Analysis on the 2-Dim Quantum Poincaré Group at Roots of Unity*

Haji AHMEDOV
Feza Gürsey Institute, P.O. Box 6, 81220 Cengelköy, Istanbul-TURKEY

Received 23.03.2000

Abstract

2-Dim quantum Poincaré Group $E_{q}(1,1)$ at roots of unity, its dual $U_{q}(e(1,1))$ and some of its homogeneous spaces are introduced. Invariant integrals on $E_{q}(1,1)$ and its invariant discrete subgroup $E(1,1 \mid p)$ are constructed. *-Representations of the quantum algebra $U_{q}(e(1,1))$ constructed in the homogeneous space $S O(1,1 \mid p)$ are integrated to the pseudo-unitary representations of $E_{q}(1,1)$ by means of the universal T-matrix. $U_{q}(e(1,1))$ is realized on the quantum plane $E_{q}^{(1,1)}$ and the eigenfunctions of the complete set of observables are obtained in the angular momentum and momentum basis. The matrix elements of the pseudo-unitary irreducible representations are given in terms of the cut off q-exponential and q-Bessel functions whose properties we also investigate.

1. Introduction

Finite dimensional representations of the quantum algebra $U_{q}(g)$ for real q is very similar to the representations of the universal enveloping algebra $U(g)$ where g is the complex simple Lie algebra $[17,19,23,24]$. Theory of the algebraic quantum group G_{q} which is the Hopf algebra of the quantized polynomials on the Lie group G is essentially the same as that of G too (see [26] and references therein). Matrix elements of the irreducible representations of G_{q} are expressed in term of the q-special functions which are the generalization of the ones related to the Lie group G. There also exist an invariant distance [1], an invariant integral and Peter-Weyl approximation theorem [27] on the compact quantum group G_{q} and its symmetric spaces.

[^0]
AHMEDOV

On the other hand the quantum algebra $U_{q}(g)$ at roots of unity admits finite dimensional irreducible representations which have no classical analogs [6, 10, 11, 20, 22]. Because of the peculiar algebraic structure of these representations quantum algebras at roots of unity have found interesting applications, especially in determining knot invariants [21] and in the quantum Hall effect [13]. Unlike the case of real q theory of the dual space G_{q} at roots of unity is not well established :
(i) what is the structure of the quantum group G_{q} at roots of unity ?
(ii) what are the q-special functions related to G_{q} at roots of unity?
(iii) are there invariants (integral, distance) on G_{q} at roots of unity?

For the quantum group $S L_{q}(2, C)$ at roots of unity some aspects of this programm was developed in the series of papers [2, 9, 16]. Quantum groups at roots of unity appear to be a natural generalization of the usual supersymmetry to the fractional one (FSUSY) which replaces the Z_{2}-grading of the SUSY algebra with a Z_{p}-graded algebra in such a way that the FSUSY transformation mix elements of all grades [3] (see also [12] and references therein).

The purpose of this paper is to solve the problems (i), (ii) and (iii) for the 2-dim quantum Poincaré group $E_{q}(1,1)$ at $q^{p}=1$. This group is the Z_{p}-graded product of the p^{3}-dimensional invariant $E(1,1 \mid p)$ and translation R^{2} subgroups. We define the invariant integral on $E_{q}(1,1)$ and demonstrate that all the methods of representation theory available at generic q can be extended on this group.

In Section 2 we define the quantum Poincaré group $E_{q}(1,1)$ at roots of unity, its homogeneous spaces $E(1,1 \mid p), S O(1,1 \mid p), M^{(1,1)}, E_{q}^{(1,1)}$ and the dual space $U_{q}(e(1,1))$. Section 3 is devoted to the construction of the invariant integral on $E_{q}(1,1)$ and its invariant discrete subgroup $E(1,1 \mid p)$. The irreducible *-representation of $U_{q}(e(1,1))$ constructed in Section 4 are integrated to the pseudo-unitary irreducible representations of $E_{q}(1,1)$ by means of the universal T-matrix in Section 5 . The matrix elements of these representations and some of their properties are investigated in Section 5 also. In Section 6 we realize the quantum algebra $U_{q}(e(1,1))$ on the quantum plane $E_{q}^{(1,1)}$ and obtain the eigenfunctions of the complete set of commuting elements of $U_{q}(e(1,1))$ in the angular momentum and momentum basis.

2. 2-Dim Quantum Poincaré Group $E_{q}(1,1)$ at Roots of Unity

Let us start by reviewing the principal facts of the 2 -dimensional complex quantum Euclidean group $E_{q}(2, C)$ and its dual $U_{q}(e(2, C))$ [4].

The quantum group $E_{q}(2, C)$ is the Hopf algebra $A\left(E_{q}(2, C)\right)$ generated by $\eta_{ \pm}$and $\delta^{\mp 1}$ satisfying the relations

$$
\begin{equation*}
\eta_{-} \eta_{+}=q^{2} \eta_{+} \eta_{-}, \quad \eta_{ \pm} \delta=q^{2} \delta \eta_{ \pm} \tag{1}
\end{equation*}
$$

and

$$
\begin{gather*}
\Delta\left(\eta_{ \pm}\right)=\eta_{ \pm} \otimes 1_{A}+\delta^{ \pm 1} \otimes \eta_{ \pm}, \quad \Delta(\delta)=\delta \otimes \delta \\
\varepsilon\left(\delta^{ \pm 1}\right)=1, \quad \varepsilon\left(z_{ \pm}\right)=0, \quad S\left(\delta^{ \pm 1}\right)=\delta^{\mp 1}, \quad S\left(\eta_{ \pm}\right)=-\delta^{\mp 1} \eta_{ \pm} \tag{2}
\end{gather*}
$$

AHMEDOV

The quantum algebra $U_{q}(e(2, C))$ is the Hopf algebra generated by $p_{ \pm}$and $\kappa^{ \pm 1}$ satisfying the relations

$$
\begin{equation*}
p_{+} p_{-}=p_{-} p_{+}, \quad p_{ \pm} \kappa=q^{\mp 1} \kappa p_{ \pm} \tag{3}
\end{equation*}
$$

and

$$
\begin{gather*}
\Delta\left(p_{ \pm}\right)=p_{ \pm} \otimes \kappa+\kappa^{-1} \otimes p_{ \pm}, \quad \Delta(\kappa)=\kappa \otimes \kappa \\
\varepsilon\left(p_{ \pm}\right)=0, \quad \varepsilon\left(\kappa^{ \pm 1}\right)=1, \quad S\left(p_{ \pm}\right)=-q^{ \pm 1} p_{ \pm}, \quad S\left(\kappa^{ \pm 1}\right)=\kappa^{\mp 1} . \tag{4}
\end{gather*}
$$

The duality pairings between $A\left(E_{q}(2, C)\right)$ and $U_{q}(e(2, C))$ are given by

$$
\begin{equation*}
\left\langle\kappa^{j}, \delta^{j^{\prime}}\right\rangle=q^{j j^{\prime}}, \quad j, j^{\prime} \in Z \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle p_{ \pm}^{n}, \eta_{ \pm}^{m}\right\rangle=i^{n} q^{ \pm \frac{n}{2}}[n]!\delta_{n m}, \quad n, m \in N \tag{6}
\end{equation*}
$$

where

$$
[n]=\frac{q^{n}-q^{-n}}{q-q^{-1}}, \quad[n]!=[1][2] \cdots[n]
$$

Since Δ is a homomorphism (2) implies that

$$
\Delta\left(\eta_{ \pm}^{n}\right)=\sum_{m=0}^{n}\left[\begin{array}{c}
n \tag{7}\\
m
\end{array}\right]_{ \pm} \eta_{ \pm}^{n-m} \delta^{ \pm m} \otimes \eta_{ \pm}^{m}
$$

where

$$
\left[\begin{array}{c}
n \\
m
\end{array}\right]_{ \pm}=q^{ \pm m(m-n)} \frac{[n]!}{[n-m]![m]!}
$$

The Hopf algebra $A\left(E_{q}(2, C)\right)$ has two real forms $A\left(E_{q}(2)\right)$ and $A\left(E_{q}(1,1)\right)$ defined by the involutions

$$
\delta^{*}=\delta^{-1}, \quad \eta_{ \pm}^{*}=\eta_{\mp} \quad \text { for } \quad q \in R
$$

and

$$
\begin{equation*}
\delta^{*}=\delta, \quad \eta_{ \pm}^{*}=\eta_{ \pm} \quad \text { for } \quad|q|=1 \tag{8}
\end{equation*}
$$

respectively. The 2-dimensional quantum Euclidean group $E_{q}(2)$ which is the $*-H o p f$ algebra $A\left(E_{q}(2)\right)$ was treated in detail in $[25,28,5] . A\left(E_{q}(1,1)\right)$ is the 2-dimensional quantum Poincaré group $E_{q}(1,1)$. The Hopf algebra $U_{q}(e(2, C))$ has two real forms $U_{q}(e(2))$ and $U_{q}(e(1,1))$ defined by the involutions

$$
p_{ \pm}^{*}=p_{\mp}, \quad \kappa^{*}=\kappa \quad \text { for } \quad q \in R
$$

and

$$
\begin{equation*}
p_{ \pm}^{*}=p_{ \pm}, \quad \kappa^{*}=\kappa \quad \text { for } \quad|q|=1 \tag{9}
\end{equation*}
$$

respectively.

AHMEDOV

For future convenience we would like to introduce the convolution product \diamond. Let $\xi: A \rightarrow V$ be the homomorphic map of a Hopf algebra A to a linear space V. We set

$$
\xi \diamond f=(i d \otimes \xi) \Delta(f), \quad f \diamond \xi=(\xi \otimes i d) \Delta(f), \quad \xi \diamond \xi=(\xi \otimes \xi) \Delta
$$

Clearly $\xi \diamond f$ and $f \diamond \xi$ belong to $A \otimes V$ and $V \otimes A$ respectively; $\xi \diamond \xi$ is homomorphic map of $A \otimes A$ into $V \otimes V$.

When q is a root of unity $q^{p}=1$ (we deal with odd p) the duality relations (5) and (6) become degenerate. To get rid of these degeneracies we have to redefine the $*$-Hopf algebras $A\left(E_{q}(1,1)\right)$ and $U_{q}(e(1,1))$.

To remove the degeneracy in (5) we put

$$
\begin{equation*}
\delta^{p}=1_{A} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\kappa^{p}=1_{U} . \tag{11}
\end{equation*}
$$

Instead of (5) we then have

$$
\begin{equation*}
\left\langle\kappa^{n}, \zeta(m)\right\rangle=\delta_{n m}, \quad n, m \in[0, p-1] \tag{12}
\end{equation*}
$$

where

$$
\zeta(m)=\frac{1}{p} \sum_{n=0}^{p-1} q^{-n m} \delta^{n}, \quad m \in[0, p-1],
$$

which satisfies the periodicity property $\zeta(m+p j)=\zeta(m), j \in Z$.
To remove the degeneracy in (6) we put

$$
\begin{equation*}
\eta_{ \pm}^{p}=0 \tag{13}
\end{equation*}
$$

such that new variables $z_{ \pm}$

$$
\begin{equation*}
z_{ \pm}=\lim _{q^{p}=1}(-1)^{\frac{p+1}{2}} \frac{\eta_{ \pm}^{p}}{[p]!} \tag{14}
\end{equation*}
$$

are well defined. The above limiting process stems from the work De Concini, Kac and collaborators, and Lusztig which also appears in two recent monographs [7], [15], from which it can be traced back to the original references. The expression (6) now reads

$$
\begin{equation*}
\left\langle p_{ \pm}^{n}, \eta_{ \pm}^{m}\right\rangle=i^{n} q^{ \pm \frac{n}{2}}[n]!\delta_{n m}, \quad n, m \in[0, p-1] \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle P_{ \pm}^{n}, z_{ \pm}^{m}\right\rangle=i^{n} n!\delta_{n m}, \quad n, m \in N \tag{16}
\end{equation*}
$$

where $P_{ \pm}=p_{ \pm}^{p}$. Inspecting (1) and (14) we conclude that the new variables $z_{ \pm}$commute with $\eta_{ \pm}$and δ. By the virtue of (7) and (14) we obtain

$$
\Delta\left(z_{ \pm}\right)=z_{ \pm} \otimes 1_{A}+1_{A} \otimes z_{ \pm}+(-1)^{\frac{p+1}{2}} \sum_{n=1}^{p-1} \frac{q^{ \pm n^{2}}}{[p-n]![n]!} \eta_{ \pm}^{p-n} \delta^{ \pm n} \otimes \eta_{ \pm}^{n}
$$

AHMEDOV

Moreover, we have

$$
S\left(z_{ \pm}\right)=-z_{ \pm}, \quad \varepsilon\left(z_{ \pm}\right)=0, \quad z_{ \pm}^{*}=z_{ \pm}
$$

At this point we would like to introduce the short hand notation

$$
\Delta(z)=Z+B
$$

where $z=\left(z_{+}, z_{-}\right), Z=\left(Z_{+}, Z_{-}\right), B=\left(B_{+}, B_{-}\right)$and

$$
Z_{ \pm}=z_{ \pm} \otimes 1_{A}+1_{A} \otimes z_{ \pm}, \quad B_{ \pm}=(-1)^{\frac{p+1}{2}} \sum_{n=1}^{p-1} \frac{q^{ \pm n^{2}}}{[p-n]![n]!} \eta_{ \pm}^{p-n} \delta^{ \pm n} \otimes \eta_{ \pm}^{n}
$$

Since $B_{ \pm}^{2}=0$ for any function f from the space $C^{\infty}\left(R^{2}\right)$ of all infinitely differentiable functions on R^{2} we have

$$
\begin{equation*}
\Delta(f(z))=f(Z)+\left.\frac{d f}{d z_{+}}\right|_{z=Z} B_{+}+\left.\frac{d f}{d z_{-}}\right|_{z=Z} B_{-}+\left.\frac{d^{2} f}{d z_{+} d z_{-}}\right|_{z=Z} B_{+} B_{-} \tag{17}
\end{equation*}
$$

We can also define the antipode, counite and involution on $C^{\infty}\left(R^{2}\right)$. They are given by

$$
\begin{equation*}
S(f(z))=f(-z), \quad \varepsilon(f(z))=f(0), \quad(f(z))^{*}=\overline{f(z)}, \tag{18}
\end{equation*}
$$

where the bar denotes the usual complex conjugation.
Let $A(E(1,1 \mid p))$ be the space of polynomials of $\eta_{ \pm}$and δ. The restrictions (10), (13) together with (1),(2) and (8) imply that it is finite $*-H o p f$ algebra with dimension p^{3}. We call it reduced quantum Poincaré group and denote by $E(1,1 \mid p)$.

Definition 1 Quantum Poincaré group $E_{q}(1,1)$ at roots of unity is the *-algebra $A\left(E_{q}(1,1)\right)=A(E(1,1 \mid p)) \times C^{\infty}\left(R^{2}\right)$ with a Hopf algebra structure given by (2), (17) and (18).

Let us define the homomorphism $\xi_{C}: A\left(E_{q}(1,1)\right) \rightarrow C^{\infty}\left(R^{2}\right)$, such that

$$
\xi_{C}\left(\eta_{ \pm}\right)=0, \quad \xi_{C}(\delta)=1, \quad \xi_{C}\left(z_{ \pm}\right)=z_{ \pm} .
$$

From (17) we get

$$
\begin{equation*}
\xi_{C} \diamond \xi_{C}(f(z))=f(Z) \tag{19}
\end{equation*}
$$

The operations (18) and (19) define a Hopf algebra structure on $C^{\infty}\left(R^{2}\right)$. The transformation law

$$
\xi_{C} \diamond \xi_{C}\left(z_{ \pm}\right)=z_{ \pm} \otimes 1+1 \otimes z_{ \pm}
$$

implies that the $*-$ Hopf algebra $C^{\infty}\left(R^{2}\right)$ is the space of all infinitely differentiable functions on the translation group R^{2}. The quantum Poincaré group $E_{q}(1,1)$ at roots of unity contains the invariant discrete $E(1,1 \mid p)$ and translation R^{2} subgroups. Using the group multiplication law (17) and analogies with the supersymmetry theory we call $E_{q}(1,1)$ Z_{p}-graded product of $E(1,1 \mid p)$ and R^{2}.

AHMEDOV

The quantum group $E(1,1 \mid p)$ contains p-dimensional invariant subgroup $S O(1,1 \mid p)$, which is the $*-$ Hopf algebra $A(S O(1,1 \mid p)$) of polynomials of δ subject to the restriction (10). The right sided coset $M^{(1,1)}=E(1,1 \mid p) / S O(1,1 \mid p)$ is the subspace $A\left(M^{(1,1)}\right)$ of $A(E(1,1 \mid p))$ defined as

$$
A\left(M^{(1,1)}\right)=\left\{a \in A(E(1,1 \mid p)): \quad \xi_{S} \diamond a=a \otimes 1\right\}
$$

where ξ_{S} be the homomorphic map of $A(E(1,1 \mid p))$ into $A(S O(1,1 \mid p))$, such that

$$
\xi_{S}\left(\eta_{ \pm}\right)=0, \quad \xi_{S}(\delta)=\delta
$$

One can show that

$$
\xi_{S} \diamond \eta_{+}^{n} \eta_{-}^{m} \delta^{k}=\eta_{+}^{n} \eta_{-}^{m} \delta^{k} \otimes \delta^{k}
$$

which implies that $\eta_{+}^{n} \eta_{-}^{m}, n, m \in[0, p-1]$, form a basis of $A\left(E_{p}^{(1,1)}\right)$. The elements

$$
\begin{equation*}
e_{n m}^{ \pm}=\frac{\eta_{+}^{p-1-n} \eta_{-}^{p-1-m} \pm \eta_{+}^{n} \eta_{-}^{m}}{\sqrt{q^{2 n+1}+q^{-2 n-1}}}, \quad n, m \in[0, p-1] \tag{20}
\end{equation*}
$$

also form a basis in $M^{(1,1)}$) which are independent in the range

$$
n \in\left[0, n_{0}-1\right], \quad m \in\left[0,2 n_{0}\right] \quad \text { and } \quad n=n_{0}, \quad m \in\left[0, n_{0}\right],
$$

where $p=2 n_{0}+1$. The number of independent vectors $e_{n m}^{+}$and $e_{n m}^{-}$are $\frac{p^{2}+1}{2}$ and $\frac{p^{2}-1}{2}$ respectively.

The quantum plane $E_{q}^{(1,1)}=E_{q}(1,1) / S O(1,1 \mid p)$ is the subspace $A\left(E_{q}^{(1,1)}\right)$ of $A\left(E_{q}(1,1)\right)$ defined as

$$
A\left(E_{q}^{(1,1)}\right)=A\left(M_{p}^{(1,1)}\right) \times C^{\infty}\left(R^{2}\right)
$$

Definition 2 The quantum algebra $U_{q}(e(1,1))$ at roots of unity is the $*$-Hopf algebra generated by $p_{ \pm}$and κ subject to condition (11). The monomials

$$
\begin{equation*}
P_{+}^{t} P_{-}^{s} p_{+}^{n} p_{-}^{m} \kappa^{k}, \quad n, m, k \in[0, p-1], \quad t, s \in N \tag{21}
\end{equation*}
$$

where $P_{ \pm}=p_{ \pm}^{p}$, form a basis of $U_{q}(e(1,1))$. The $*-$ Hopf algebra structure of $U_{q}(e(1,1))$ is given by (3), (4), (9) and

$$
\Delta\left(P_{ \pm}\right)=P_{ \pm} \otimes 1+1 \otimes P_{ \pm}, \quad S\left(P_{ \pm}\right)=-P_{ \pm}, \quad \varepsilon\left(P_{ \pm}\right)=0, \quad P_{ \pm}^{*}=P_{ \pm}
$$

The $*-$ Hopf algebra $U\left(r^{2}\right)$ generated by $P_{ \pm}$forms the invariant $*-$ sub-Hopf algebra of $U_{q}(e(1,1))$, which is dual to the Hopf algebra $C^{\infty}\left(R^{2}\right)$. More precisely due to the Schwartz theorem $U\left(r^{2}\right)$ is isomorphic to the subspace of distributions on $C^{\infty}\left(R^{2}\right)$ with support at the unit element $(0,0) \in R^{2}$.

The homomorphism $\xi_{C}^{\prime}: U_{q}(e(1,1)) \rightarrow U(e(1,1 \mid p))$ given by

$$
\xi_{C}^{\prime}\left(p_{ \pm}\right)=p_{ \pm}, \quad \xi_{C}^{\prime}(\kappa)=\kappa, \quad \xi_{C}^{\prime}\left(P_{ \pm}\right)=0
$$

AHMEDOV

defines another sub-Hopf algebra of $U_{q}(e(1,1))$, which is generated by the elements $p_{ \pm}$ and κ subject to the conditions

$$
p_{ \pm}^{p}=0, \quad \kappa^{p}=1_{U}
$$

$U(e(1,1 \mid p))$ is in non-degenerate duality with $A(E(1,1 \mid p))$.

3. Invariant Integral on $E_{q}(1,1)$

Theorem 1 The linear functional \mathcal{I} on $A(E(1,1 \mid p))$ such that

$$
\mathcal{I}\left(\eta_{+}^{n} \eta_{-}^{m} \delta^{k}\right)=q^{-1} \delta_{n, p-1} \delta_{m, p-1} \delta_{k, 0(\bmod p)}
$$

defines the unique invariant integral on the reduced quantum Poincaré group $E(1,1 \mid p)$.
Proof. Let us find the linear functional \mathcal{I}^{\prime} on $A(E(1,1 \mid p))$ which for any element a from $A(E(1,1 \mid p))$ satisfies the left

$$
\mathcal{I}^{\prime} \diamond a=\mathcal{I}^{\prime}(a) 1_{A}
$$

and right

$$
a \diamond \mathcal{I}^{\prime}=\mathcal{I}^{\prime}(a) 1_{A}
$$

invariance conditions. By the virtue of (7) for $a=\eta_{+}^{n} \eta_{-}^{m} \delta^{k}$ the left invariance condition reads

$$
\sum_{t, s=0}^{n, m}\left[\begin{array}{c}
n \\
t
\end{array}\right]_{+}\left[\begin{array}{c}
m \\
s
\end{array}\right]_{-} q^{2 t(s-m)} \eta_{+}^{n-t} \eta_{-}^{m-s} \delta^{k-s+t} \mathcal{I}^{\prime}\left(\eta_{+}^{t} \eta_{-}^{s} \delta^{k}\right)=1_{A} \mathcal{I}^{\prime}\left(\eta_{+}^{n} \eta_{-}^{m} \delta^{k}\right)
$$

which implies

$$
\mathcal{I}^{\prime} \diamond\left(\eta_{+}^{t} \eta_{-}^{s} \delta^{k}\right)=0 \quad \text { for } \quad t \in[0, n-1], s \in[0, m-1]
$$

and

$$
\begin{equation*}
k+n-m=0(\bmod p) \tag{22}
\end{equation*}
$$

If $n, m \in[0, p-2]$ we can employ the above reasoning for the element $a=\eta_{+}^{n+1} \eta_{-}^{m+1} \delta^{k}$ and obtain

$$
\begin{equation*}
\mathcal{I}^{\prime}\left(\eta_{+}^{n} \eta_{-}^{m} \delta^{k}\right)=0 \quad \text { for } \quad n, m \in[0, p-2] \tag{23}
\end{equation*}
$$

(22) and (23) imply that the linear functional \mathcal{I}^{\prime} satisfies the left invariance condition if

$$
\mathcal{I}^{\prime}\left(\eta_{+}^{n} \eta_{-}^{m} \delta^{k}\right)=\omega \delta_{n, p-1} \delta_{m, p-1} \delta_{k, 0(\bmod p)}
$$

where ω is an arbitrary complex number. In a similar fashion one can show that the right invariance implies the same condition on \mathcal{I}^{\prime}. Thus every linear functional on $A(E(1,1 \mid p))$ satisfying the left and right invariance conditions is proportional to \mathcal{I}.

AHMEDOV

Define the bilinear form $(\cdot, \cdot)_{p}$ on $E(1,1 \mid p)$ by

$$
\begin{equation*}
(a, b)=\mathcal{I}\left(a b^{*}\right) \tag{24}
\end{equation*}
$$

Because of the property

$$
\mathcal{I}\left(a^{*}\right)=\overline{\mathcal{I}(a)}
$$

this bilinear form is Hermitian. The vectors $e_{n m}^{ \pm}$spanning the basis of the coset space $A\left(M^{(1,1)}\right)$ are orthonormal with respect to the above form

$$
\begin{equation*}
\left(e_{n m}^{ \pm}, e_{n^{\prime} m^{\prime}}^{ \pm}\right)= \pm \delta_{n n^{\prime}} \delta_{m m^{\prime}}, \quad\left(e_{n m}^{ \pm}, e_{n^{\prime} m^{\prime}}^{\mp}\right)=0 . \tag{25}
\end{equation*}
$$

Thus $A\left(M_{p}^{(1,1)}\right)$ equipped with the Hermitian form (24) is the pseudo-Euclidean space with $\frac{p^{2}+1}{2}$ positive and $\frac{p^{2}-1}{2}$ negative signatures.

Let \mathcal{I}_{C} be the linear functional on the space $C^{\infty}\left(R^{2}\right)$ of all infinitely differentiable functions with finite support in R^{2} given by

$$
\begin{equation*}
\mathcal{I}_{C}(f)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} d z_{+} d z_{-} f\left(z_{+}, z_{-}\right) \tag{26}
\end{equation*}
$$

and let $A_{0}\left(E_{q}(1,1)\right)$ be the subspaces

$$
C_{0}^{\infty}\left(R^{2}\right) \times A(E(1,1 \mid p))
$$

of $A\left(E_{q}(1,1)\right)$ whose any element F is the finite sum

$$
F=\sum_{n} a_{n} f_{n}
$$

where $f_{n} \in C_{0}^{\infty}\left(R^{2}\right)$ and $a_{n} \in A(E(1,1 \mid p))$. It is clear that \mathcal{I}_{C} is the invariant integral on the translation group satisfying the properties

$$
\begin{equation*}
\left(\mathcal{I}_{C} \otimes i d\right)\left(\xi_{C} \diamond \xi_{C}\right)(f)=\zeta(f), \quad\left(i d \otimes \mathcal{I}_{C}\right)\left(\xi_{C} \diamond \xi_{C}\right)(f)=\zeta(f) \tag{27}
\end{equation*}
$$

for any $f \in C_{0}^{\infty}\left(R^{2}\right)$.
Theorem 2 The linear functional \mathcal{I}_{E} on $A_{0}\left(E_{q}(1,1)\right)$ given by

$$
\mathcal{I}_{E}(F)=\sum_{n} \mathcal{I}\left(a_{n}\right) \mathcal{I}_{C}\left(f_{n}\right)
$$

defines the unique invariant integral on the quantum Poincaré group $E_{q}(1,1)$.
Proof. By the virtue of (17) and (19) for $G=a f$ we have

$$
\begin{aligned}
\mathcal{I}_{E} \diamond G= & \left(i d \otimes \mathcal{I}_{E}\right)\left[\Delta (a) \left\{\left(\xi_{C} \diamond \xi_{C}\right)(f)+B_{+}\left(\xi_{C} \diamond \xi_{C}\right)\left(\frac{d f}{d z_{+}}\right)\right.\right. \\
& \left.\left.+B_{-}\left(\xi_{C} \diamond \xi_{C}\right)\left(\frac{d f}{d z_{-}}\right)+B_{+} B_{-}\left(\xi_{C} \diamond \xi_{C}\right)\left(\frac{d^{2} f}{d z_{+} d z_{-}}\right)\right\}\right] .
\end{aligned}
$$

AHMEDOV

By making use of (27) we get

$$
\begin{aligned}
\mathcal{I}_{E} \diamond G= & 1_{A} \mathcal{I}(a) \mathcal{I}_{C}(f)+(i d \otimes \mathcal{I})\left[\Delta(a)\left\{B_{+} \mathcal{I}_{C}\left(\frac{d f}{d z_{+}}\right)+B_{-} \mathcal{I}_{C}\left(\frac{d f}{d z_{-}}\right)\right\}\right] \\
& +(i d \otimes \mathcal{I})\left(\Delta(a) B_{+} B_{-}\right) \mathcal{I}_{C}\left(\frac{d^{2} f}{d z_{+} d z_{-}}\right) .
\end{aligned}
$$

Using the properties

$$
\zeta_{C}\left(\frac{d f}{d z_{ \pm}}\right)=0, \quad \zeta_{C}\left(\frac{d^{2} f}{d z_{+} d z_{-}}\right)=0
$$

satisfied by the functions $f \in C_{0}^{\infty}\left(R^{2}\right)$ we arrive at

$$
\mathcal{I}_{E} \diamond G=1_{A} \mathcal{I}(a) \mathcal{I}_{C}(f)=1_{A} \mathcal{I}_{E}(G)
$$

which together with the linearity of the functional \mathcal{I}_{E} implies

$$
\mathcal{I}_{E} \diamond F=1_{A} \mathcal{I}_{E}(F)
$$

for any $F \in A_{0}\left(E_{q}(1,1)\right)$. We have proved the left invariance condition. In a similar fashion one can prove the right invariance condition. The uniqueness of the invariant integral \mathcal{I}_{E} follows from the uniqueness of the invariant integrals \mathcal{I} and \mathcal{I}_{C}.
By means of the invariant integral we define in $E_{q}(1,1)$ the bilinear form by

$$
\begin{equation*}
(F, G)_{E}=\mathcal{I}_{E}\left(F G^{*}\right) \tag{28}
\end{equation*}
$$

where $F, G \in A_{0}\left(E_{q}(1,1)\right)$. Because of the property

$$
\mathcal{I}_{E}\left(F^{*}\right)=\overline{\mathcal{I}_{E}(F)}
$$

this bilinear form is Hermitian.
Let $A_{0}\left(E_{q}^{(1,1)}\right)$ be the subspace

$$
C_{0}^{\infty}\left(R^{2}\right) \times A\left(M^{(1,1)}\right)
$$

of $A\left(E_{q}^{(1,1)}\right)$ whose any element X is the finite sum

$$
X=\sum_{n m} f_{n m}^{+} e_{n m}^{+}+\sum_{n m} f_{n m}^{-} e_{n m}^{-},
$$

where $e_{n m}^{ \pm}$form a basis of $A\left(M^{(1,1)}\right)$ and $f_{n m} \in C_{0}^{\infty}\left(R^{2}\right)$. By the virtue of (25) we get

$$
\begin{equation*}
(X, X)_{E}=\sum_{n m} \mathcal{I}_{C}\left(f_{n m}^{+} \overline{f_{n m}^{+}}\right)-\sum_{n m} \mathcal{I}_{C}\left(f_{n m}^{-} \overline{f_{n m}^{-}}\right) \tag{29}
\end{equation*}
$$

which implies that $A_{0}\left(E_{q}^{(1,1)}\right)$ equipped with the Hermitian form (28) is the pseudoEuclidean space.

AHMEDOV

4. Irreducible $*-$ Representations of $U_{q}(e(1,1))$

The homomorphism $\mathcal{L}^{\lambda}: U_{q}(e(1,1)) \rightarrow \operatorname{Lin} A(S O(1,1 \mid p))$ given by

$$
\begin{equation*}
\mathcal{L}^{\lambda}\left(p_{ \pm}\right) \delta^{m}=\lambda_{ \pm} \delta^{m \pm 1}, \quad \mathcal{L}^{\lambda}(\kappa) \delta^{m}=q^{m} \delta^{m} \tag{30}
\end{equation*}
$$

for $\lambda=\left(\lambda_{+}, \lambda_{-}\right) \neq(0,0)$ defines p -dimensional irreducible representation of the quantum algebra $U_{q}(e(1,1))$ in the linear space $A(S O(1,1 \mid p))$. Since $\delta^{p}=1_{A}$ for any $a \in A(S O(1,1 \mid p))$ we have

$$
\mathcal{L}^{\lambda}\left(P_{ \pm}\right) a=\lambda_{ \pm}^{p} a
$$

This representation is cyclic. For $\lambda=(0,0)$ we have one dimensional representation

$$
\begin{equation*}
\mathcal{L}^{(m)}\left(p_{ \pm}\right) \delta^{m}=0, \quad \mathcal{L}^{(m)}(\kappa) \delta^{m}=q^{m} \delta^{m} \tag{31}
\end{equation*}
$$

with the weight $m \in[0, p-1]$. The homomorphisms \mathcal{L}^{λ} and $\mathcal{L}^{(m)}$ exhaust all irreducible representations of the quantum algebra $U_{q}(e(1,1))$. This is rather trivial consequence of the general theory presented in [11], to which we refer for proof and details. Representations of the quantum algebra $U_{q}(e(1,1))$ is also considered in [8]. However the quantum algebra studied in [8] differs because there the restriction (10) is not considered.

Let us find out when the homomorphism \mathcal{L}^{λ} defines $*-$ representation of the quantum algebra $U_{q}(e(1,1))$, that is when for any $\phi \in U_{q}(e(1,1))$ we have

$$
\begin{equation*}
\left(\mathcal{L}^{\lambda}(\phi)\right)^{*}=\mathcal{L}^{\lambda}\left(\phi^{*}\right) \tag{32}
\end{equation*}
$$

For this purpose we define in $A(S O(1,1 \mid p))$ the Hermitian form

$$
\begin{equation*}
(a, b)_{S}=\mathcal{I}_{S}\left(a^{*} b\right), \tag{33}
\end{equation*}
$$

where \mathcal{I}_{S} is the invariant integral on $S O(1,1 \mid p)$ given by

$$
\mathcal{I}_{S}\left(\delta^{m}\right)=\delta_{m, 0(\bmod p)} .
$$

For $n, m \in[0, p-1]$ we have

$$
\begin{equation*}
\left(\delta^{n}, \delta^{m}\right)_{S}=\delta_{m+n, 0}+\delta_{m+n, p} \tag{34}
\end{equation*}
$$

which implies that the vectors

$$
e_{m}^{ \pm}=\frac{1}{\sqrt{2}}\left(\delta^{m} \pm \delta^{p-m}\right), \quad m \in\left[0, \frac{p-1}{2}\right]
$$

are orthonormal with respect to the Hermitian form (33)

$$
\left(e_{m}^{ \pm}, e_{k}^{ \pm}\right)_{S}= \pm \delta_{m k}, \quad\left(e_{m}^{\mp}, e_{k}^{ \pm}\right)_{S}=0
$$

The $*-$ Hopf algebra $A(S O(1,1 \mid p))$ equipped with the Hermitian form (33) is pseudoEuclidean space with $\frac{p+1}{2}$ positive and $\frac{p-1}{2}$ negative signatures.

AHMEDOV

The adjoint $\left(\mathcal{L}^{\lambda}(\phi)\right)^{*}$ of the linear operator $\mathcal{L}^{\lambda}(\phi)$ is defined as

$$
\left(\mathcal{L}^{\lambda}(\phi) a, b\right)_{S}=\left(a,\left(\mathcal{L}^{\lambda}(\phi)\right)^{*} b\right)_{S}
$$

where a, b are arbitrary elements from $A(S O(1,1 \mid p))$. Using the representation formula (30) and the involution (9) we conclude that when $\lambda_{ \pm}$are real numbers the homomorphism \mathcal{L}^{λ} defines $*-$ representation of the quantum algebra $U_{q}(e(1,1))$. The homomorphism $\mathcal{L}^{(m)}$ also defines $*$-representation of $U_{q}(e(1,1))$.

5. Pseudo-Unitary Irreducible Representations of $E_{q}(1,1)$

Let us briefly recall the construction and the main properties of universal T - matrix [14]. Consider two Hopf algebras $A(G)$ and $U(g)$ in non-degenerate duality. Let $\left\{x_{a}\right\}$ and $\left\{X^{b}\right\}$ be dual linear basis of $A(G)$ and $U(g)$ respectively, with a and b running in an appropriate set of indices, so that $\left\langle x_{a}, X^{b}\right\rangle=\delta_{a b}$. We define the element $T \in U(g) \otimes A(G)$ as

$$
T=\sum_{a} x_{a} \otimes X^{a}
$$

The universal T-matrix is a resolution of the identity which maps the Lie group G into itself. Moreover, if we choose the representation of $U(g)$ we correspondingly obtain the corepresentation of $A(G)$ or representation of G.

The elements $z_{+}^{t} z_{-}^{s} \eta_{+}^{n} \eta_{-}^{m} \zeta(k)$ and (21) defines the linear basis in $A\left(E_{q}(1,1)\right)$ and $U_{q}(e(1,1))$ respectively. Introducing the cut off q-exponential

$$
\begin{equation*}
e_{ \pm}^{x}=\sum_{m=0}^{p-1} \frac{q^{ \pm \frac{m(m-1)}{2}}}{[m]!} x^{m} \tag{35}
\end{equation*}
$$

by the direct calculation we arrive at the following result.
Proposition 1 We have the duality relations

$$
\begin{aligned}
\left\langle P_{+}^{t} P_{-}^{s} p_{+}^{n} p_{-}^{m} \kappa^{k}, z_{+}^{t^{\prime}} z_{-}^{s^{\prime}} \eta_{+}^{n^{\prime}} \eta_{-}^{m^{\prime}} \zeta\left(k^{\prime}\right)\right\rangle= & i^{n+m+t+l} q^{\frac{n-m}{2}-n m} t!s![n]![m]! \\
& \delta_{n n^{\prime}} \delta_{m m^{\prime}} \delta_{t t^{\prime}} \delta_{l l^{\prime}} \delta_{k+t+l, k^{\prime}},
\end{aligned}
$$

which implies that the universal T-matrix in $U_{q}(e(1,1)) \otimes A\left(E_{q}(1,1)\right)$ has the form

$$
T=e^{-i P_{+} \otimes z_{+}-i P_{-} \otimes z_{-}} e_{+}^{i \epsilon_{+} \otimes \eta_{+}} e_{-}^{i \epsilon_{-} \otimes \eta_{-}} D(\kappa, \delta)
$$

where

$$
\epsilon_{ \pm}=-q^{\mp \frac{1}{2}} p_{ \pm} \kappa^{-1}
$$

and

$$
D(\kappa, \delta)=\frac{1}{p} \sum_{m, k=0}^{p-1} q^{-m k} \kappa^{m} \otimes \delta^{k}
$$

AHMEDOV

The universal T-matrix satisfies the properties

$$
\begin{equation*}
[(* \otimes *) T] \cdot T=1_{U} \otimes 1_{A}, \quad T \cdot[(* \otimes *) T]=1_{U} \otimes 1_{A} \tag{36}
\end{equation*}
$$

and

$$
\begin{equation*}
(i d \otimes \Delta) T=\left(T \otimes 1_{A}\right)(i d \otimes \sigma)\left(T \otimes 1_{A}\right) \tag{37}
\end{equation*}
$$

where $\sigma(F \otimes G)=G \otimes F, F, G \in A\left(E_{q}(1,1)\right)$ is the permutation operator.
Define the linear map $T^{\lambda}: A(S O(1,1 \mid p)) \rightarrow A(S O(1,1 \mid p)) \otimes A\left(E_{q}(1,1)\right)$, such that

$$
\begin{equation*}
T^{\lambda} a=e^{-i \mathcal{L}^{\lambda}\left(P_{+}\right) \otimes z_{+}-i \mathcal{L}^{\lambda}\left(P_{-}\right) \otimes z_{-}} e_{+}^{i \mathcal{L}^{\lambda}\left(\epsilon_{+}\right) \otimes \eta_{+}} e_{-}^{i \mathcal{L}^{\lambda}\left(\epsilon_{-}\right) \otimes \eta_{-}} D\left(\mathcal{L}^{\lambda}(\kappa), \delta\right)(a \otimes 1) . \tag{38}
\end{equation*}
$$

Due to (37) and the irreducibility of the representation \mathcal{L}^{λ} we conclude that the above linear map defines p-dimensional irreducible representations of the quantum Poincaré group in the linear space $A(S O(1,1 \mid p))$. Let us extend the Hermitian form (33) to the form $\{\cdot, \cdot\}_{S}$ by setting

$$
\begin{equation*}
\{a \otimes F, b \otimes G\}_{S}=F^{*} G(a, b)_{S} \tag{39}
\end{equation*}
$$

where $F, G \in A\left(E_{q}(1,1)\right)$ and $a, b \in A(S O(1,1 \mid p))$. When $\lambda_{ \pm}$are real numbers due to (36) we get

$$
\begin{equation*}
\left\{T^{\lambda} a, T^{\lambda} b\right\}_{S}=(a, b)_{S} 1_{A} \tag{40}
\end{equation*}
$$

Thus the irreducible representation T^{λ} of the quantum group $E_{q}(1,1)$ in the pseudoEuclidean space $A(S O(1,1 \mid p))$ is pseudo-unitary when $\lambda_{ \pm} \in R$.

By the virtue of the representation formula (38) and the relation (34) we obtain the integral representation for the matrix elements of the irreducible pseudo-unitary representations T^{λ}

$$
\begin{equation*}
D_{m n}^{\lambda}=\left\{\delta^{p-m} \otimes 1_{A}, T^{\lambda} \delta^{n}\right\}_{S} . \tag{41}
\end{equation*}
$$

After lengthily but straightforward calculations we have the following result.
Proposition 2 The matrix elements of the pseudo-unitary irreducible representations of $E_{q}(1,1)$ are

$$
\begin{aligned}
& D_{m n}^{\lambda}=e^{-i \lambda_{+}^{p} z_{+}-i \lambda_{-}^{p} z_{-}}\left[\sum_{k=0}^{p-1-n+m} \frac{\left(-\lambda^{2}\right)^{k} q^{-k(m+n)}}{[k]![k+n-m]!} \xi^{k}\left(-i q^{\left(\frac{1}{2}-n\right)} \lambda_{-} \eta_{-}\right)^{n-m} \delta^{n}\right. \\
& \left.\quad+\left(-i q^{\left(-\frac{1}{2}-n\right)} \lambda_{+} \eta_{+}\right)^{p+m-n} \delta^{n} \sum_{k=0}^{n-m} \frac{\left(-\lambda^{2}\right)^{k} q^{k(m+n)}}{[k]![k+p+m-n]!} \xi^{k}\right] \quad \text { for } \quad n \geq m
\end{aligned}
$$

and

$$
\begin{aligned}
& D_{m n}^{\lambda}=e^{-i \lambda_{+}^{p} z_{+}-i \lambda_{-}^{p} z_{-}}\left[\sum_{k=0}^{m-n} \frac{\left(-\lambda^{2}\right)^{k} q^{-k(m+n)}}{[k]![k+p+n-m]!} \xi^{k}\left(-i q^{\left(\frac{1}{2}-n\right)} \lambda_{-} \eta_{-}\right)^{p+n-m} \delta^{n}\right. \\
& \left.\quad+\left(-i q^{\left(-\frac{1}{2}-n\right)} \lambda_{+} \eta_{+}\right)^{m-n} \delta^{n} \sum_{k=0}^{p-1-m+n} \frac{\left(-\lambda^{2}\right)^{k} q^{k(m+n)}}{[k]![k+m-n]!} \xi^{k}\right] \quad \text { for } \quad m \geq n
\end{aligned}
$$

where $\xi=q \eta_{+} \eta_{-}$and $\lambda^{2}=\lambda_{+} \lambda_{-}$.

AHMEDOV

For the special case $D_{m 0}^{\lambda}$ we have the explicit formula

$$
\begin{equation*}
D_{m 0}^{\lambda}=e^{-i \lambda_{+}^{p} z_{+}-i \lambda_{-}^{p} z_{-}}\left[\mathcal{J}_{p-m}\left(\lambda^{2} \xi\right)\left(-i q^{\frac{1}{2}} \lambda_{-} \eta_{-}\right)^{p-m}+\left(-i q^{-\frac{1}{2}} \lambda_{+} \eta_{+}\right)^{m} \mathcal{J}_{m}\left(\lambda^{2} \xi\right)\right] \tag{42}
\end{equation*}
$$

where $m \in[0, p-1]$ and

$$
\begin{equation*}
\mathcal{J}_{m}(x)=\sum_{k=0}^{p-1-m} \frac{(-1)^{k}}{[k]![k+m]!}\left(q^{m} x\right)^{k} \tag{43}
\end{equation*}
$$

The pseudo-unitarity condition (40) implies

$$
\begin{equation*}
\left(D_{0 m}^{\lambda}\right)^{*} D_{0 n}^{\lambda}+\sum_{k=1}^{p-1}\left(D_{k m}^{\lambda}\right)^{*} D_{p-k n}^{\lambda}=\left(\delta^{m}, \delta^{n}\right)_{S} 1_{A} . \tag{44}
\end{equation*}
$$

Special cases are

$$
\left(D_{00}^{\lambda}\right)^{*} D_{00}^{\lambda}+\sum_{k=1}^{p-1}\left(D_{k 0}^{\lambda}\right)^{*} D_{p-k 0}^{\lambda}=1_{A}
$$

and

$$
\left(D_{0 s}^{\lambda}\right)^{*} D_{0 p-s}^{\lambda}+\sum_{k=1}^{p-1}\left(D_{k s}^{\lambda}\right)^{*} D_{p-k p-s}^{\lambda}=1_{A}
$$

where $s \in[1, p-1]$. Moreover, we have the addition theorem

$$
\begin{equation*}
\Delta\left(D_{n m}^{\lambda}\right)=\sum_{k=0}^{p-1} D_{n k}^{\lambda} \otimes D_{k m}^{\lambda} \tag{45}
\end{equation*}
$$

The pseudo-unitary representation $T^{(m)}$ of the quantum Poincaré group corresponding to the $*$-representation \mathcal{L}^{m} is given by

$$
T^{(m)} \delta^{m}=\delta^{m} \otimes \delta^{m}
$$

where $m \in[0, p-1]$.
Remarks. (i) Recall that the Hahn-Exton q-Bessel functions $J_{m}(x)$ related to the unitary irreducible representations of the quantum Euclidean group $E_{q}(2)$ are [18]

$$
J_{m}(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{[k]![k+m]!}\left(q^{m} x\right)^{k}
$$

Comparing (43) to the above expression we conclude that the matrix elements of the pseudo-unitary irreducible representations of the quantum Poincaré group are the cut off Hahn-Exton q-Bessel function.
(ii) Inspecting (38) we observe that irreducible representations of $E_{q}(1,1)$ are induced by the irreducible representations of the translation subgroup R^{2}.
(iii) The linear map $T^{(m)}$ defines the one dimensional pseudo-unitary representations of the invariant subgroup $S O(1,1 \mid p) \in E_{q}(1,1)$.

AHMEDOV

6. Quasi-Regular Representation

The comultiplication

$$
\begin{equation*}
\Delta: A_{0}\left(E_{q}^{(1,1)}\right) \rightarrow A_{0}\left(E_{q}(1,1)\right) \otimes A_{0}\left(E_{q}^{(1,1)}\right) \tag{46}
\end{equation*}
$$

defines the left quasi-regular representation of the quantum Poincaré group $E_{q}(1,1)$ in the vector space $A_{0}\left(E_{q}^{(1,1)}\right)$. Let us extend the Hermitian form (28) to the form $\{\cdot, \cdot\}_{E}$ by setting

$$
\{F \otimes X, G \otimes Y\}_{E}=F G^{*}(X, Y)_{E}
$$

where $X, Y \in A_{0}\left(E_{q}^{(1,1)}\right)$ and $F, G \in A_{0}\left(E_{q}(1,1)\right)$. Since the Hermitian form $(\cdot, \cdot)_{E}$ is defined by means of the invariant integral we have

$$
\begin{equation*}
\{\Delta(X), \Delta(Y)\}_{E}=1_{A}(X, Y)_{E} \tag{47}
\end{equation*}
$$

which implies that the left quasi-regular representation (46) is pseudo-unitary.
The right representation \mathcal{R} of the quantum algebra $U_{q}(e(1,1))$ corresponding to the left quasi-regular representation (46) is given by

$$
\mathcal{R}(\phi) F=F \diamond \phi .
$$

We have

$$
\begin{equation*}
\mathcal{R}\left(p_{ \pm}\right) \eta_{ \pm}^{k}=i q^{ \pm \frac{1}{2}}[k] \eta_{ \pm}^{k-1}, \quad \mathcal{R}\left(p_{ \pm}\right) \eta_{\mp}^{k}=0, \quad \mathcal{R}(\kappa) \eta_{ \pm}^{k}=q^{ \pm k} \eta_{ \pm}^{k} \tag{48}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{R}\left(p_{ \pm}\right) f=i q^{ \pm \frac{1}{2}} \frac{(-1)^{\frac{p+1}{2}}}{[p-1]!} \eta_{ \pm}^{p-1} \frac{d f}{d z_{ \pm}}, \quad \mathcal{R}\left(P_{ \pm}\right) f=i \frac{d f}{d z_{ \pm}}, \quad \mathcal{R}(\kappa) f=f \tag{49}
\end{equation*}
$$

where $f \in C_{0}^{\infty}\left(R^{2}\right)$. Using the following relations satisfied by the right representation \mathcal{R}

$$
\begin{gathered}
\mathcal{R}\left(\phi \phi^{\prime}\right)=\mathcal{R}\left(\phi^{\prime}\right) \mathcal{R}(\phi), \\
\mathcal{R}\left(p_{ \pm}\right)(X Y)=\mathcal{R}\left(p_{ \pm}\right) X \mathcal{R}(\kappa) Y+\mathcal{R}\left(\kappa^{-1}\right) X \mathcal{R}\left(p_{ \pm}\right) Y, \\
\mathcal{R}(\kappa)(X Y)=\mathcal{R}(\kappa) X \mathcal{R}(\kappa) Y
\end{gathered}
$$

we can define the action of an arbitrary operator $\mathcal{R}(\phi)$ on any function from $A_{0}\left(E_{q}^{(1,1)}\right)$. Due to the identity

$$
\overline{\left\langle\phi, F^{*}\right\rangle}=\left\langle(S(\phi))^{*}, F\right\rangle, \quad F \in A_{0}\left(E_{q}(1,1)\right)
$$

and the pseudo-unitarity condition (47) for any $\phi \in U_{q}(e(1,1))$ we have

$$
(\mathcal{R}(\phi) X, Y)_{E}=\left(X, \mathcal{R}\left(\phi^{*}\right) Y\right)_{E}
$$

Thus the antihomomorphism $\mathcal{R}: U_{q}(e(1,1)) \rightarrow \operatorname{Lin} A_{0}\left(E_{q}^{(1,1)}\right)$ defines $*-$ representation of the quantum algebra $U_{q}(e(1,1))$ in the pseudo-Euclidean space $A_{0}\left(E_{q}^{(1,1)}\right)$.

AHMEDOV

The quantum algebra $U_{q}(e(1,1))$ has three Casimir elements $P_{ \pm}$and $p_{+} p_{-}$with one restriction

$$
P_{+} P_{-}=\left(p_{-} p_{+}\right)^{p}
$$

Therefore irreducible representations of $U_{q}(e(1,1))$ will be labelled by two indices. We construct the irreducible representations of the quantum algebra $U_{q}(e(1,1))$ in the pseudoEuclidean space $A_{0}\left(E_{q}^{(1,1)}\right)$ by diagonalizing the complete set of commuting elements of $U_{q}(e(1,1))$ in $A_{0}\left(E_{q}^{(1,1)}\right)$.
(i) The angular momentum states. Choose the following complete set of observables : $\mathcal{R}\left(P_{ \pm}\right), \mathcal{R}\left(p_{+} p_{-}\right), \mathcal{R}(\kappa)$. Inspecting (48) and (49) we observe that the functions

$$
X=e^{-i \lambda_{+}^{p} z_{+}-i \lambda_{-}^{p} z_{-}}\left[X_{1}(\xi) \eta_{-}^{p-m}+\eta_{+}^{m} X_{2}(\xi)\right]
$$

with $X_{1}(\xi)$ and $X_{2}(\xi)$ being some polynomials, are eigenstates of the linear operators $\mathcal{R}\left(P_{ \pm}\right)$and $\mathcal{R}(\kappa)$ with eigenvalues $\lambda_{ \pm}^{p}$ and q^{m} respectively. The eigenvalue equation

$$
\mathcal{R}\left(p_{+} p_{-}\right) X=\lambda^{2} X
$$

is solved by

$$
X=D_{m 0}^{\lambda}
$$

where $\lambda^{2}=\lambda_{+} \lambda_{-}$and $D_{m 0}^{\lambda}$ are the matrix elements (42). By direct calculations we arrive at the following results.

Proposition 3 The right representation of $U_{q}(e(1,1))$ on the matrix elements $D_{m 0}^{\lambda}$ is given by

$$
\begin{array}{ll}
\mathcal{R}\left(p_{+}\right) D_{m 0}^{\lambda}=\lambda_{+} D_{m-1,0}^{\lambda}, & m \in[1, p-1], \\
\mathcal{R}\left(p_{-}\right) D_{m 0}^{\lambda}=\lambda_{-} D_{m+1,0}^{\lambda}, & m \in[0, p-2]
\end{array}
$$

and

$$
\mathcal{R}\left(p_{+}\right) D_{00}^{\lambda}=\lambda_{+} D_{p-10}^{\lambda}, \quad \mathcal{R}\left(p_{-}\right) D_{p-1,0}^{\lambda}=\lambda_{-} D_{00}^{\lambda} .
$$

Proposition 4 The matrix elements of the irreducible pseudo-unitary representation satisfy the orthogonality condition

$$
\left(D_{n 0}^{\lambda}, D_{m 0}^{\lambda_{0}^{\prime}}\right)_{E}=\Lambda \delta\left(\lambda_{+}-\lambda_{+}^{\prime}\right) \delta\left(\lambda_{-}-\lambda_{-}^{\prime}\right) \delta_{n+m, 0(\bmod p)}
$$

where

$$
\Lambda=\frac{2 \pi}{p^{2}} \sum_{k=0}^{p-1} \frac{1}{([k]![p-1-k]!)^{2}}
$$

is the normalization constant.

AHMEDOV

(ii) The Plane wave states. We choose the following complete set of observables: $\mathcal{R}\left(P_{ \pm}\right)$, $\mathcal{R}\left(p_{ \pm}^{\prime}\right)$, where

$$
p_{+}^{\prime}=q^{-\frac{1}{2}} p_{+} \kappa^{-1}, \quad p_{-}^{\prime}=q^{-\frac{1}{2}} p_{-} \kappa .
$$

Due to the relation $P_{ \pm}=-\left(p_{ \pm}^{\prime}\right)^{p}$ it is sufficient to solve the eigenvalue equations

$$
\begin{equation*}
\mathcal{R}\left(p_{ \pm}^{\prime}\right) Y=\chi_{ \pm} Y \tag{50}
\end{equation*}
$$

Proposition 5 The eigenfunctions of (50) are

$$
Y=e_{+}^{-i \chi+\eta_{+}} e_{+}^{-i q \chi-\eta-} e^{i \chi_{+}^{p} z_{+}} e^{i \chi_{-}^{p} z_{-}}
$$

where e_{+}^{x} is the cut off exponential (35).
Proof. Substituting

$$
Y=e^{i \chi_{+}^{p} z_{+}} e^{i \chi_{-}^{p} z_{-}} Y_{+}\left(\eta_{+}\right) Y_{-}\left(\eta_{-}\right)
$$

in (50) we get

$$
\left[\mathcal{R}\left(p_{+}^{\prime}\right)-q \frac{(-1)^{\frac{p+1}{2}}}{[p-1]!} \chi_{+}^{p} \eta_{+}^{p-1}\right] Y_{+}=\chi_{+} Y_{+}
$$

and

$$
\left[\mathcal{R}\left(p_{-}^{\prime}\right)-\frac{(-1)^{\frac{p+1}{2}}}{[p-1]!} \chi_{-}^{p} \eta_{-}^{p-1}\right] Y_{-}=\chi_{-} Y_{-}
$$

which imply the desired result.

Acknowledgement

The author thanks Dayi, Ö. F. and Duru, I. H. for helpful discussions.

References

[1] H. Ahmedov, and I. H. Duru, J. Phys. A: Math. Gen, 31, (1998) 5741.
[2] H. Ahmedov and Ö. F. Dayi, J. Phys. A: Math. Gen, 32, (1999) 1895.
[3] H. Ahmedov and Ö. F. Dayi, J. Phys. A: Math. Gen, 32, (1999) 6247.
[4] E. Celeghini, R. Giachetti, E. Sorace, M. Tarlini, J. Math. Phys., 31, (1990) 2548.
[5] F. Bonechi, N. Ciccoli, R. Giachetti, E. Sorace, M. Tarlini, Commun. Math. Phys., 175, (1996) 161.
[6] V. Chari and A. Pressley, Lett. Math. Phys., 26, (1992) 133.
[7] V. Chari and A. Pressley, Quantum Groups, Cambridge: Camb. Univ. Press, 1994.
[8] N. Ciccoli and R. Giachetti, Lett. Math. Phys., 34, (1995) 37.

AHMEDOV

[9] R. Coquereaux, A. O. Garcia and R. Trinchero, Differencial calculus and connections on a quantum plane at a cubic root of unity. math-ph/9807012.
[10] C. De Concini and V. C. Kac, In Prog. Math., 92, (1990) 471.
[11] De Concini, C., Kac, V. C. and C. Procesi, Commun. Math. Phys., 157, (1993) 405.
[12] R. S. Dunne, A. J. Macfarlane, J. A. De Azgàraga and J. C. Pèrez Bueno, Int. J. Mod. Phys., A12, (1997) 3275.
[13] Ö. F. Dayi, J. Phys. A: Math. Gen, 31, (1998) 3523.
[14] C. Fronsdal, A. Galindo, A.: Lett. Math. Phys., 27, (1993) 59.
[15] C. Gòmez, M. Ruiz-Altaba and G. Sierra, Quantum groups in two-dimensional physics. Cambridge: Camb. Univ. Press, (1996).
[16] D. V. Glushenkov and A. V. Lyakhovskaya, Regular representation of the quantum Heizenberg double $\left\{U_{q}(s l(2))\right.$, $\left.\operatorname{Fun}(S L(2))\right\}$ (q is a root of unity). Zapiski LOMI, 215 (1994); UUITP-27/1993, hep-th/9311075.
[17] M. Jimbo, Lett. Math. Phys., 11, (1986) 247.
[18] H. T. Koelink, Duke Math. J., 76, (1994) 483.
[19] G. Lusztig, Adv. In. Math., 70, (1988) 237.
[20] G. Lusztig, Geom. Dedicata, 35, (1990) 89.
[21] N. Y. Reshetikhin and V. G. Turaev, Inv. Math., 103, (1991) 547.
[22] P. Roche and D. Arnaudon, Lett. Math. Phys., 17, (1989) 295.
[23] M. Rosso, Commun. Math. Phys., 117, (1988) 581.
[24] K. Ueno, T. Takebayashi and Y. Shibukawa, Lett. Math. Phys., 18, (1989) 215.
[25] L. L. Vaksman and L. I. Korogodski, Soviet Math. Dokl., 39, (1989) 173.
[26] N. Ya. Vilenkin and A. O. Klimyk, Representation of Lie groups and special functions, Vol 3, Dordrecht: Kluwer Akad. Publ., (1992).
[27] S. L. Woronowicz, Commun. Math. Phys., 111, (1987) 613.
[28] S. L. Woronowicz, it Lett. Math. Phys., 23, (1991) 251; Commun. Math. Phys., 144, (1992) 417.

[^0]: *Talk presented in Regional Conference on Mathematical Physics IX held at Feza Gürsey Institute, Istanbul, August 1999.

