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Abstract

Absolute parallelism (AP) geometry is frequently used for physical applications.
Although it is wider than the Riemannian geometry, it has two main defects. The
first is that its path equation does not represent physical trajectories of any test
particle. The second is the identical vanishing of its curvature tensor. The present
work shows that parameterizing this geometry would solve the two problems. Fur-
thermore, the resulting parameterized (AP)-structure is more general than both the
conventional (AP)-structure and the Riemannian structure. Also, it is shown that
it can be reduced to one or the other, of these two geometric structures, in some
special cases. The structure obtained is more appropriate for physical applications,
especially in constructing field theories gauging gravity.

1. Introduction

Geometrization of physics is an important philosophy introduced by Albert Einstein at
the beginning of the twentieth century. It represents, together with the quantization
philosophy, the main two ideas of fundamental physics of the century. It proved to be
very successful in describing and interpreting gravitational interaction. During the first
half of the century, and until the end of his life, Einstein tried to include other interactions
in his scheme, especially the electromagnetic one, in a series of attempts known as Unified
Field Theories. Unfortunately, all these attempts were not successful or incomplete.

On the other hand, in the second half of the century, several attempts have been done
to unify the four interactions known to physicists, so far, using the quantization philoso-
phy. A partial success is achieved in the trial known as The Standard Model of Glashow,
∗Talk presented in Regional Conference on Mathematical Physics IX held at Feza Gürsey Institute,

Istanbul, August 1999.
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Weinberg and Salam (cf. [1]), which unifies weak and electromagnetic interactions. The
success of this trial encouraged authors to rush in this direction. Another trial, of less
success, is done to include the strong interaction together with weak and electromagnetic
interactions, known as Grand Unified Theories (cf. [1]]. Extensive efforts have been done
to include gravity in this scheme. The problem is that, it seems very difficult or probably
impossible to unify gravity with the other interactions using the conventional quantiza-
tion scheme. It is not convincing that the continuation of the attempts in this direction
will bring us more nearer to the solution of the problem.

The situation now is either to suggest a third philosophy or to return back and reex-
amine carefully the geometrization scheme used to construct general relativity (GR). In
the present work, I am going to follow the easier way, i.e. to reexamine the geometrization
scheme. Consequently, I am going to suggest a modified version of Absolute Parallelism
(AP) geometry more appropriate for physical applications than the conventional version.

2. Scheme of Geometrization

Geometrization philosophy can be summarized in the following statement: ”to under-
stand nature one should start with geometry and end with physics”. The theory of GR
is a successful application of this philosophy. The application of this philosophy implies
the following scheme. It contains the following criteria:
1- A certain geometry is chosen to represent a model for nature. It should be wide enough
to accommodate all required physical quantities.
2- Building blocks in this geometry should be of one type.
3- Spaces of the chosen geometry should be affinely connected in order to guarantee gen-
eral covariance of mathematical expressions.
4- A one-to-one correspondence is set between geometric objects and physical quantities.
5- Identities in the chosen geometry represent laws of nature.
6- Curves or paths in this geometry represent trajectories of test particles.
7- A theory in which matter is not represented by a phenomenological material-energy
tensor is much preferable [2].
8- A theory in which different interactions do not enter as logically distinct structures
would be much preferable [3].

To illustrate the above criteria, we use the most successful application of the ge-
ometrization scheme, GR in free space. For the first criterion, the geometry chosen for
this application is the Riemannian geometry. It is just sufficient for the description of
gravitational interaction. The building block of the geometry is the metric tensor only.
All other geometric objects are constructed using this tensor. The affine connection de-
fined is Christoffel symbol, and consequently Riemannian spaces are affinely connected.
The Bianchi identity is used to represent conservation, as a law of nature. Geodesic and
null-geodesic paths are used to represent, successfully, trajectories of test particles and of
photons respectively. There is no phenomenological material-energy tensor imposed on
the theory, and the sources of the gravitational field arise as constants of integration of
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the field equations. The eighth criterion is not applicable in this case since the theory is
for gravitational interaction only. One can classify theories constructed using the above
scheme, in which the eight criteria are satisfied, as ”Pure Geometric Field Theories”.

Einstein spent the last thirty years of his life trying to construct geometric field the-
ories, in two main series of attempts to unify gravity with electromagnetism. These
attempts are known in the literature as ”Unified Field Theories”. In the first series of
these attempts, that we call ”Einstein’s Absolute Parallelism Theory” (EAP), he used
the geometry of absolute parallelism [4] to construct a theory unifying gravity and elec-
tromagnetism. For the same reason he started the second series [3], known as ”Einstein’s
Non-Symmetric Theory” (ENS), using another type of non-symmetric geometry in which
he dropped the symmetry conditions from the metric tensor and from the affine connec-
tion. Table 1 summarizes the application of the geometrization scheme, mentioned above,
in the two series of attempts compared to GR.

Table 1. Are the criteria of the geometrization scheme satisfied?

Criterion GR EAP ENS

1-Geometry Yes, Riemannian Yes, AP Yes, Non-symmetric

2-Building Blocks Yes, g(µν) Yes, λ
i

µ (?), gµν

3-Affine Connection Yes, gµν;α = 0 Yes, λ
i
µ

+|ν
= 0 Yes, gµ

+
ν

−|α
= 0

4-Correspondence Yes Yes Yes

5-Identities Bianchi (?) Generalized Bianchi

6- Paths and Motion Yes, Geodesic No No, in general.

7-Exclusion of
Phenomenological Yes, Free space Yes Yes

Objects

8-Unique Structure Yes Yes No
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From the above table it is clear that all the criteria of the geometrization scheme are
satisfied in the case of GR in free space.

The EAP-theory [4] has been found to be unsatisfactory since it did not produce the
Schwarzschild field, in the case of spherical symmetry, when the electromagnetic field
vanished. Also, it has been found, as shown in Table 1, that autoparallel paths do not
represent trajectories of any known particles. Furthermore, some authors (e.g. [5], [6])
claim that the AP-geometry is a flat one, since a curvature tensor, defined in a certain
way, vanishes. The last two objections indicate, in my opinion, the incompleteness of the
version of the AP-geometry used in constructing the theory. I am going to stress on these
objections, and to give them more attention in the next Section.

For the ENS-theory [3], most of the criteria are satisfied. one objection is that the
metric tensor is non-symmetric. It is made of two parts: one is symmetric and the other
is skew. The skew part has no contribution to the quadratic expression giving the metric
of space. The term containing the skew part, in this expression, vanishes identically. So
the geometry may be considered as a symmetric one to which one can add any second
order skew tensor. Then if the symmetric part is related to the gravitational field, as
usually done, and the skew part to the electromagnetic field, so the two fields enter as
logically two distinct structures. This violates the 8th criteria. Another objection, of
less importance, is that the non-symmetric connection in this geometry is defined using
a metricity condition:

gµ
+
ν

−|α
= 0, (1)

whose solution, in this case, gives a complicated expression which makes subsequent cal-
culations tedious. A third objection, against this geometry, is that paths of this geometry
do not, in general, represent trajectories of test particles except for some restricted cases
(cf. [7]).

Several authors tried to construct field theories using the above mentioned geometries.
Although their attempts have satisfied many of the criteria mentioned above, yet these
attempts violate others. Some of these attempts are listed in Table 2, in an ascending
order of the year of publication in the first column. The second column of this table gives
the aim of the trial. The headings of the last eight columns give the criterion number, in
the scheme of geometrization given above. The table shows how many of these criteria
are satisfied by the listed attempts.

3. Why Absolute Parallelism?

Before giving an answer to this question, I will review briefly the fundamental bases of the
conventional AP-geometry. An AP- space is an n-dimensional space each point of which is
labeled by a set of variables xν(ν = 1, 2, 3, ..., n). At each point we define n-contravariant
vectors λ

i

µ(µ = 1, 2, 3, ..., n stands for the coordinate components and i = 1, 2, 3, ..., n

stands for the vector number). We are going to use Latin indices for vector numbers and

476



WANAS

Table 2. Confrontation between Geometrization attempts and Criteria

Trial (year) Aim 1 2 3 4 5 6 7 8

Levi-Civita(1950) [8] Simplification of EAP
√ √ √ √

x x x
√

Mikhail(1952) [9] Creation of Matter
√ √ √

x x x x
√

Møller (1961) [10] Energy Localization
√ √ √

x
√

x x
√

Mikhail(1964) [11] Unification
√ √ √

x x x
√ √

Mikhail&Wanas(1977) [12] Unification
√ √ √ √ √

x
√ √

Møller (1978) [13] Singularity Free
√ √ √

x
√

x x
√

Hayashi&Shirafuji(1979) [5] Microscopic Gauge Gravity
√ √ √

? ? ? x
√

Hammond(1990) [14] Dynamical Torsion
√

x
√ √

? x x x

Hammond(1995) [15] Dirac Field & GR
√

x
√ √

x ? x x

Moffat(1995) [16] Non-Symmetric Gravity
√ √ √

?
√

? x
√

Hammond(1998) [17] Geometrization of Strings
√

x
√ √

x ? x x

√
= Criterion satisfied, x = Criterion not satisfied, ? = Not clear

Greek indices for the coordinate components. These vectors are subject to the condition:

λ
i
µ

+|ν
= 0, (2)

which is the absolute parallelism condition. One can define a set of n- covariant vectors,
conjugate to λ

i

µ such that,
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λ
i

µ
λ
j
µ = δij, (3)

λ
i

µ
λ
i
ν = δµν. (4)

Summation convention will be applied to both types of indices. Using these vectors we
can define the following 2nd order symmetric tensor:

gνµ
def= λ

i
ν λ
i
µ, (5)

gνµ
def= λ

i

ν
λ
i

µ. (6)

One can then use gµν to play the role of the metric tensor of the Riemannian geometry,
and so it can be used with its conjugate to lower and raise Greek indices respectively.

Affine Connections: In this geometry we have more than one affine connection. A
non-symmetric connection is immediately obtained as a solution of the AP-condition
given by (2),

Γα. µν
def= λ

i

α
λ
i
µ,ν . (7)

Also its dual behaves as an affine connection under the group of general coordinate
transformations. This connection is written in the form:

Γα. µν
def= Γα. νµ. (8)

Since (7) is non-symmetric, its symmetric part,

Γα. (µν)
def=

1
2

(Γα. µν + Γα. νµ), (9)

behaves as an affine connection. Now since (5) is defined as a metric tensor, then as a
consequence of a metricity condition,

gµν ;σ = 0, (10)

we can define Christoffel symbol in the usual manner,{
α

µν

}
def=

1
2
gασ(gµσ,ν + gσν,µ − gµν,σ). (11)

It is worth of mention that the symmetric part of the non-symmetric connection (9) is
different from Christoffel symbol. We can define using this connection a third order skew
tensor, known as the torsion tensor,
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Λα. µν
def= Γ.αµν − Γα. νµ = −Λα. νµ. (12)

Consequently, one can define another non-symmetric connection by adding (11) to (12),

Ωα. µν
def=
{
α

µν

}
+ Λα. µν , (13)

from which it is clear that its symmetric part is Christoffel symbol. The dual of (13) is
also an affine connection, given by

Ω̂α. µν
def= Ωα. νµ, (14)

So, in the AP-geometry one can define at least six quantities which behave as affine con-
nections under the effect of the group of general coordinate transformations. Some of
these quantities are symmetric (9) and (11), while others are non-symmetric. (7), (8),
(13) and (14).

Absolute Derivatives: Using the above defined affine connections, one can define the
following absolute derivatives:

Aµ+| ν = Aµ,ν + Aα Γµ. αν, (15)

Aµ−| ν = Aµ,ν +Aα Γµ.αν, (16)

Aµ0| ν = Aµ,ν +Aα Γµ. (αν), (17)

Aµ+|| ν = Aµ,ν + Aα Ωµ. αν, (18)

Aµ−|| ν = Aµ,ν +Aα Ω̂µ. αν , (19)

Aµ0||ν = Aµ,ν +Aα Ωµ.(αν), (20)

where Aµ is any contravariant vector. The last derivative is equivalent to the conventional
covariant derivative since the symmetric part of the connection Ωµ

. αν is Christoffel symbol,
as stated above.
Basic Vector: We can define a third order tensor, called the contortion, as

γα. µν
def= λ

i

α
λ
i
µ;ν . (21)

It can be easily shown that

Γα. µν =
{
α

µν

}
+ γα. µν, (22)

Λα. µν
def= γα. µν − γα. νµ = −Λα. νµ, (23)
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γα.µν
def=

1
2

(Λα.µν − Λ α
µ.ν − Λ α

ν.µ). (24)

Contracting we can define a covariant basic vector,

Cµ
def= Λα. µα = γα. µα. (25)

Path Equation: Historically, it is known that the only path defined in the AP-geometry
is the autoparallel path given by:

dAµ

dS
+ Γµ.αβ A

αAβ = 0. (26)

One of the reasons for which EAP-theory and the AP-geometry were neglected for about
twenty years (form Robertson’s paper [18] in 1932 to Mikhail’s Ph.D. [9] in 1952) is that
this path does not represent trajectories of any known particles. However, recently [19]
it is shown that the AP-geometry admits other paths, whose equations can be written in
the form:

dV µ

dS+
+ {µαβ}V αV β = −Λ µ

(αβ). V αV β, (27)

dWµ

dS0
+ {µαβ}WαW β = −1

2
Λ µ

(αβ). WαW β , (28)

dUµ

dS−
+ {µαβ}U

αUβ = 0, (29)

whereS+ , S0 and S− are the evolution parameters characterizing the three paths respec-
tively ; and V α,Wα andUα are the tangents to the corresponding paths . We will discuss
this set of equations at the end of this Section and in the next one.

Curvature Tensors: In general, there are at least two different methods to define
curvature tensors in any affinely connected geometry.

The First Method: In this method we simply replace Christoffel symbol, in the defi-
nition of Riemann-Christoffel tensor, by the non-symmetric connection (7), then we get:

Bα.µνσ = Γα.µσ,ν − Γα.µν,σ + ΓαενΓε.µσ − Γα.εσΓε.µν. (30)

Unfortunately the curvature tensor, defined in this way, vanishes identically because
of the AP-condition (2). Some authors believe that Ap-space is a flat space because of
the vanishing of this curvature. There is no convincing reason for which authors choosing
a certain connection, (7), while neglecting others, then claiming that the space is flat! I
will show, in the next Section, that the space is not flat and (30)can be considered as one
of the advantages of the AP-geometry.

The Second Method: An alternative method, for defining curvature tensors, is to
consider it as a measure of non-commutation of the absolute derivatives given above.
To make calculations easier, and the geometry self consistent, it is better to use the
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contravariant components of the tetrad vectors in the definition of the following curvature
tensors [12], [20],

λ
i

µ

+|νσ− λ
i

µ

+|σν = λ
i

αBµ.ανσ, (31)

λ
i

µ

−|νσ− λ
i

µ

−|σν = λ
i

αLµ.ανσ, (32)

λ
i

µ

0|νσ− λ
i

µ

0|σν = λ
i

αNµ
.ανσ, (33)

λ
i

µ

+||νσ− λ
i

µ

+||σν = λ
i

αMµ
.ανσ, (34)

λ
i

µ

−||νσ− λ
i

µ

−||σν = λ
i

αKµ
.ανσ, (35)

λ
i

µ

0 ||νσ− λ
i

µ

0 ||σν = λ
i

αRµ.ανσ. (36)

Here again the curvature defined by (31) vanishes identically because of the AP- condition.
The tensor defined by (36) is the Riemann-Christoffel curvature tensor of the associated
Riemannian space, since the symmetric part of the connection Ωµ. αν is Christoffel symbol
as stated above.

It is worth of mention that the two methods, in the case of Riemannian geometry,
give identical results, since the affine connection in this case is unique in this geometry.

Now, we answer the question given in the title of the present Section: Why abso-
lute parallelism? Recalling that the structure of any AP-space is defined completely, in
four dimensions, by a tetrad vector field subject to the condition (2), we can summarize
the advantages of using the AP-geometry, in the geometrization scheme, in the following
points:
1- Calculations using this geometry are more easier than those using Einstein’s non-
symmetric geometry. All tensors of different orders, and affine connections, are explicitly
defined by relatively simple expressions.
2- The AP-geometry is more wider than the Riemannian one. It admits tensors of third
orders (21)&(23), a basic vector (25) and a number of second order skew and symmetric
tensors. It also admits more than one affine connection, some of which are symmetric
and others are non- symmetric.
3- This type of geometry admits non-vanishing torsion (12). Recently, it is shown that
torsion is necessary to couple Dirac field to gravity [15]. Also, it is suggested that torsion
is necessary to geometrize strings [17].Furthermore, it appears that gauge formulation of
gravity needs non-vanishing torsion [15].
4- Tetrads, defining the structure of the AP-space, are used as fundamental variables in
attempts to quantize gravity [15].
5- A metric tensor is defined, in the AP-spaces, whenever needed. In other words, there
is always a Riemannian space associated with any AP-space. This facilitates comparison
between any field theory written in the AP-space and GR.
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6- The use of the AP-geometry helped in solving some of the problems of GR, e.g. the
problem of localization of gravitational energy [10].
7- AP-geometry admits a number of path equations (27), (28), (29) [19], in which the
effect of the torsion appears explicitly.
8- Quantum features are recently discovered in such type of geometry [22].
9- The AP-condition (2) is necessary to describe the dynamics of spinning particles [23].
10- Using the tetrad vectors, one can always associate a set of scalars with each tensor
defined in the AP-geometry (cf. [24]).

4. Physical Needs for Parameterizing AP-Geometry

We have at least two convincing physical reasons for parameterizing this type of geome-
try. These two reasons are:

The First Reason: Let us examine the structure of the curvature tensor given by (30).
As stated before, this tensor vanishes identically because of the AP-condition (2). This
tensor can be written in the form,

Bα. µνσ
def= Rα. µνσ +Qα. µνσ, (37)

where Rα. µνσ is the Riemann-Christoffel curvature tensor, of the associated Riemannian
space, given by,

Rα. µνσ
def=
{
α

µσ

}
,ν

−
{
α

µν

}
,σ

+
{
β

µσ

}{
α

βν

}
−
{
β

µν

}{
α

βσ

}
, (38)

and
Qα. µνσ

def= γ
α

+

.
µ

+
σ

−|ν
− γ

α

+

.
µ

+
ν

+|σ
+ γβ.µσ γ

α
.βν − γβ.µν γα.βσ . (39)

It is clear from (38) that Rα. µνσ is made from Christoffel symbols only. Also from (39)
we can see that Qα. µνσ is made from the contortion (or the torsion via (24)) only. Some
authors believe that Rα. µνσ and Qα. µνσ are equivalent (cf.[6]). Others consider Qα. µνσ
as giving an alternative definition of Rα. µνσ Let us examine these two tensors from a
different point of view. It is well known that Christoffel symbol is related, in applications,
to the gravitational field. So, its existence in (38) indicates that gravity is responsible
for the curvature of space-time. The identical vanishing of the curvature Bα. µνσ may
indicate that there is another physical interaction (anti-gravity, say) which is related to
the contortion (or the torsion) and is represented by the tensor Qα. µνσ. This interaction
balances the effect of gravity in such a way that the total effect vanishes. If so, it is
better to call the tensor Qα. µνσ ”The Curvature Inverse of Riemann-Christoffel Tensor”.
But since gravity dominates our observable universe, which indicates that Rα. µνσ is more
effective than Qα. µνσ, thus one has to parameterize torsion terms in AP- expressions.
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The Second Reason: The set of equations (27), (28), (29) represents paths, admitted
by the AP-geometry, that are different from those of the Riemannian geometry. Although
the first equation of this set is similar to the geodesic (or null-geodesic) equation, the other
two equations cannot be reduced to the geodesic one, unless the torsion vanishes. It has
been shown that the vanishing of the torsion of the AP-space will reduce the space to
a flat one [20]. This is because all curvature tensors, defined in the previous Section,
can be written in terms of the torsion (or contortion) tensor. Consequently, all of these
tensors vanish as a result of the vanishing of the torsion. So, what are the trajectories of
particles that can be represented by these two equations? Clearly there are no particles
that move along these paths. The reason is that the effect of the Christoffel symbol term,
in these equations, is of the same order of magnitude as the effect of the torsion term. So,
for these equations to represent physical trajectories, the torsion term in the equations
should be parameterized, in order to reduce its effect [25].

5. Parameterized AP-Geometry

As it is shown in the previous Section, the two reasons for which we parameterize the
geometry are the vanishing of the curvature tensor (30) and the problem of the physical
meaning of the set of path equations (27), (28), (29) . As stated in the previous Section,
the common factors between these two features are the affine connections. So, it is
necessary to start parameterizing these connections first.

Parameterized Connection: One way to parameterize the AP-geometry is to define
a general affine connection by linearly combining the affine connections defined in the
geometry. In doing so, we get after some manipulations [25]:

∇µ.αβ = a1

{
µ

αβ

}
+ (a2 − a3)Γµ.αβ − (a3 + a4)Λµ.αβ , (40)

where a1, a2, a3 and a4 are parameters. It can be easily shown that ∇µ.αβ transforms as an
affine connection under the group of general coordinate transformations.It is clear that
this parameterized connection is non-symmetric.

Parameterized Absolute derivatives: If we characterize absolute derivatives, using the
connection (40), by a treble stroke, then we can define the following derivatives:

Aµ+||| ν
def= Aµ,ν +Aα∇µ.αν, (41)

Aµ−||| ν
def= Aµ,ν + Aα∇µ.να, (42)

Aµ
0||| ν

def= Aµ,ν + Aα∇µ
.(αν)

, (43)

where Aµ is any arbitrary vector. If we need metricity, using the parameterized connec-
tion, to be preserved i.e.,

gµ
+
ν

+|||σ
= 0, (44)
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then one should take,
a+ b = 1, (45)

where a = a1, b = a2 + a4, (a3 = −a4) are two parameters. Now, due to (45), we have
only one parameter. In this case the general affine connection (40) can be written in the
form:

∇α.µν =
{
α

µν

}
+ b γα.µν . (46)

It is clear from this equation that we have parameterized the contortion (or equivalently
the torsion) term in a general connection of the AP-geometry. Now we will explore the
consequences of this parameterization.

Parameterized Path Equation: Using the parameterized connection (46) and following
the same approach followed before to get the set (27), (28), (29) , we can get the following
parameterized path equation admitted by the geometry [25],

dZµ

dτ
+
{
µ

νσ

}
ZνZσ = − b Λ(νσ).

µ ZνZσ , (47)

where Zµ ( def= dxµ

dτ
) is the tangent to the path and τ is the evolution parameter along it.

This equation replaces the set given by (27), (28), (29) . Discussion of this result is given
in the next Section.

Parameterized Curvature Tensors: Using the first method, given in Section 3, for
defining curvature tensors we can define the following tensor,

B̂αµνσ
def= ∇α.µσ,ν −∇α.µν,σ +∇β.µσ∇α.βν −∇β.µν∇α.βσ. (48)

Using the definition of ∇β.µν given by (40) and applying the metricity condition (45), then
we can write,

B̂α. µνσ = Rα. µνσ + b Q̂α. µνσ, (49)

where
Q̂α. µνσ

def= γ
α

+

.
µ

+
σ

−|ν
− γ

α

+

.
µ

+
ν

+|σ
+ b (γβ.µσ γ

α
.βν − γβ.µν γα.βσ ). (50)

It is clear that the tensor B̂α. µνσ is a parameterized replacement of the tensor Bα. µνσ
given in Section 3. But here B̂α. µνσ is, in general, non-vanishing.

Using the second method, given in Section 3, for defining curvature tensors we get the
following tensors,

λ
i

µ

+|||νσ− λ
i

µ

+|||σν = λ
i

αWµ
.ανσ, (51)

λ
i

µ

−|||νσ− λ
i

µ

−|||σν = λ
i

αLµ.ανσ, (52)

λ
i

µ

0|||νσ− λ
i

µ

0|||σν = λ
i

αNµ
.ανσ, (53)
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Note that every tensor with a hat is the parameterized replacement of that without
a hat. We can show that the tensors given by the second method are more general than
those obtained using the first method. For example we can write,

Wα
.µνσ = B̂α.µνσ − b (b− 1) γα.µβΛβ.νσ. (54)

We are going to discuss this result in the next Section.

6. Discussion and Conclusion

Two main problems, concerning gravitational interactions, are now well defined. The
first is that quantization of gravity, using conventional quantization schemes, is still a
difficult task if not impossible. The second, which may be a consequence of the first,
is that unification of gravity with other known interactions is still beyond the reach of
investigators. One way to overcome these problems, my be in reexamining carefully the
geometrization scheme suggested and applied by Einstein in constructing his theory of
GR in free space. We are convinced that this scheme is successful in constructing this
theory, but subsequent application of it, is the subject that needs a careful examination.

It as well known that GR in free space is the most satisfactory application of the
geometrization scheme as shown in Section 2. Recalling that the first criteria in this
scheme is the choice of an appropriate geometry for application; so in order to gener-
alize or modify this theory, one should first look for a geometric structure more wider
than the Riemannian one. For this reason Einstein started two series of attempts, to
construct unified field theories, using two different geometries. We believe that these
attempts are incomplete rather than unsatisfactory. The reasons are probably rooted in
the geometric structures used. As shown in Section 2, the geometric structures used are
the AP-geometry and the non-symmetric (NS) geometry. Table 1 shows how many of
the geometrization criteria, given in Section 2, are satisfied by Einstein’s two attempts,
compared with GR in free space as a standard theory of gravity. It is to be considered
that the version of GR, used for comparison in the present work, is that for free space. It
is the theory with less problems than the version written for a material distribution. As
stated before, Einstein’s two attempts are not successful. The reason may probably be
the incompleteness of the geometries used. We mean by a complete geometry, a geometry
that satisfies the following requirements:
i- All tensors, of different orders, should be well defined in terms of the building blocks
of the geometry, especially those measuring curvature. Different relations between these
objects should be clarified.
ii- All affine connections, admitted by the geometry, should be known and well studied,
with subsequent covariant derivatives defined using these connections.
iii- Identities, especially those of the differential type, are obtained for the geometry con-
sidered.
iv- Different paths, admitted by the geometry, are obtained.
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It is obvious that Riemannian geometry satisfies all these requirements. So, it could be
classified as a complete geometry. But it is not wide enough to modify or generalize GR.
It is found to be just sufficient to describe gravitational interactions, in free space, with
some limits concerning the distance from the source of the field. The present work is a
step towards making the AP-geometry as complete as possible. This step is necessary
before using this geometry to overcome the problems mentioned above.

Table 2 displays geometrization attempts of some authors. The AP-geometry is used,
as a basic structure, in some of these attempts [5], [8], [9], [10], [11], [12] and [13]. The
NS-geometry is used in another type of attempt [16]. In the rest of the attempts, listed
in the table, [14], [15] and [16] while a tetrad defined in spaces with torsion is used, it is
not clear whether the AP- condition (2) is imposed on this tetrad. So, one cannot decide
whether these attempts were carried out using a version of the AP-geometry or not.

In Section 3, ten reasons, for preferring AP-geometry for physical applications, are
given. However, the conventional version of this geometry suffers from two main prob-
lems. The first is the vanishing of its curvature tensor (30), which leads to the conclusion
that the geometry is flat. The second is that the path, defined in this version, (26) does
not represent physical trajectories of any known particles. In the present work the two
problems are solved.
For The First Problem: This problem is solved on two levels. It is shown that the AP-
space is not flat. On the first level we have shown that the AP-space admits non-vanishing
curvature tensors (31)-(36), defined by the second method given in Section 3. On the sec-
ond level, by parameterizing AP- connection (40), we were able to define a non-vanishing
curvature tensor (48) even by using the first method given in Section 3. The curvature
tensors, defined using the second method, (51), (52) and (53) are also non-vanishing and
more general than those given in Section 3. Thus, the AP-geometry is no longer flat. Even
before defining the non-vanishing curvature tensors admitted by the geometry, there were
some evidences indicating that this the AP-space is not flat. One of these evidences is
that GR can be written in this space with satisfactory solutions (cf. [26]).
For The Second Problem: Also, this problem is solved on two levels. On the first, we
discovered that the AP-geometry admits other path equations different from (26). These
equations are given by the set (27), (28), (29) . This does not solve the problem com-
pletely, since none of these equations represent physical trajectories. But this was a
necessary step towards the solution, and to make the geometry more complete. On the
second level, we parameterized a general path equation admitted by the geometry (47),
which is used now to represent physical trajectories in gravitational fields [25], [27]. This
step makes the AP- geometry more complete and solves the second problem.

In modifying or generalizing GR in spaces with torsion (e.g. [28]), the resulting theo-
ries are required to reduce to GR when torsion vanishes. Such theories would encounter
a problem in conventional AP-geometry. The vanishing of the torsion in this case would
lead to the vanishing of all curvature tensors of the structure [20]. So, the resulting GR
would be a trivial one, and gravity would no longer represented in such structures. These
theories are rendered unviable in the conventional version of the AP-geometry. The situa-
tion now is different if such theories are written in the parameterized AP-geometry. There
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is no need for the torsion to vanish. It is sufficient, in order to reduce the theory to GR,
to switch the parameter off, which would correspond to some physical condition. So, the
problem of such theories is solved using the parameterized version of the AP-geometry.

We can summarize the conclusion of the present work in the following points.
1- It is shown that the AP-geometry is not flat since it admits a number of non-vanishing
curvature tensors.
2- Paths admitted by the parameterized version of the geometry can be used to study
physical trajectories of test particles.
3- The parameterization carried out for the AP-geometry make it more complete and
more appropriate for physical applications.
4- The parameterized version of this geometry is more wider than the Riemannian geom-
etry and the conventional AP-geometry. It can be reduced to the first upon taking b = 0,
a = 1 in (45), and to the second if we take b = 1, a = 0.
5- The parameterized connection represents simultaneously non-vanishing curvature and
non-vanishing torsion. This result is the contrary to what obtained by some authors [6].
6- The parameterized version of the AP-geometry is more suitable for constructing field
theories in spaces with torsion, especially theories gauging gravity.

Finally, it is worth of mention that the geometrization criteria, given in Section 2, are
necessary but not sufficient to construct geometric field theories.

A part of this work was carried out while the author was visiting the H.E. Section
of the Abdus Salam ICTP on January 1999. The author would like to thank Professor
Randjbar-Daemi, head of this Section, for inviting him. Also, the author is grateful to
Professor Nutku, and the organizing committee of the Regional Conference on Mathe-
matical Physics IX, for inviting him to give this talk.
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