⊗ A into V ⊗ V .

When q is a root of unity qp = 1 (we deal with odd p ) the duality relations (5) and
(6) become degenerate. To get rid of these degeneracies we have to redefine the ∗–Hopf
algebras A(Eq(1, 1)) and Uq(e(1, 1)).

To remove the degeneracy in (5) we put

δp = 1A (10)

and
κp = 1U . (11)

Instead of (5) we then have

〈κn, ζ(m)〉 = δnm, n, m ∈ [0, p− 1], (12)

where

ζ(m) =
1
p

p−1∑
n=0

q−nmδn, m ∈ [0, p− 1],

which satisfies the periodicity property ζ(m + pj) = ζ(m), j ∈ Z.
To remove the degeneracy in (6) we put

ηp± = 0 (13)

such that new variables z±

z± = lim
qp=1

(−1)
p+1

2
ηp±
[p]!

(14)

are well defined. The above limiting process stems from the work De Concini, Kac and
collaborators, and Lusztig which also appears in two recent monographs [7], [15], from
which it can be traced back to the original references. The expression (6) now reads

〈pn±, ηm± 〉 = inq±
n
2 [n]!δnm, n, m ∈ [0, p− 1] (15)

and
〈P n
±, zm± 〉 = inn!δnm, n, m ∈ N, (16)

where P± = pp±. Inspecting (1) and (14) we conclude that the new variables z± commute
with η± and δ. By the virtue of (7) and (14) we obtain

∆(z±) = z± ⊗ 1A + 1A ⊗ z± + (−1)
p+1

2

p−1∑
n=1

q±n
2

[p− n]![n]!
ηp−n± δ±n ⊗ ηn±.
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Moreover, we have
S(z±) = −z±, ε(z±) = 0, z∗± = z±.

At this point we would like to introduce the short hand notation

∆(z) = Z + B,

where z = (z+, z−), Z = (Z+, Z−), B = (B+, B−) and

Z± = z± ⊗ 1A + 1A ⊗ z±, B± = (−1)
p+1

2

p−1∑
n=1

q±n
2

[p− n]![n]!
ηp−n± δ±n ⊗ ηn±.

Since B2
± = 0 for any function f from the space C∞(R2) of all infinitely differentiable

functions on R2 we have

∆(f(z)) = f(Z) +
df

dz+
|z=Z B+ +

df

dz−
|z=Z B− +

d2f

dz+dz−
|z=Z B+B−. (17)

We can also define the antipode, counite and involution on C∞(R2). They are given by

S(f(z)) = f(−z), ε(f(z)) = f(0), (f(z))∗ = f(z), (18)

where the bar denotes the usual complex conjugation.
Let A(E(1, 1 | p)) be the space of polynomials of η± and δ. The restrictions (10), (13)

together with (1),(2) and (8) imply that it is finite ∗–Hopf algebra with dimension p3.
We call it reduced quantum Poincaré group and denote by E(1, 1 | p).

Definition 1 Quantum Poincaré group Eq(1, 1) at roots of unity is the ∗– algebra
A(Eq(1, 1)) = A(E(1, 1 | p)) × C∞(R2) with a Hopf algebra structure given by (2), (17)
and (18).

Let us define the homomorphism ξC : A(Eq(1, 1))→ C∞(R2), such that

ξC(η±) = 0, ξC(δ) = 1, ξC (z±) = z±.

From (17) we get
ξC � ξC(f(z)) = f(Z). (19)

The operations (18) and (19) define a Hopf algebra structure on C∞(R2). The transfor-
mation law

ξC � ξC(z±) = z± ⊗ 1 + 1⊗ z±

implies that the ∗–Hopf algebra C∞(R2) is the space of all infinitely differentiable func-
tions on the translation group R2. The quantum Poincaré group Eq(1, 1) at roots of unity
contains the invariant discrete E(1, 1 | p) and translation R2 subgroups. Using the group
multiplication law (17) and analogies with the supersymmetry theory we call Eq(1, 1)
Zp–graded product of E(1, 1 | p) and R2.
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The quantum group E(1, 1 | p) contains p-dimensional invariant subgroup SO(1, 1 | p),
which is the ∗–Hopf algebra A(SO(1, 1 | p)) of polynomials of δ subject to the restriction
(10). The right sided coset M (1,1) = E(1, 1 | p)/SO(1, 1 | p) is the subspace A(M (1,1)) of
A(E(1, 1 | p)) defined as

A(M (1,1)) = {a ∈ A(E(1, 1 | p)) : ξS � a = a⊗ 1},

where ξS be the homomorphic map of A(E(1, 1 | p)) into A(SO(1, 1 | p)), such that

ξS(η±) = 0, ξS(δ) = δ.

One can show that
ξS � ηn+ηm− δk = ηn+ηm− δk ⊗ δk

which implies that ηn+ηm− , n, m ∈ [0, p− 1], form a basis of A(E(1,1)
p ). The elements

e±nm =
ηp−1−n

+ ηp−1−m
− ± ηn+ηm−√

q2n+1 + q−2n−1
, n, m ∈ [0, p− 1] (20)

also form a basis in M (1,1)) which are independent in the range

n ∈ [0, n0− 1], m ∈ [0, 2n0] and n = n0, m ∈ [0, n0],

where p = 2n0 + 1. The number of independent vectors e+
nm and e−nm are p2+1

2
and p2−1

2
respectively.

The quantum plane E
(1,1)
q = Eq(1, 1)/SO(1, 1 | p) is the subspace A(E(1,1)

q ) of A(Eq(1, 1))
defined as

A(E(1,1)
q ) = A(M (1,1)

p )× C∞(R2).

Definition 2 The quantum algebra Uq(e(1, 1)) at roots of unity is the ∗–Hopf algebra
generated by p± and κ subject to condition (11). The monomials

P t
+P s
−pn+pm−κk, n, m, k ∈ [0, p− 1], t, s ∈ N, (21)

where P± = pp±, form a basis of Uq(e(1, 1)). The ∗–Hopf algebra structure of Uq(e(1, 1))
is given by (3), (4), (9) and

∆(P±) = P± ⊗ 1 + 1⊗ P±, S(P±) = −P±, ε(P±) = 0, P ∗± = P±.

The ∗–Hopf algebra U(r2) generated by P± forms the invariant ∗–sub–Hopf algebra
of Uq(e(1, 1)), which is dual to the Hopf algebra C∞(R2). More precisely due to the
Schwartz theorem U(r2) is isomorphic to the subspace of distributions on C∞(R2) with
support at the unit element (0, 0) ∈ R2.

The homomorphism ξ′C : Uq(e(1, 1))→ U(e(1, 1 | p)) given by

ξ′C(p±) = p±, ξ′C(κ) = κ, ξ′C(P±) = 0
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defines another sub–Hopf algebra of Uq(e(1, 1)), which is generated by the elements p±
and κ subject to the conditions

pp± = 0, κp = 1U .

U(e(1, 1 | p)) is in non–degenerate duality with A(E(1, 1 | p)).

3. Invariant Integral on Eq(1, 1)

Theorem 1 The linear functional I on A(E(1, 1 | p)) such that

I(ηn+ηm− δk) = q−1δn,p−1δm,p−1δk,0(mod p)

defines the unique invariant integral on the reduced quantum Poincaré group E(1, 1 | p).

Proof . Let us find the linear functional I ′ on A(E(1, 1 | p)) which for any element a
from A(E(1, 1 | p)) satisfies the left

I ′ � a = I ′(a)1A

and right
a � I ′ = I ′(a)1A

invariance conditions. By the virtue of (7) for a = ηn+ηm− δk the left invariance condition
reads

n,m∑
t,s=0

[
n
t

]
+

[
m
s

]
−

q2t(s−m)ηn−t+ ηm−s− δk−s+tI ′(ηt+ηs−δk) = 1AI ′(ηn+ηm− δk)

which implies

I ′ � (ηt+ηs−δk) = 0 for t ∈ [0, n− 1], s ∈ [0, m− 1]

and
k + n−m = 0(mod p). (22)

If n, m ∈ [0, p− 2] we can employ the above reasoning for the element a = ηn+1
+ ηm+1

− δk

and obtain
I ′(ηn+ηm− δk) = 0 for n, m ∈ [0, p− 2]. (23)

(22) and (23) imply that the linear functional I ′ satisfies the left invariance condition if

I ′(ηn+ηm− δk) = ωδn,p−1δm,p−1δk,0(mod p),

where ω is an arbitrary complex number. In a similar fashion one can show that the right
invariance implies the same condition on I ′. Thus every linear functional on A(E(1, 1 | p))
satisfying the left and right invariance conditions is proportional to I. 2

181



AHMEDOV

Define the bilinear form (·, ·)p on E(1, 1 | p) by

(a, b) = I(ab∗). (24)

Because of the property
I(a∗) = I(a)

this bilinear form is Hermitian. The vectors e±nm spanning the basis of the coset space
A(M (1,1)) are orthonormal with respect to the above form

(e±nm, e±n′m′ ) = ±δnn′δmm′ , (e±nm, e∓n′m′ ) = 0. (25)

Thus A(M (1,1)
p ) equipped with the Hermitian form (24) is the pseudo–Euclidean space

with p2+1
2

positive and p2−1
2

negative signatures.
Let IC be the linear functional on the space C∞(R2) of all infinitely differentiable

functions with finite support in R2 given by

IC(f) =
∫ ∞
−∞

∫ ∞
−∞

dz+dz−f(z+ , z−) (26)

and let A0(Eq(1, 1)) be the subspaces

C∞0 (R2) ×A(E(1, 1 | p))

of A(Eq(1, 1)) whose any element F is the finite sum

F =
∑
n

anfn,

where fn ∈ C∞0 (R2) and an ∈ A(E(1, 1 | p)). It is clear that IC is the invariant integral
on the translation group satisfying the properties

(IC ⊗ id)(ξC � ξC)(f) = ζ(f), (id⊗ IC)(ξC � ξC)(f) = ζ(f) (27)

for any f ∈ C∞0 (R2).

Theorem 2 The linear functional IE on A0(Eq(1, 1)) given by

IE(F ) =
∑
n

I(an)IC(fn)

defines the unique invariant integral on the quantum Poincaré group Eq(1, 1).

Proof. By the virtue of (17) and (19) for G = af we have

IE �G = (id⊗ IE)[∆(a){(ξC � ξC)(f) + B+(ξC � ξC)(
df

dz+
)

+B−(ξC � ξC)(
df

dz−
) + B+B−(ξC � ξC)(

d2f

dz+dz−
)}].
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By making use of (27) we get

IE �G = 1AI(a)IC(f) + (id ⊗ I)[∆(a){B+IC(
df

dz+
) + B−IC(

df

dz−
)}]

+(id ⊗ I)(∆(a)B+B−)IC(
d2f

dz+dz−
).

Using the properties

ζC(
df

dz±
) = 0, ζC(

d2f

dz+dz−
) = 0

satisfied by the functions f ∈ C∞0 (R2) we arrive at

IE �G = 1AI(a)IC(f) = 1AIE(G),

which together with the linearity of the functional IE implies

IE � F = 1AIE(F )

for any F ∈ A0(Eq(1, 1)). We have proved the left invariance condition. In a similar
fashion one can prove the right invariance condition. The uniqueness of the invariant
integral IE follows from the uniqueness of the invariant integrals I and IC . 2

By means of the invariant integral we define in Eq(1, 1) the bilinear form by

(F, G)E = IE(FG∗), (28)

where F , G ∈ A0(Eq(1, 1)). Because of the property

IE(F ∗) = IE(F )

this bilinear form is Hermitian.
Let A0(E

(1,1)
q ) be the subspace

C∞0 (R2)× A(M (1,1)).

of A(E(1,1)
q ) whose any element X is the finite sum

X =
∑
nm

f+
nme+

nm +
∑
nm

f−nme−nm,

where e±nm form a basis of A(M (1,1)) and fnm ∈ C∞0 (R2). By the virtue of (25) we get

(X, X)E =
∑
nm

IC(f+
nmf+

nm)−
∑
nm

IC(f−nmf−nm), (29)

which implies that A0(E
(1,1)
q ) equipped with the Hermitian form (28) is the pseudo–

Euclidean space.
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4. Irreducible ∗–Representations of Uq(e(1, 1))

The homomorphism Lλ : Uq(e(1, 1))→ Lin A(SO(1, 1 | p)) given by

Lλ(p±)δm = λ±δm±1, Lλ(κ)δm = qmδm (30)

for λ = (λ+, λ−) 6= (0, 0) defines p–dimensional irreducible representation of the quan-
tum algebra Uq(e(1, 1)) in the linear space A(SO(1, 1 | p)). Since δp = 1A for any
a ∈ A(SO(1, 1 | p)) we have

Lλ(P±)a = λp±a

This representation is cyclic. For λ = (0, 0) we have one dimensional representation

L(m)(p±)δm = 0, L(m)(κ)δm = qmδm (31)

with the weight m ∈ [0, p−1]. The homomorphisms Lλ and L(m) exhaust all irreducible
representations of the quantum algebra Uq(e(1, 1)). This is rather trivial consequence of
the general theory presented in [11], to which we refer for proof and details. Representa-
tions of the quantum algebra Uq(e(1, 1)) is also considered in [8]. However the quantum
algebra studied in [8] differs because there the restriction (10) is not considered.

Let us find out when the homomorphism Lλ defines ∗–representation of the quantum
algebra Uq(e(1, 1)), that is when for any φ ∈ Uq(e(1, 1)) we have

(Lλ(φ))∗ = Lλ(φ∗) (32)

For this purpose we define in A(SO(1, 1 | p)) the Hermitian form

(a, b)S = IS(a∗b), (33)

where IS is the invariant integral on SO(1, 1 | p) given by

IS(δm) = δm,0(mod p).

For n, m ∈ [0, p− 1] we have

(δn, δm)S = δm+n,0 + δm+n,p, (34)

which implies that the vectors

e±m =
1√
2
(δm ± δp−m), m ∈ [0,

p− 1
2

]

are orthonormal with respect to the Hermitian form (33)

(e±m, e±k )S = ±δmk , (e∓m, e±k )S = 0.

The ∗–Hopf algebra A(SO(1, 1 | p)) equipped with the Hermitian form (33) is pseudo–
Euclidean space with p+1

2 positive and p−1
2 negative signatures.
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The adjoint (Lλ(φ))∗ of the linear operator Lλ(φ) is defined as

(Lλ(φ)a, b)S = (a, (Lλ(φ))∗b)S ,

where a, b are arbitrary elements from A(SO(1, 1 | p)). Using the representation formula
(30) and the involution (9) we conclude that when λ± are real numbers the homomorphism
Lλ defines ∗–representation of the quantum algebra Uq(e(1, 1)). The homomorphism L(m)

also defines ∗–representation of Uq(e(1, 1)).

5. Pseudo–Unitary Irreducible Representations of Eq(1, 1)

Let us briefly recall the construction and the main properties of universal T− matrix
[14]. Consider two Hopf algebras A(G) and U(g) in non–degenerate duality. Let {xa}
and {Xb} be dual linear basis of A(G) and U(g) respectively, with a and b running in an
appropriate set of indices, so that 〈xa, Xb〉 = δab. We define the element T ∈ U(g)⊗A(G)
as

T =
∑
a

xa ⊗Xa.

The universal T–matrix is a resolution of the identity which maps the Lie group G into
itself. Moreover, if we choose the representation of U(g) we correspondingly obtain the
corepresentation of A(G) or representation of G.

The elements zt+zs−ηn+ηm− ζ(k) and (21) defines the linear basis in A(Eq(1, 1)) and
Uq(e(1, 1)) respectively. Introducing the cut off q–exponential

ex± =
p−1∑
m=0

q±
m(m−1)

2

[m]!
xm. (35)

by the direct calculation we arrive at the following result.

Proposition 1 We have the duality relations

〈P t
+P s
−pn+pm−κk, zt

′

+zs
′

−ηn
′

+ ηm
′

− ζ(k′)〉 = in+m+t+lq
n−m

2 −nmt!s![n]![m]!
δnn′δmm′ δtt′δll′ δk+t+l,k′ ,

which implies that the universal T–matrix in Uq(e(1, 1))⊗ A(Eq(1, 1)) has the form

T = e−iP+⊗z+−iP−⊗z−e
iε+⊗η+
+ e

iε−⊗η−
− D(κ, δ),

where
ε± = −q∓

1
2 p±κ−1

and

D(κ, δ) =
1
p

p−1∑
m,k=0

q−mkκm ⊗ δk
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The universal T–matrix satisfies the properties

[(∗ ⊗ ∗)T ] · T = 1U ⊗ 1A, T · [(∗ ⊗ ∗)T ] = 1U ⊗ 1A (36)

and
(id⊗∆)T = (T ⊗ 1A)(id ⊗ σ)(T ⊗ 1A), (37)

where σ(F ⊗G) = G⊗ F , F , G ∈ A(Eq(1, 1)) is the permutation operator.
Define the linear map Tλ : A(SO(1, 1 | p))→ A(SO(1, 1 | p))⊗A(Eq(1, 1)), such that

Tλa = e−iL
λ(P+)⊗z+−iLλ(P−)⊗z−e

iLλ(ε+)⊗η+
+ e

iLλ(ε−)⊗η−
− D(Lλ(κ), δ)(a⊗ 1). (38)

Due to (37) and the irreducibility of the representation Lλ we conclude that the above
linear map defines p–dimensional irreducible representations of the quantum Poincaré
group in the linear space A(SO(1, 1 | p)). Let us extend the Hermitian form (33) to the
form {·, ·}S by setting

{a⊗ F, b⊗G}S = F ∗G(a, b)S, (39)

where F , G ∈ A(Eq(1, 1)) and a, b ∈ A(SO(1, 1 | p)). When λ± are real numbers due to
(36) we get

{Tλa, Tλb}S = (a, b)S1A. (40)

Thus the irreducible representation Tλ of the quantum group Eq(1, 1) in the pseudo–
Euclidean space A(SO(1, 1 | p)) is pseudo–unitary when λ± ∈ R.

By the virtue of the representation formula (38) and the relation (34) we obtain
the integral representation for the matrix elements of the irreducible pseudo–unitary
representations Tλ

Dλ
mn = {δp−m ⊗ 1A, Tλδn}S . (41)

After lengthily but straightforward calculations we have the following result.

Proposition 2 The matrix elements of the pseudo–unitary irreducible representations of
Eq(1, 1) are

Dλ
mn = e−iλ

p
+z+−iλp−z− [

p−1−n+m∑
k=0

(−λ2)kq−k(m+n)

[k]![k + n−m]!
ξk(−iq( 1

2−n)λ−η−)n−mδn

+(−iq(− 1
2−n)λ+η+)p+m−nδn

n−m∑
k=0

(−λ2)kqk(m+n)

[k]![k + p + m− n]!
ξk] for n ≥ m

and

Dλ
mn = e−iλ

p
+z+−iλp−z− [

m−n∑
k=0

(−λ2)kq−k(m+n)

[k]![k + p + n−m]!
ξk(−iq( 1

2−n)λ−η−)p+n−mδn

+(−iq(− 1
2−n)λ+η+)m−nδn

p−1−m+n∑
k=0

(−λ2)kqk(m+n)

[k]![k + m− n]!
ξk] for m ≥ n,

where ξ = qη+η− and λ2 = λ+λ−.
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For the special case Dλ
m0 we have the explicit formula

Dλ
m0 = e−iλ

p
+z+−iλp−z− [Jp−m(λ2ξ)(−iq

1
2 λ−η−)p−m + (−iq−

1
2 λ+η+)mJm(λ2ξ)], (42)

where m ∈ [0, p− 1] and

Jm(x) =
p−1−m∑
k=0

(−1)k

[k]![k + m]!
(qmx)k. (43)

The pseudo–unitarity condition (40) implies

(Dλ
0m)∗Dλ

0n +
p−1∑
k=1

(Dλ
km)∗Dλ

p−kn = (δm, δn)S1A. (44)

Special cases are

(Dλ
00)
∗Dλ

00 +
p−1∑
k=1

(Dλ
k0)
∗Dλ

p−k0 = 1A

and

(Dλ
0s)
∗Dλ

0p−s +
p−1∑
k=1

(Dλ
ks)
∗Dλ

p−kp−s = 1A,

where s ∈ [1, p− 1]. Moreover, we have the addition theorem

∆(Dλ
nm) =

p−1∑
k=0

Dλ
nk ⊗Dλ

km. (45)

The pseudo–unitary representation T (m) of the quantum Poincaré group corresponding
to the ∗–representation Lm is given by

T (m)δm = δm ⊗ δm,

where m ∈ [0, p− 1].

Remarks. (i) Recall that the Hahn–Exton q–Bessel functions Jm(x) related to the unitary
irreducible representations of the quantum Euclidean group Eq(2) are [18]

Jm(x) =
∞∑
k=0

(−1)k

[k]![k + m]!
(qmx)k.

Comparing (43) to the above expression we conclude that the matrix elements of the
pseudo–unitary irreducible representations of the quantum Poincaré group are the cut off
Hahn–Exton q–Bessel function.

(ii) Inspecting (38) we observe that irreducible representations of Eq(1, 1) are induced
by the irreducible representations of the translation subgroup R2.

(iii) The linear map T (m) defines the one dimensional pseudo–unitary representations
of the invariant subgroup SO(1, 1 | p) ∈ Eq(1, 1).
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6. Quasi–Regular Representation

The comultiplication

∆ : A0(E(1,1)
q )→ A0(Eq(1, 1))⊗ A0(E(1,1)

q ) (46)

defines the left quasi–regular representation of the quantum Poincaré group Eq(1, 1) in
the vector space A0(E

(1,1)
q ). Let us extend the Hermitian form (28) to the form {·, ·}E

by setting
{F ⊗X, G⊗ Y }E = FG∗(X, Y )E ,

where X, Y ∈ A0(E
(1,1)
q ) and F , G ∈ A0(Eq(1, 1)). Since the Hermitian form (·, ·)E is

defined by means of the invariant integral we have

{∆(X), ∆(Y )}E = 1A(X, Y )E , (47)

which implies that the left quasi–regular representation (46) is pseudo–unitary.
The right representation R of the quantum algebra Uq(e(1, 1)) corresponding to the

left quasi–regular representation (46) is given by

R(φ)F = F � φ.

We have
R(p±)ηk± = iq±

1
2 [k]ηk−1

± , R(p±)ηk∓ = 0, R(κ)ηk± = q±kηk± (48)

and

R(p±)f = iq±
1
2
(−1)

p+1
2

[p− 1]!
ηp−1
±

df

dz±
, R(P±)f = i

df

dz±
, R(κ)f = f, (49)

where f ∈ C∞0 (R2). Using the following relations satisfied by the right representation R

R(φφ′) = R(φ′)R(φ),

R(p±)(XY ) = R(p±)XR(κ)Y +R(κ−1)XR(p±)Y,

R(κ)(XY ) = R(κ)XR(κ)Y

we can define the action of an arbitrary operator R(φ) on any function from A0(E
(1,1)
q ).

Due to the identity

〈φ, F ∗〉 = 〈(S(φ))∗, F 〉, F ∈ A0(Eq(1, 1))

and the pseudo–unitarity condition (47) for any φ ∈ Uq(e(1, 1)) we have

(R(φ)X, Y )E = (X,R(φ∗)Y )E

Thus the antihomomorphism R : Uq(e(1, 1)) → Lin A0(E
(1,1)
q ) defines ∗–representation

of the quantum algebra Uq(e(1, 1)) in the pseudo–Euclidean space A0(E
(1,1)
q ).
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The quantum algebra Uq(e(1, 1)) has three Casimir elements P± and p+p− with one
restriction

P+P− = (p−p+)p.

Therefore irreducible representations of Uq(e(1, 1)) will be labelled by two indices. We
construct the irreducible representations of the quantum algebra Uq(e(1, 1)) in the pseudo–
Euclidean space A0(E

(1,1)
q ) by diagonalizing the complete set of commuting elements of

Uq(e(1, 1)) in A0(E
(1,1)
q ).

(i) The angular momentum states. Choose the following complete set of observables :
R(P±), R(p+p−), R(κ). Inspecting (48) and (49) we observe that the functions

X = e−iλ
p
+z+−iλp−z− [X1(ξ)η

p−m
− + ηm+ X2(ξ)],

with X1(ξ) and X2(ξ) being some polynomials, are eigenstates of the linear operators
R(P±) and R(κ) with eigenvalues λp± and qm respectively. The eigenvalue equation

R(p+p−)X = λ2X

is solved by
X = Dλ

m0 ,

where λ2 = λ+λ− and Dλ
m0 are the matrix elements (42). By direct calculations we arrive

at the following results.

Proposition 3 The right representation of Uq(e(1, 1)) on the matrix elements Dλ
m0 is

given by
R(p+)Dλ

m0 = λ+Dλ
m−1,0, m ∈ [1, p− 1],

R(p−)Dλ
m0 = λ−Dλ

m+1,0, m ∈ [0, p− 2]

and
R(p+)Dλ

00 = λ+Dλ
p−10, R(p−)Dλ

p−1,0 = λ−Dλ
00.

Proposition 4 The matrix elements of the irreducible pseudo–unitary representation
satisfy the orthogonality condition

(Dλ
n0, D

λ′

m0)E = Λδ(λ+ − λ′+)δ(λ− − λ′−)δn+m,0(mod p),

where

Λ =
2π

p2

p−1∑
k=0

1
([k]![p− 1− k]!)2

.

is the normalization constant.
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(ii) The P lane wave states. We choose the following complete set of observables: R(P±),
R(p′±), where

p′+ = q−
1
2 p+κ−1, p′− = q−

1
2 p−κ.

Due to the relation P± = −(p′±)p it is sufficient to solve the eigenvalue equations

R(p′±)Y = χ±Y. (50)

Proposition 5 The eigenfunctions of (50) are

Y = e
−iχ+η+
+ e

−iqχ−η−
+ eiχ

p
+z+eiχ

p
−z− ,

where ex+ is the cut off exponential (35).

Proof. Substituting
Y = eiχ

p
+z+eiχ

p
−z−Y+(η+)Y−(η−)

in (50) we get

[R(p′+) − q
(−1)

p+1
2

[p− 1]!
χp+ηp−1

+ ]Y+ = χ+Y+

and

[R(p′−)− (−1)
p+1

2

[p− 1]!
χp−ηp−1

− ]Y− = χ−Y−,

which imply the desired result. 2
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