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Abstract

We take as our basic principle that the Lagrangian and the Hamiltonian for-
mulations of general relativity should be equivalent. It is then possible to choose
the gauge transformations so as to be projectable under the Legendre map from
configuration-velocity space (the tangent bundle) to phase space (the cotangent
bundle). This projectability requirement then implies that gauge transformations
in general relativity (we study in particular spacetimes with a Yang-Mills field) must
depend in a specific way on the lapse and shift of the metric. This talk outlines the
arguments and presents some of the results of the application of these principles.

1. Introduction

Based on the principle that the Lagrangian and Hamiltonian formulations of a theory
should be equivalent, we have previously discussed [1] the relationship between diffeo-
morphisms and gauge transformations in general relativity. We recently [2] extended
this discussion to include spacetimes containing a Yang-Mills field. The basic principle
means that gauge transformations can be chosen to be projectable under the Legendre
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map from configuration-velocity space (the tangent bundle) to phase space (the cotangent
bundle) — this builds on a rather formal treatment by Pons and Shepley [3]. We show
that the diffeomorphism group, which acts on the spacetime manifold, is not part of the
gauge group. Instead, the gauge group acts on dynamical variables and depends on them,
though each diffeomorphism is indeed included.

In this report, we outline the procedures, results, and some of the implications of our
approach. We show that descriptors of the diffeomorphism-induced gauge transformations
must depend in a specific way on the lapse and shift of the metric, as well as on the
Yang-Mills potential itself. Our results are like those earlier obtained by Salisbury and
Sundermeyer [4,5], but we obtain them, we feel, using a more physical point of view. We
emphasize that our discussion is purely classical, but we hope that our results will prove
significant to programs aiming at quantization, since all gauge variables are retained.

2. Singular Lagrangians

A gauge transformation, broadly speaking, is a transformation of a physical theory which
leaves the physics unchanged. Suppose we consider a Lagrangian L(q, q̇) (without explicit
dependence on the time t; note that q is a generic configuration variable, and the dot
means time derivative). An infinitesimal transformation of the configuration variables
δqi(q, q̇, t) will be a symmetry—leave the physics invariant—if the resulting variation in
the Lagrangian is a total time derivative:

δL =
dF

dt
. (1)

This criterion implies

[L]iδqi +
dG

dt
= 0 , (2)

where G is defined by

G :=
∂L

∂q̇s
δqs − F , (3)

and where [L]i is the Euler-Lagrange function derivative of L:

[L]i = αi −Wij q̈
i , (4)

where

Wij :=
∂2L

∂q̇i∂q̇j
and αi := − ∂2L

∂q̇i∂qs
q̇s +

∂L

∂qi
. (5)

The Legendre matrix W = (Wij) in general will be singular when a gauge transformation
is possible.

The Legendre map is a map from configuration-velocity space (the tangent bundle)
to phase space (the cotangent bundle), denoted by

FL : TQ −→ T ∗Q . (6)
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It is defined by mapping the configuration-velocity space momentum functions p̂i(q, q̇)
into the phase space momentum variables:

pi = p̂i(q, q̇) =
∂L

∂q̇i
. (7)

When W is singular, its kernel is spanned by vectors which are the pullbacks of
functions in phase space (see [3]):

γiA = FL∗
(
∂φA
∂pi

)
with Wijγ

i
A = 0 . (8)

The φA are (effective) Hamiltonian primary constraints. We then see that

γiA
∂G

∂q̇i
= 0 . (9)

We can state this result in a significant way: G is the pullback of a function GH in phase
space, and the pullbacks of the momentum-derivatives of GH generate the symmetry
transformations:

G = FL∗(GH) , (10)

δqi = FL∗
(
∂GH
∂pi

)
. (11)

The canonical Hamiltonian HC (which is unique on the constraint surface) is that
function whose pullback is the Lagrangian energy (a function in configuration-velocity
space):

EL = p̂sq̇
s − L = FL∗(HC) . (12)

To the canonical Hamiltonian one can add constraints and eventually terminate the pro-
cess which leads to the dynamics (which will be equivalent to the Lagrangian theory)
[3,6,7].

The result of this treatment of the relationship between Lagrangian and Hamiltonian
treatments is that the generators of gauge transformations must be chosen to be pro-
jectable under the Legendre transformation in order to be well-defined in phase space.
We give concrete realizations of this requirement in the next section.

3. Einstein-Yang-Mills Theory

The Yang-Mills field variables are denoted Aiµ, where i is an internal index and µ is a
spacetime index. (In electromagnetism, the i doesn’t appear, and Aµ is the electromag-
netic four-potential.) The Yang-Mills Lagrangian density is given by

LYM = −1
4
F iµνF

k
στg

µσgντCik

√
|(4)g| ; (13)
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where the Yang-Mills field is

F iµν = Aiν,µ −Aiµ,ν − CijkAjµAkν ; (14)

where |(4)g| is the absolute value of the determinant of the four-metric, gµσ being its
inverse; and where Cijk are the structure constants of the Yang-Mills group, Cij being a
group-invariant metric.

The momentum functions are (the dot is ∂/∂t)

P̂αi =
∂LYM
∂Ȧiα

= F jστg
ασg0τCij

√
|(4)g| . (15)

It is clear, because of the antisymmetry of the field, that the (effective!) primary con-
straints are

0 = P̂ 0
i =

∂LYM
∂Ȧi0

. (16)

Consequently, projectable gauge transformations must be independent of Ȧi0.
In Yang-Mills theory, a gauge transformation has descriptors Λi, generating the trans-

formation
δR[Λ]Aiµ = −Λi,µ −CijkΛjAkµ =: −(DµΛ)i , (17)

thus defining Dµ, the Yang-Mills covariant derivative. (The subscript R stands for rota-
tion, electromagnetic theory being the common example.) The effect on the field (this
involves an application of the Jacobi identity) is

δRF
i
µν = −CijkΛjF kµν . (18)

LYM is invariant if the Yang-Mills metric obeys CsijCsk = CsikCsj, as it will in two
important cases: In a semi-simple group, the metric is usually taken to be Cij = CsitC

t
js,

and if the group is Abelian, then Cij = δij .
Note that δR is independent of Ȧi0 and so is, indeed, projectable.

4. Diffeomorphism-Induced Transformations

We begin by expressing the spacetime metric in the form

(gµν) =
(
−N2 + N cNdgcd gacN

c

gbdN
d gab

)
, (19)

where N is the lapse function and N c the shift variables. The Lagrangian density for
General Relativity (we are ignoring boundary terms) is [8]

LGR = N
√
g
(

3R+KabK
ab − (Ka

a )2
)
, (20)
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with the following definitions: Three-dimensional indices (a, b, . . .) are raised or lowered
with the three metric gab, and 3R is the three-curvature formed from gab. The extrinsic
curvature is defined by

Kab :=
1

2N
(ġab −Na|b −Nb|a) , (21)

where the super dot means ∂/∂t, and | means the covariant derivative based on gab. Note
also that the relation between the determinants of the three-metric and the spacetime
metric is:

(4)g = −N2g . (22)

Note that LGR is independent of Ṅ , Ṅa, and this leads to the result that a projectable
variation must be independent of Ṅ, Ṅa.

One of the principles of General Relativity is that the theory should be independent
of the coordinates in which it is expressed. Thus, we consider a general (infinitesimal)
diffeomorphism:

δD [ε]xµ = −εµ . (23)

The effect of this variation on the components of a tensor such as the metric is the formula
for the Lie derivative:

δDgµν = gµν,σε
σ + gσνε

σ
,µ + gµσε

σ
,ν . (24)

In particular (with eacgcb = δab ),

δDN = Ṅε0 +N,aε
a +Nε̇0 −NNaε0,a , (25)

δDN
a = Ṅaε0 +Na

,cε
c +Naε̇0

−(N2eac +NaN c)ε0,c + ε̇a −N cεa,c . (26)

To eliminate the dependence on Ṅ , Ṅa, we require that the functions εµ which generate
the variation be dependent on N,Na:

ε0 =
ξ0

N
, εa = ξa − Na

N
ξ0 , (27)

where the descriptors ξµ are independent of the lapse and shift. Another way of expressing
this result is

εµ = δµa ξ
a + nµξ0 , (28)

where the unit normal to the t =const hypersurfaces is

nµ =
(

1
N
,−N

a

N

)
. (29)

The Lie derivative of the Yang-Mills potential is

δDA
i
0 = Ȧi0ε

0 +Ai0ε̇
0 +Aiaε̇

a + Ai0,aε
a . (30)
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This variation is not, as it stands, projectable, even taking into account equation (27).
To make the variation projectable, that is independent of Ai0 as well as independent of
N,Na, one must add a Yang-Mills gauge transformation:

(δD + δR)Ai0 = Ȧi0ε
0 +Ai0ε̇

0 +Aiaε̇
a + Ai0,aε

a

−Ṁ i − CistM sAt0 . (31)

One convenient choice for the descriptor of the Yang-Mills part is

M i = Aiσn
σξ0 . (32)

In summary, the general projectable variation, namely the variation which is a member
of the gauge group, is a combination of a variation based on diffeomorphisms and on
Yang-Mills gauge transformations. The descriptors are functions which do not depend on
the variables N,Na, Ai0. We have denoted the descriptors of the diffeomorphism-induced
variations by ξµ and the descriptors of the general Yang-Mills transformation by Λi. The
general variation thus is generated by

εµ = δµa ξ
a + nµξ0 , Aiσn

σξ0 + Λi . (33)

5. Summary, Conclusions, Musings

The canonical Hamiltonian has the form

HC =
∫
d3xNAHA , (34)

where
NA = (N,Na,−Ai0) . (35)

The primary constraints are
PA = (p, pa,−Pi) = 0 , (36)

and the secondary constraints are

ṖA = {PA, HC} = −HA . (37)

There are no more constraints. The explicit forms of the HA are

H0 =
1

2
√
g
CijgabP

a
i P

b
j +
√
g

4
Cije

acebdF iabF
j
cd

+
1
√
g

(pabpab − (pcc)
2)−√g 3R , (38)

Ha = P bi F
i
ab − 2pba|b , (39)

Hi = DaP ai . (40)
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Finally, we give a table of the variables:
Configuration: gab Aia N Na Ai0
Momentum: pab P ai p pa Pi

The generators of projectable variations have the form (see [2] for details)

G(t) = G
(0)
A ξA + G

(1)
A ξ̇A. (41)

Although there is a bit of freedom in the choice of the functions in this equation, the
simplest form is

G[ξ] = PAξ̇
A + (HA + PCN

BCCAB)ξB , (42)

where
{HA, HB} = CCABHC . (43)

The structure functions CCAB are calculable from equations (38,39,40) (see [2]).
For example, a global time translation has descriptors determined by εµ = δµ0 , and

it is found that the generator is the canonical Hamiltonian, as one would expect. Note
that the gauge variables N,Na, Ai0 are in a sense chosen, and time translation works on
equivalence classes of solutions with the same N,Na, Ai0.

The conclusions we can draw from these results are the following:
1) The Lagrangian and the Hamiltonian formulations are, yes, equivalent. That means

that the physical contents of the two formulations are the same. This is not a trivial
statement, for the counting of degrees of freedom in the two formulations may differ in
somewhat subtle ways (see [1,3]).

2) The basis for making a choice of the generators of the gauge transformations is the
principle that they must be chosen to be projectable under the Ledendre map in order
to ensure comment (1) above.

3) Yang-Mills gauge transformations present no problems. However, General Rela-
tivity and the Einstein-Yang-Mills combination are meant to be invariant under diffeo-
morphisms. Diffeomorphisms do indeed determine gauge transformations, but the gauge
transformations, to be projectable, must depend in explicit ways on the lapse N and shift
Na; plus they must involve an associated Yang-Mills transformation depending on the
gauge variables N,Na, Ai0.

4) We emphasize this last point: The gauge group acts on the dynamical variables.
In contrast, the diffeomorphism group acts on the underlying manifold; diffeomorphisms
are not the same as the transformations in the gauge group, though by suitable choice of
the gauge variables, any diffeomorphism does appear.

5) We’ve obtained similar results in related formulations of general relativity, in par-
ticular in the triad formulation [9] and in the Ashtekar complex formulation (where the
reality conditions have to be treated specially) [10].

Thus the gauge group in General Relativity is properly a group acting on dynamical
variables, and is thus significantly broadened from the diffeomorphism group, which acts
on the spacetime manifold. We hope our insights into the structure of this group will
help in strategies to quantize the theory.
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