
Turk J Phy
24 (2000) , 411 – 428.
c© TÜBİTAK
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Abstract

A two-component formulation of the Klein-Gordon equation is used to investigate
the cyclic and noncyclic adiabatic geometric phases due to spatially homogeneous
(Bianchi) cosmological models. It is shown that no adiabatic geometric phases
arise for Bianchi type I models. For general Bianchi type IX models the problem
of the adiabatic geometric phase is shown to be equivalent to the one for nuclear
quadrupole interactions of a spin. For these models nontrivial non-Abelian adiabatic
geometrical phases may occur in general.

1. Introduction

In Ref. [1] a two-component formulation of the Klein-Gordon equation is used to develop
relativistic analogues of the quantum adiabatic approximation and the adiabatic dynam-
ical and geometric phases. This method provides a precise definition of an adiabatic
evolution of a Klein-Gordon field in a curved background spacetime. The purpose of this
article is to employ the results of Ref. [1] in the investigation of geometric phases due to
a spatially homogeneous background spacetime.

The phenomenon of geometric phase in gravitational systems has been previously
considered by Cai and Papini [2], Brout and Venturi [3], Venturi [4, 5], Casadio and
Venturi [6], Datta [7], and Corichi and Pierri [8]. The motivation for these studies extends
from the investigation of the study of weak gravitational fields [2] to various problems in
quantum cosmology and quantum gravity [3, 4, 5, 6, 7].

These studies were mostly plagued by the problem of constructing appropriate inner
products on the space of solutions of the Klein-Gordon equation. This problem has so
∗Talk presented in Regional Conference on Mathematical Physics IX held at Feza Gürsey Institute,
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far been solved for stationary spacetimes. Therefore the existing results have a limited
domain of applicability. The most important feature of the method developed in Ref. [1]
is that it avoids the above problem by showing that indeed the adiabatic geometric phase
is independent of the choice of an inner product on the space of solutions of the field equa-
tion. This enables one to investigate the phenomenon of the adiabatic geometric phase
for spatially homogeneous spacetimes which are clearly non-stationary. One must, how-
ever, note that the results presented in this article are relevant to adiabatically evolving
Klein-Gordon fields [1]. This raises the question whether the adiabaticity of the evolution
is compatible with the fact that the background spacetime is non-stationary. It turns out
that the answer to this question is in the positive, i.e., there are Klein-Gordon fields in a
non-stationary spacetime which do have adiabatic evolutions.

The organization of the paper is as follows. In section II, the results of Ref. [1]
which will be used in this paper are briefly reviewed. The computation of the geometric
phase for general spatially homogeneous (Bianchi) models are discussed in Section III.
These are applied in the analysis of the geometric phase problem for Bianchi type I and
type IX models in sections IV and V, respectively. A summary of the main results and
the concluding remarks are given in section VI.

Throughout this paper the signature of the spacetime metric g is taken to be (−,+,+,+).
Letters from the beginning and the middle of the Greek alphabet are associated with an
arbitrary local basis and a local coordinate basis of the tangent spaces of the space-
time manifold, respectively. The letters from the beginning and the middle of the Latin
alphabet label the corresponding spatial components and take values in {1, 2, 3}.

2. Two-Component Formalism and the Adiabatic Geometric Phase

Consider a complex scalar field Φ defined on a globally hyperbolic spacetime (M, g) =
(IR×Σ, g) satisfying (

gµν∇µ∇ν − µ2
)

Φ = 0 , (1)

where gµν are components of the inverse of the metric g, ∇µ is the covariant derivative
along ∂/∂xµ defined by the Levi Civita connection, and µ is the mass.

Denoting a time derivative by a dot, one can express Eq. (1) in the form

Φ̈ + D̂1Φ̇ + D̂2Φ = 0 , (2)

where

D̂1 :=
1
g00

[
2g0i∂i − gµνΓ0

µν

]
, (3)

D̂2 :=
1
g00

[
gij∂i∂j − gµνΓiµν∂i − µ2

]
. (4)

A two-component representation of the field equation (2) is

iΨ̇(q) = Ĥ(q)Ψ(q) , (5)

412



MOSTAFAZADEH

where

Ψ(q) :=
(
u(q)

v(q)

)
, (6)

u(q) :=
1√
2

(Φ + qΦ̇) , v(q) :=
1√
2

(Φ − qΦ̇) , (7)

Ĥ(q) :=
i

2

 q̇
q + 1

q − D̂1 − qD̂2 − q̇q −
1
q + D̂1 − qD̂2

− q̇
q

+ 1
q

+ D̂1 + qD̂2
q̇
q
− 1

q
− D̂1 + qD̂2

 , (8)

and q is an arbitrary, possibly time-dependent, nonzero complex parameter.
Next consider the eigenvalue problem for H(q). Denoting the eigenvalues and eigen-

vectors by E(q)
n and Ψ(q)

n , i.e.,

H(q)Ψ(q)
n = E(q)

n Ψ(q)
n , (9)

one has [1]

Ψ(q)
n =

1√
2

(
1− iqE(q)

n

1 + iqE
(q)
n

)
Φ(q)
n , (10)

where Φ(q)
n satisfies [

D̂2 − iE(q)
n (D̂1 −

q̇

q
)−

(
E(q)
n

)2
]

Φ(q)
n = 0 . (11)

This equation defines both the vectors Φ(q)
n and the complex numbers E(q)

n .
The following is a summary of some of the results obtained in Ref. [1].

1) Eq. (11) reduces to the ordinary eigenvalue equation for D̂2, if D̂1 = q̇/q. In this
case Φ(q)

n and E
(q)
n are independent of the choice of q, and one can drop the labels

(q) on the right hand side of Eq. (10).

2) Φ(q)
n belong to the Hilbert space Ht = L2(Σt) of square-integrable functions on

the spacelike hypersurfaces Σt where the integration is defined by the measure
[det((3)g)]1/2 and (3)g is the Riemannian three-metric on Σt induced by the four-
metric g.

3) Suppose that

3.1) D̂1 = q̇/q,

3.2) D̂2 is self-adjoint with respect to the inner product 〈 , 〉 of Ht,
3.3) D̂2 has a discrete spectrum,

3.4) during the evolution of the system En 6= Em iff m 6= n, i.e., there is no
level-crossings, and
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3.5) En is a non-degenerate eigenvalue of H(q), alternatively E2
n is a non-degenerate

eigenvalue of D̂2.

Then for all m 6= n, 〈Φm|Φ̇n〉 = 〈Φm| ˙̂D2Φn〉/(E2
n −E2

m). The relativistic adiabatic
approximation corresponds to the case where the latter may be neglected. In this
case, an initial two-component Klein-Gordon field

Ψ(q)(0) = eiαn(0)Ψ(q)
n (0) + eiα−n(0)Ψ(q)

−n(0) , (12)

with n ≥ 0 and α±n(0) ∈ C, evolves according to

Ψ(q)(t) ≈ eiαn(t)Ψ(q)
n (t) + eiα−n(t)Ψ(q)

−n(t) , (13)

where α±n(t) = [αn(0)+α−n(0)]/2+γn(t)+δ±n(t), α±n(0) are arbitrary constants,
γn(t) is the geometric part of both α±n(t) and δ±n(t) is the dynamical part of
α±n(t). They are given by

γn(t) =
∫ R(t)

R(0)

An[R] , (14)

δ±(t) = iξn(t)± ηn(t)
2

, (15)

where

An[R] :=
i〈Φn[R]|d|Φn[R]〉
〈Φn[R]|Φn[R]〉 =

i〈Φn[R]| ∂∂Ra |Φn[R]〉
〈Φn[R]|Φn[R]〉 dRa , (16)

is the Berry’s connection one-form [10], R = (R1, · · · , Rn) are the parameters of the
system, i.e., the components of the metric, d stands for the exterior derivative with
respect to Ra,

ξn(t) :=
1
2

∫ t

0

fn(t′)[1− cos ηn(t′)]dt′ , (17)

fn(t) :=
d

dt
ln[q(t)En(t)] , (18)

and ηn is the solution of

η̇n + fn sin ηn + 2En = 0 , ηn(0) = αn(0)− α−n(0) . (19)

In view of Eqs. (6), (7), and (10), Eq. (13) can be written in the form

Φ = c eiγn(t)(eiδn(t) + eiδ−n(t))Φn, (20)

where Φ is the one-component Klein-Gordon field, i.e., the solution of the original
Klein-Gordon equation (1), and c := exp[αn(0) + α−n(0)].
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4) If in addition to the above adiabaticity condition one also has Ėn ≈ 0, then an
initial eigenvector Ψ(q)

n (0) evolves according to

Ψ(q)(t) ≈ eiαn(t)Ψ(q)
n (0) ,

where the total phase angle αn again consists of a geometric and a dynamical part.
This case corresponds to what is termed as ultra-adiabatic evolution in Ref. [1].

Suppose that conditions 3.1) – 3.4) are satisfied, but En is N fold degenerate. Then
the condition for the validity of the adiabatic approximation becomes 〈ΦIm|Φ̇Jn〉 ≈ 0, for
all m 6= n and I, J = 1, 2, · · ·N . Here Φ1

n, · · ·ΦNn are orthogonal eigenvectors spanning
the degeneracy subspace of Ht associated with E2

n. In this case, exp[iα±n(t)] become
matrices of the form eiδ±n(t)Γn(t) where

Γn(t) := P exp[i
∫ R(t)

R(0)

An] , (21)

P is the path-ordering operator, An is a matrix of one-forms with components

AIJn [R] :=
i〈ΦIn[R]|d|ΦJn[R]〉
〈ΦIn[R]|ΦIn[R]〉 . (22)

In this case, a solution of the one-component Klein-Gordon equation (1) is given by

Φ =
N∑

I,J=1

(cIne
iδn(t) + cI−ne

iδ−n(t))ΓIJn (t)ΦJn , (23)

where cI±n are constant coefficients determined by the initial conditions.
If the parameters R undergo a periodic change, i.e., R(T ) = R(0) for some T ∈ IR+,

then the path-ordered exponential Γn(T ) which is called the cyclic adiabatic geometrical
phase, cannot be removed by a gauge transformation. Eq. (22) shows that the formula
for the relativistic adiabatic geometric phase has the same form as its non-relativistic
analogue [9]. In particular for N = 1 (the non-degenerate case), one recovers Berry’s
connection one-form (16). In this case Γn(T ) reduces to an ordinary exponential and
yields the Berry phase eiγ(T ) for the Klein-Gordon field.

In the remainder of this paper, I shall consider the problem of the adiabatic geometric
phase for a Klein-Gordon field minimally coupled to a spatially homogeneous gravitational
field.

It is important to note that the cyclic geometric phase has physical significance, if
one has a cyclic evolution1. For an adiabatic evolution, the evolving state undergoes a
cyclic evolution, if the parameters of the system, in this case the components of the met-
ric tensor, change periodically in time. This corresponds to the spatially homogeneous

1For a discussion of the meaning of a cyclic evolution of a Klein-Gordon field see Ref. [1].
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(Bianchi) cosmological models which admit periodic (oscillatory) solutions2. This obser-
vation does not however mean that the connection one-forms An and their path-ordered
exponentials Γn(t) lack physical significance for general nonperiodic Bianchi models. The
cyclic adiabatic geometric phases have noncyclic analogues which occur in the evolution
of any quantum state, [12, 13].

A noncyclic analogue of the non-Abelian cyclic geometric phase has recently been
introduced by the present author [13]. In view of the results of Ref. [13], the noncyclic
adiabatic geometric phase for an adiabatically evolving Klein-Gordon field is given by

Γ̃n(t) := wn(t)Γn(t) , (24)

where wn(t) is an N × N matrix with entries:

wIJn (t) := 〈ΦIn[R(0)]|ΦJn[R(t)]〉 . (25)

The noncyclic geometric phase has the same gauge transformation properties as the cyclic
geometric phase. In particular, its eigenvalues and its trace are gauge-invariant physical
quantities, [13].

If it happens that the connection one-form An is exact, i.e., it is a pure gauge, then
there are two possibilities:

a) The curve C traced by the parameters R of the system in time has a part which is a
non-contractible loop. In this case the cyclic or noncyclic geometric phase will be a
topological quantity analogous to the Aharonov-Bohm phase [10]. Such a geometric
phase will be called a topological phase. Topological phases can occur only if the
parameter space of the system has a nontrivial first homology group.

b) The curve C does not have a piece which is a non-contractible loop. In this case,
the geometric phase is either unity (the cyclic case) or it depends only on the end
points, R(0) and R(t), of C (the noncyclic case). Such a geometric phase will be
called a trivial geometric phase.

3. Spatially Homogeneous Cosmological Models

Consider Klein-Gordon fields in a spatially homogeneous (Bianchi) cosmological back-
ground associated with a Lie group G, i.e., M = IR×G. In a synchronous invariant basis
the spacetime metric g is given by its spatial components gab:

ds2 = gαβω
αωβ = −dt2 + gabω

aωb , (26)

where ωa are the left invariant one-forms and gab = gab(t). Throughout this article I use
the conventions of Ref. [14].

The first step in the study of the phenomenon of the adiabatic geometric phase due
to a spatially homogeneous cosmological background is to compute the operators D̂1 and

2For an example see Ref. [11].
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D̂2 of Eqs. (3) and (4) in the invariant basis. It is not difficult to see that with some
care these equations are valid in any basis. One must only replace the coordinate labels
(µ, ν, · · · , i, j, · · ·) with the basis (in this case invariant basis) labels (α, β, · · · , a, b, · · ·),
and interpret ∂a as the action of the operators X̂a associated with the dual vector fields
to ωa. This leads to

D̂1 = gabΓ0
ab , (27)

D̂2 = −∆t + µ2 , (28)
∆t := gab∇a∇b = gabX̂aX̂b − ΓcabX̂c , (29)

where ∆t is the Laplacian on Σt, ∇a are the covariant derivatives corresponding to the
Levi Civita connection,

Γγαβ :=
1
2
gγδ(gδα,β + gβδ,α − gαβ,δ + gεαC

ε
δβ + gεβC

ε
δα) − 1

2
Cγαβ , (30)

as derived in Ref. [14], gαβ,γ := X̂γgαβ, and Cγαβ are the structure constants:[
X̂α, X̂β

]
= −Cγαβ X̂γ , (31)

with X̂0 := ∂/∂t. In view of the latter equality, the structure constants with a time label
vanish. This simplifies the calculations of Γ’s. The only nonvanishing ones are

Γ0
ab =

1
2
ġab , (32)

Γcab =
1
2
gcd(geaCedb + gebC

e
da)− 1

2
Ccab . (33)

In view of these relations, the expression for D̂1 and D̂2 may be further simplified:

D̂1 =
∂

∂t
ln
√
g , (34)

D̂2 = −∆t + µ2 = −(gabX̂aX̂b −CbabgacX̂c) + µ2 , (35)

where g is the determinant of (gab). Note that for a unimodular, in particular semisimple,
group Cbab = 0, and the second term on the right hand side of (35) vanishes. The
corresponding Bianchi models are knows as Class A models.

As seen from Eq. (34), D̂1 acts by multiplication by a time-dependent function. There-
fore, choosing q = i

√
g, D̂1 = q̇/q. This reduces Eq. (11) to the eigenvalue equation

(D̂2 − E2
n)Φn = −(∆t + E2

n − µ2)Φn = 0 , (36)

for the operator D̂2 which being essentially the Laplacian over Σt, is self-adjoint. This
guarantees the orthogonality of Φn and the reality of E2

n. 3

3One can also show that, since q is imaginary, the Hamiltonian H(q) is self-adjoint with respect to
the Klein-Gordon inner product, i.e., the inner product (11) of Ref. [1].
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The analysis of the Φn is equivalent to the study of the eigenvectors of the Laplacian
over a three-dimensional group manifold Σt. The general problem is the subject of the
investigation in spectral geometry which is beyond the scope of the present article. How-
ever, let us recall some well-known facts about spectral properties of the Laplacian ∆ for
an arbitrary finite-dimensional Riemannian manifold Σ without boundary.

The following results are valid for the case where Σ is compact or the eigenfunctions
are required to have a compact support4 [15]:

1. The spectrum of ∆ is an infinite discrete subset of non-negative real numbers.

2. The eigenvalues are either non-degenerate or finitely degenerate.

3. There is an orthonormal set of eigenfunctions which form a basis for L2(Σ).

4. If Σ is compact, then the first eigenvalue is zero which is non-degenerate with the
eigenspace given by the set of constant functions, i.e., C. If Σ is not compact but
the eigenfunctions are required to have a compact support, then the first eigenvalue
is positive.

Another piece of useful information about the spatially homogeneous cosmological
models is that (up to a multiple of i =

√
−1) the invariant vector fields X̂a yield a

representation of the generators La of G, with L2(Σt) being the representation space, one
can view the Laplacian ∆t as (a representation of ) an element of the enveloping algebra
of the Lie algebra of G. Therefore, ∆t commutes with any Casimir operator Cλ and
consequently shares a set of simultaneous eigenvectors with Cλ. This in turn suggests one
to specialize to particular subrepresentations with definite Cλ. In particular for compact
groups, this leads to a reduction of the problem to a collection of finite-dimensional ones.5

In the remainder of this article I shall try to employ these considerations to investigate
some specific models.

4. Bianchi Type I

In this case G is Abelian, therefore Xa are themselves Casimir operators and the eigen-
functions of ∆t, i.e., Φn, are independent of t. Hence the Berry connection one-form
(16) and its non-Abelian generalization (22) vanish identically, and the geometric phase
is trivial.

5. Bianchi Type IX

In this case G = SU(2) = S3. The total angular momentum operator Ĵ2 =
∑

a Ĵ
2
a is a

Casimir operator. Therefore, I shall consider the subspaces Hj of Ht = L2(S3
t ) of definite

4This is equivalent with the case where Σ has a boundary ∂Σ, over which the eigenfunctions vanish.
5Here I mean a finite-dimensional Hilbert space.
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angular momentum j. The left-invariant vector fields X̂a are given by X̂a = iĴa, in terms
of which Eq. (31), with Ccab = εabc, is written in the familiar form:[

Ĵa, Ĵb

]
= iεabcĴc , (37)

with εabc denoting the totally antisymmetric Levi Civita symbol and ε123 = 1.
Eq. (36) takes the form:

(Ĥ ′ − k2
n)Φn = 0 , (38)

where Ĥ ′ is an induced Hamiltonian defined by

Ĥ ′ := gab(t)ĴaĴb , (39)

and k2
n := E2

n− µ2. Therefore, the problem of the computation of the geometric phase is
identical with that of the non-relativistic quantum mechanical system whose Hamiltonian
is given by (39). In particular, for the mixmaster spacetime, i.e., for gab diagonal, the
problem is identical with the quantum mechanical problem of a non-relativistic asym-
metric rotor, [16].

Another well-known non-relativistic quantum mechanical effect which is described by a
Hamiltonian of the form (39) is the quadratic interaction of a spin with a variable electric
field (Ea). The interaction potential is the Stark Hamiltonian: ĤS = ε(

∑
aEaĴa)2.

The phenomenon of the geometric phase for the Stark Hamiltonian for spin j = 3/2,
which involves Kramers degeneracy [17], was first considered by Mead [18]. Subsequently,
Avron, et al [19, 20] conducted a thorough investigation of the traceless quadrupole
Hamiltonians of the form (39).

The condition on the trace of the Hamiltonian is physically irrelevant, since the ad-
dition of any multiple of the identity operator to the Hamiltonian does not have any
physical consequences. In general, one can express the Hamiltonian (39) in the form
Ĥ ′ = ˆ̃H ′ + Ĥ ′0, where ˆ̃H ′ := Tr(gab)Ĵ2/3,

Ĥ ′0[R] :=
5∑

A=1

RA êA , (40)

is the traceless part of the Hamiltonian, and

ê1 := J2
3 −

1
3
Ĵ2 , ê2 :=

1√
3
{Ĵ1, Ĵ2} ,

ê3 :=
1√
3
{Ĵ2, Ĵ3} , ê4 :=

1√
3

(Ĵ2
1 − Ĵ2

2 ) , (41)

ê5 :=
1√
3
{Ĵ1, Ĵ2} ,

R1 := g33 − 1
2

(g11 + g22) , R2 :=
√

3 g13 ,
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R3 :=
√

3 g23 , R4 :=
√

3
2

(g11 − g22) , (42)

R5 :=
√

3 g12 .

As shown in Refs. [19, 20] the spaceM′ of all traceless Hamiltonians of the form (40) is a
five-dimensional real vector space. The traceless operators êA form an orthonormal 6 basis
for M′. Removing the point (RA = 0) from M′, to avoid the collapse of all eigenvalues,
one has the space IR5−{0} as the parameter space. The situation is analogous to Berry’s
original example of a magnetic dipole in a changing magnetic field, [10]. Again, a rescaling
of the Hamiltonian by a non-zero function of RA does not change the geometric phase.
Thus the relevant parameter space is M = S4 . Incidentally, the point corresponding to
0 ∈ IR5 which is to be excluded, corresponds to the class of Friedmann-Robertson-Walker
models.

Following Berry [10] and Ref. [1], let us identify t with the affine parameter of a
curve C : [0, τ ] → S4 traced by the parameters RA in S4 . Such a curve may be defined
by the action of the group SO(5) which acts transitively on S4 . Therefore the time-
dependence of the Hamiltonian may be realized by an action of the group SO(5) on a
fixed Hamiltonian. As it is discussed in Ref. [20], it is the unitary representations U of
the double cover Spin(5) = Sp(2) of SO(5) (alternatively the projective representations
of SO(5)) which define the time-dependent Hamiltonian:

Ĥ ′0[R(t)] = U [g(t)] Ĥ ′0[R(0)] U [g(t)]† . (43)

Here, g : [0, τ ]→ Sp(2), is defined by R(t) =: π[g(t)]R(0), where π : Sp(2) → SO(5) is the
canonical two-to-one covering projection and R(t) corresponds to the point C(t) ∈ S4.
The emergence of the group Sp(2) is an indication of the existence of a quaternionic
description of the system, [20].

Let us next examine the situation for irreducible representations j of SU(2). As
I previously described, Ĵ2 commutes with the Hamiltonian. Hence the Hamiltonian
is block-diagonal in the basis with definite total angular momentum j. For each j, the
representation spaceHj is 2j+1 dimensional. Therefore the restriction of the Hamiltonian
Ĥ ′0 to Hj and U [g(t)] are (2j + 1)× (2j + 1) matrices.

Let {φIjn} be a complete set of orthonormal eigenvectors of the initial Hamiltonian
Ĥ ′0[R(0)], where I is a degeneracy label. Then the eigenvectors of Ĥ ′0[R] are of the form

ΦIjn [R] = U [g] φIjn , (44)

and the non-Abelian connection one-form (22) is given by

AIJjn = i〈φIjn | U
†dU |φJjn〉 . (45)

For the integer j, bosonic systems, it is known that the quadratic Hamiltonians of the
form (40), describe time-reversal-invariant systems. In this case it can be shown that the

6Orthonormality is defined by the inner product 〈Â, B̂〉 := 3 Tr(ÂB̂)/2.
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curvature two-form associated with the Abelian Berry connection one-form (16) vanishes
identically [20]. The connection one-form is exact (gauge potential is pure gauge) and
a nontrivial geometric phase can only be topological, namely it may still exist provided
that the first homology group of the parameter space is nontrivial. For the problem under
investigation M = S4, and the first homology group is trivial. Hence, in general, the
Abelian geometric phase is trivial. The same conclusion cannot however be reached for
the non-Abelian geometric phases.

In the remainder of this section, I shall examine the situation for some small values
of j.

1) j = 0: The corresponding Hilbert subspace is one-dimensional. Geometric phases
do not arise.

2) j = 1/2: In this case, Ĵa = σa/2, where σa are Pauli matrices. Using the well-
known anticommutation (Clifford algebra) relations {σa, σb} = 2δab, one can easily
show that in this case

Ĥ ′ =
1
2

∑
a

gaa(t) Î , (46)

where Î is the identity matrix. Therefore, the eigenvectors Φn are constant (gab-
independent), the connection one-form (45) vanishes, and no nontrivial geometric
phases occur.

3) j = 1: In this case the Hilbert subspace is three-dimensional. The Abelian geo-
metrical phases are trivial. The nontrivial matrix-valued geometrical phases may
be present, provided that the Hamiltonian has a degenerate eigenvalue. Using the
ordinary j = 1 matrix representations of Ĵa, one can easily express Ĥ ′0 as a 3 × 3
matrix. It can then be checked that in the generic case the eigenvalues of Ĥ ′0 are not
degenerate.7 However, there are cases for which a degenerate eigenvalue is present.
A simple example is the Taub metric, (gab) = diag(g11, g22, g22), which is a partic-
ular example of the mixmaster metric, [14]. For the general mixmaster metric, the
eigenvalue problem can be easily solved. The eigenvalues of the total Hamiltonian
Ĥ ′ of Eq. (39) are

1
g11

+
1
g22

,
1
g11

+
1
g33

,
1
g22

+
1
g33

.

Therefore the degenerate case corresponds to the coincidence of at least two of
gaa’s, i.e., a Taub metric. However, even in the general mixmaster case, one can
find a constant (gaa-independent) basis which diagonalizes the Hamiltonian. Hence
the non-Abelian connection one-form vanishes and the geometric phase is again
trivial. This is not however the case for general metrics. In the Appendix, it is
shown that without actually solving the general eigenvalue problem for the general
Hamiltonian, one can find the conditions on the metric which render one of the

7This is true for all integer j, [20].
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eigenvalues of the Hamiltonian degenerate. Here, I summarize the results. Using
the well-known matrix representations of the angular momentum operators Ĵa in
the j = 1 representation [21] one can write the Hamiltonian (39) in the form:

Ĥ ′ =

 t+ 2z ξ∗ ζ∗

ξ 2(t+ z) −ξ∗
ζ −ξ t + 2z

 , (47)

where

t :=
1
2

(g11 + g22) − g33 , z := g33 ,

ξ :=
1√
2

(g13 + ig23) , ζ :=
1
2

(g11 − g22) + ig12 .

Then it can be shown (Appendix) that the necessary and sufficient conditions for
Ĥ ′ to have a degenerate eigenvalue are

I. for ζ = 0: ξ = 0, in which case, Ĥ ′ as given by Eq. (47) is already diagonal. The
degenerate and non-degenerate eigenvalues are t+2z and 2(t+z), respectively.
In terms of the components of the metric, these conditions can be written as:
g11 = g22 and gab = 0 if a 6= b. This is a Taub metric which as discussed above
does not lead to a nontrivial geometric phase.

II. for ζ 6= 0:

ζ = Z e2iθ , t = Z − |ξ|2/Z , (48)

where exp[iθ] := ξ/|ξ| and Z ∈ IR−{0}. In this case the degenerate and non-
degenerate eigenvalues are 2(Z + z) − |ξ|2/Z and 2(z − |ξ|2/Z), respectively.

For the latter case, an orthonormal set of eigenvectors is given by:

v1 =
1√
2

 e−2iθ

0
1

 , v2 =
1√

1 + 2X 2

 X e−iθ1
−X eiθ

 ,

v3 =
1√

2(1 + 2X 2)

 −e−2iθ

2X e−iθ
1

 , (49)

where X := |ξ|/(2Z). In view of the general argument valid for all non-degenerate
eigenvalues, the geometric phase associated with v3 is trivial. This can be directly
checked by substituting v3 in the formula (16) for the Berry connection one-form.
This leads, after some algebra, to the surprisingly simple result A33 := i〈v3|dv3〉 =
dθ. Therefore, A33 is exact as expected, and the corresponding geometric phase is
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trivial. Similarly one can compute the matrix elements Ars := i〈vr |dvs〉, r, s = 1, 2,
of the non-Abelian connection one-form (22). The result is

A =
(

1 F
F∗ 0

)
ω , (50)

F :=
2X eiθ√

2(1 + 2X 2)
=

2εξ√
2 +

∣∣∣ ξζ ∣∣∣2
=

ε(g13 + ig23)√
1 + (g13)2+(g23)2

(g11−g22)2+(2g12)2

,

ω := dθ =
g13dg23 − g23dg13

(g13)2 + (g23)2
,

where ε := Z/|ζ| = ±1. As seen from Eq. (50), A is a u(2)-valued one-form, which
vanishes if g23/g13 is kept constant during the evolution of the universe.

It is also worth mentioning that the requirement of the existence of degeneracy is
equivalent to restricting the parameters of the system to a two-dimensional subset
of S4 . Thus, the corresponding spectral bundle [22, 23] is a U(2) vector bundle over
a two-dimensional parameter space M̃. The manifold structure of M̃ is determined
by Eqs. (48). In terms of the parameters RA of (42), these equations are expressed
by

R5 = f1R
4 , R1 = f2 R

4 +
f3

R4
, (51)

where

f1 :=
2R2R3

(R2)2 − (R3)2
, f2 := ± (R2)2 + (R3)2

√
3 [(R2)2 − (R3)2]

,

f3 := ∓(R2)2 − (R3)2

2
√

3
, f4 := (R2)2 + (R3)2 .

Here f4 is also introduced for future use. In addition to (51), one also has the
condition (RA) ∈ S4. If S4 is identified with the round sphere, this condition takes
the form

∑
A(RA)2 = 1. Substituting (51) in this equation, one finds

(1 + f2
2 + f2

3 )(R4)4 − (1− f4 − 2f2f3)(R4)2 + f2
3 = 0 . (52)

Eq. (52) may be easily solved for R4. This yields

R4 = ± 3[(R2)2 − (R3)2]2

8[(R2)2 + (R3)2]2

[
1− 2

3
[(R2)2 + (R3)2]±

√
1− 4

3
[(R2)2 + (R3)2]

]
.

(53)
Note that the parameters RA are related to the components of the inverse of the
three-metric through Eqs. (42). Thus the parameter space M̃ is really a submanifold
of the corresponding minisuperspace. Fig. 1 shows a three-dimensional plot of R4
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as a function of R2 and R3, i.e., a plot of the parameter space M̃ as embedded in
IR3. Note that R2 = ±R3 renders f1 and f2 singular. The corresponding points
which are depicted as the curves along which the figure becomes non-differentiable
must be handled with care. The smooth part of M̃ consists of eight connected
components, each of which is diffeomorphic to an open disk (alternatively IR2).

4) j = 3/2: This case has been studied in Refs. [19, 20] in detail. Therefore I suffice
to note that it involves nontrivial geometric phases. Note that because of Kramer’s
degeneracy, one does not need to restrict the minisuperspace to obtain degenerate
eigenvalues. Every solution of the Bianchi type IX model involves a non-Abelian
geometric phase.
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Figure 1. This is a plot of R4 = R4(R2, R3). The horizontal plane is the R2-R3-plane and the

vertical axis is the R4-axis. The parameter space M̃ is obtained by removing the intersection

of this figure with the planes defined by: R4 = 0, R2 = R3 and R2 = −R3. The intersection

involves the curves along which the figure becomes non-differentiable.
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6. Conclusion

In this article I applied the method developed in Ref. [1] to investigate the existence of
cyclic and noncyclic adiabatic geometric phases induced by spatially homogeneous cos-
mological backgrounds on a complex Klein-Gordon field. Unlike the examples presented
in Ref. [1], here the freedom in the choice of the decomposition parameter q turned out
to simplify the analysis.

I showed that for the Bianchi type I models Berry’s connection one-form vanished
identically. This was not the case for the Bianchi type IX models. Hence, for these
models nontrivial non-Abelian adiabatic geometric phases could occur in general. A
rather interesting observation was the relationship between the induced Hamiltonians in
the Bianchi type IX models and the quadrupole Hamiltonians of the molecular and nuclear
physics. I also showed that even for the integer spin representations nontrivial geometric
phases could exist. This should also be of interest for the molecular physicists and
chemists who have apparently investigated only the fermionic systems (half-integer spin
representations.) A rather thorough investigation of the non-Abelian adiabatic geometric
phase for arbitrary spin 1 systems has been conducted in [24].

As described in Ref. [1] the arbitrariness in the choice of q leads to a GL(1,C) sym-
metry of the two-component formulation of the Klein-Gordon equation. In the context of
general relativity where the Poincaré invariance is replaced by the diffeomorphism invari-
ance, one can use the time-reparameterization symmetry of the background gravitational
field and the geometric phase to absorb the magnitude |q| of the decomposition param-
eter q into the definition of the lapse function N = (−g00)−1/2. In this way only a U(1)
subgroup of the corresponding GL(1,C) symmetry group survives. The GL(1,C) or U(1)
symmetry associated with the freedom of choice of the decomposition parameter seems
to have no physical basis or consequences. It is merely a mathematical feature of the
two-component formalism which can occasionally be used to simplify the calculations.

The application of the two-component formulation for the Bianchi models manifestly
shows that this method can be employed even for the cases where the background space-
time is non-stationary. One must however realize that the present analysis is only valid
within the framework of the relativistic adiabatic approximation [1]. Although, the (ap-
proximate) stationarity of the background metric is a sufficient condition for the validity
of the adiabatic approximation, it is not necessary. This can be easily seen by noting that
for example in the case of Bianchi IX model, for spin j = 1/2 states, one has Φ̇n = 0,
so 〈Φm|Φ̇n〉 = 0. Therefore, although the spacetime is not stationary, the adiabatic ap-
proximation yields the exact solution of the field equation. This shows that in general
for arbitrary non-stationary spacetimes, there may exist adiabatically evolving states to
which the above analysis applies.

The extension of our results to the non-adiabatic cases requires a generalization of
the analysis of Ref. [1] to non-adiabatic evolutions.
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Appendix

In this Appendix I show how one can obtain the conditions under which the Hamiltonian
(47) has degenerate eigenvalues without actually solving the eigenvalue problem in the
general case.

The analysis can be slightly simplified if one writes the Hamiltonian (47) in the form:

Ĥ ′ = (t+ 2z)Î + ˆ̃
H ,

ˆ̃H :=

 0 ξ∗ ζ∗

ξ t −ξ∗
ζ −ξ 0

 , (54)

where Î is the 3× 3 identity matrix. Clearly, the eigenvalue problems for Ĥ ′ and ˆ̃H are
equivalent. Computing the characteristic polynomial for ˆ̃

H , i.e., P (λ) := det( ˆ̃
H − λÎ),

one finds:
P (λ) = −λ3 + tλ2 + (|ζ|2 + 2|ξ|2)λ − (t|ζ|2 + ζξ∗2 + ζ∗ξ2) . (55)

If one of the eigenvalues (roots of P (λ)) is degenerate, then

P (λ) = −(λ− l1)(λ − l2)2 . (56)

Comparing Eqs. (55) and (56), one finds

t = l1 + 2l2 , l22 + 2l1l2 = −(|ζ|2 + 2|ξ|2) , l1l
2
2 = −(t|ζ|2 + ζξ∗2 + ζ8ξ2) . (57)

Furthermore since l2 is at least doubly degenerate, the rows of the matrix:

ˆ̃
H − l2 Î =

 −l2 ξ∗ ζ∗

ξ t− l2 −ξ∗
ζ −ξ −l2

 , (58)

must be mutually linearly dependent. In other words the cofactors of all the matrix ele-
ments must vanish. Enforcing this condition for the matrix elements and using Eqs. (57),
one finally finds that either ξ = ζ = l2 = 0 and l1 = t, or

ζ = Z e2iθ , t = Z − |ξ|
2

Z ,

l2 = Z , l1 = −(Z +
|ξ|2
Z ) ,

where exp[iθ] := ξ/|ξ| and Z ∈ IR− {0}.
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