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Abstract

After review the 2D Yang–Mills theories (YM2) and its large–N behaviour, the
Generalized 2D Yang–Mills theories (gYM2) and their partition functions on a gen-
eral two–dimensional Riemann surface are discussed.The large–N behaviour of these
models is studied in weak regime, and in strong regime, we restrict ourselves to φ4

gYM2. We show that this model has a third order phase transition, similar to
ordinary YM2 theory.

1. Introduction

The two–dimensional Yang–Mills theory (YM2) is a theoretical tool for understanding the
main theory of particle physics, QCD4, and there have been many efforts to understand
this theory in recent years. The partition function of these theories on Σg , a two-
dimensional Riemann surface of genus g , has been first calculated in the context of
lattice gauge theory [1,2] . On the other hand the string interpretation of 2d Yang-
Mills theory was discussed in [3] and [4] by studying the 1/N expansion of the partition
function for SU(N) gauge group. It was shown that the coefficients of this expansion are
determined by a sum over maps from a two-dimensional surface onto the two-dimensional
target space.

Now the interesting point is that the pure YM2, as a 2D counterpart of the theory of
strong interactions, is not unique, and it is possible to generalize it without losing prop-
erties such as invariance under area-preserving diffeomorphisms and lack of propagating
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degrees of freedom. In ref.[5] , these generalized model have been introduced in the frame-
work of the BF theory, and the partition function of these theories have been obtained
by regarding the general Yang-Mills action as perturbation of the topological theory at
zero area.In [6], the large N -limit of such theories (called generalized 2D Yang–Mills the-
ories (gYM2) in [6]), when coupled to fundamental fermions of SU(N) have been studied.
And the authors of [7] have generalized the Migdal’s suggestion about the local factor of
plaquettes, and have shown that this generalization satisfies the necessary requirements.
In this way they have found the partition function and the expectation values of Wilson
loops of gYM2’s. For a review see [8].

One of the important features of YM2, and also gYM2’s, is their behaviour in the case
of large gauge groups, e.g., the largeN behaviour of SU(N) (or U(N)) gauge theories. On
one hand, it is interesting to study the relation between these theories at large N and the
string theory, as mentioned above. On the other hand, these kinds of investigations are
useful in exploring more general properties of large–N QCD, such as the phase structure
of QCD. Therefore, studying the large N behaviour of the free energy of these theories
is very important.

In this talk, I want to report the new results that have been obtained in the study
of the large–N limit of gYM2 theories. The plan of talk is following. In section 2, we
will bring a brief review about the calculation of the partition function of YM2 on Σg in
continuum approach. In section 3, the large–N behaviour of YM2 will be discussed, and
it will be shown that this model has a third order phase transition, a fact that has been
known earlier in the context of lattice formulation [9]. In section 4, we will introduce the
gYM2 and the partition function of these theories, for an arbitrary model, will be found.
In section 5, we will study the large–N behaviour of these models and the free energy of
them will be obtained for all gYM2 models in weak regime (A < Ac areas). Some specific
models will be also investigated in strong regime.

2. Partition function of YM2 on Σg

The two–dimensional pure Yang–Mills action is defined as following

S =
∫

tr(F 2)dµ, (1)

where F µν is the field–strength tensor and dµ =
√
g(x)d2x. If one works in the Schwinger-

Fock gauge:

Aaµ(x) =
∫ 1

0

dssxνF aνµ(sx), (2)

which has the following property:

Ga = xµAaµ = 0, (3)

it can be shown that the Jacobian of the transformation (Aa1 , Aa2) → (ξa = F a01, G
a),

cancels precisely against the ghost determinant [10]. In this way, the expectation value
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of any operator becomes

< O >=
∫
Dξe−

∫
ξ2

O(ξ). (4)

Now consider a disk D with boundary condition Pexp(
∮
∂D

A) = g ∈ G, then the wave
function of this disk is

K(g, A(D)) =
∫
Dξe−

∫
ξ2

δ(Pe
∮
∂D

A
, g)

=
∑
λ

dλχλ(g)e−C2(λ)A(D)/N . (5)

In this relation λ labels the irreducible representations of the gauge group G, dλ is the
dimension of the representations, χλ(g) is the character of the group element g in the
representation λ, C2(λ) is the second Casimir, and A(D) is the area of disk D. Now since
a sphere can be constructed by gluing two disks D and D′ to each other, the partition
function on the sphere is:

Z(S2) =
∫
dgK(g, A(D))K(g−1, A(D′))

=
∑
λ

d2
λe
−C2(λ)A(S2)/N , (6)

where A(S2) = A(D) +A(D′).
By using (5), and the relation∫

dgχ(xgyg−1) = d(λ)−1χ(x)χ(y), (7)

one can compute the wave function on a cylinder, and then on surfaces with more bound-
aries, and at last by gluing the appropriate surfaces, the wave function on a surface with
g genus and n boundaries (with boundary conditions g1, · · · , gn) is found as following
[1,2,10]

K(Σg,n)(g1, · · · , gn, A(Σg,n)) =
∑
λ

d2−2g−2n
λ χλ(g1) · · ·χλ(gn)e−C2(λ)A(Σg,n)/N . (8)

3. Large–N limit of YM2 on sphere

To calculate the large–N limit of the partition function of YM2 on sphere (the only
surface without any boundary that has the non–trivial large–N limit), we use the following
expressions for the dimensions and Casimirs of the representations of U(N) group:

dr =
∏

1≤i<j≤N
(1 +

ni − nj
j − i ),
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C2(r) =
N∑
i=1

[n2
i + ni(N − 2i + 1)], (9)

where ni is the length of the i–th row of the Young tableau, and n1 ≥ · · · ≥ nN . In the
large–N limit, the parameter 0 ≤ x = k/N ≤ 1 is a continuous parameter, and if we
define nk/N = n(x), it can be shown that

Z(S2) =
∑
r

d2
re
−C2(r)A/N =

∫ ∏
0≤x≤1

dn(x)eS[n(x)], (10)

in which

S[n(x)] =
1
2
N2

∫ 1

0

dx

{
−A[n2(x) + (1− 2x)n(x)] + 2

∫ 1

0

dylog[1 +
n(x) − n(y)

y − x ]
}
.

(11)
In the large–N limit, the dominant contribution in the partition function (10) comes
from the classical representation,i.e., the representation that is satisfied in the following
saddle–point equation

2Aφ(x) = P
∫ 1

0

dy

φ(x)− φ(y)
, (12)

where P indicates the principal value of the integral and φ(x) = n(x)−x+1/2. Introducing
the density

ρ[φ(x)] =
dx

dφ(x)
, (13)

the eq.(12) is reduced to:

2Az = P
∫ a

−a

ρ(λ)dλ
z − λ , (14)

along with the normalization condition∫ a

−a
ρ(λ)dλ = 1. (15)

The condition n1 ≥ n2 ≥ · · · ≥ nN imposes the following condition on the density ρ(λ) :

ρ(λ) ≤ 1. (16)

In this way one can find the saddle–point solution for ρ(λ) as:

ρ(λ) =
A

2π

√
4
A
− λ2, and a =

√
2
A
, (17)

which is the famous semi–circle distribution. Using (17), the free energy becomes [11]

F =
1
N2

lnZ(S2) ' 1
N2

ln (exp(Sclass.)) =
A

24
− 1

2
logA. (18)
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The maximum value of the density ρ(λ) in (17) is ρmax = ρ(0) = A
2π

√
4
A , which by (16)

must be ρmax ≤ 1. Therefore the distribution (17) is valid only for the areas

A ≤ Ac = π2. (19)

For studying the YM2 in strong region (A ≥ Ac), Douglas and Kazakov [12] assumed
the following symmetric ansatz for ρ in this region

ρ(λ) =
{

1, z ∈ [−b, b]
ρ̃(λ), z ∈ [−a,−b]

⋃
[b, a]. (20)

It can be shown that the saddle–point equation for ρ̃ is

g(h) =
1
2
Ah + log

h− b
h+ b

= P
∫ a

−a

ρ̃(s)ds
h− s . (21)

If one introduces the function f(h) in the complex h–plane

f(h) =
∫ a

−a

ρ̃(s)ds
h− s , (22)

where is analytic function on the complex plane except for the cuts at [−a,−b] and [b, a],
it has the following property

f(h + iε) = g(h) − iπρ̃, (23)

and one can show that

f(h) =
1

2πi

√
(a2 − h2)(b2 − h2)

∮
c

g(s)ds
(h − s)

√
(a2 − s2)(b2 − s2)

, (24)

where c is a contour encircling two above mentioned cuts.
In this way, it is found that [12]

F ′strong(A) − F ′weak(A) =
1
π2

(
A −Ac
π2

)2

+ · · · , (25)

where F ′ means derivative with respect to A. Therefore, it is shown that the YM2 has a
third order phase transition.

4. Partition function of gYM2 on Σg

The main properties of YM2 theory are:
1-Invariance under area–preserving diffeomorphism.
2-Lack of propagating degrees of freedom.
3-Area–law behaviour (Z ∼ eA), which in some sense relates to confinement.
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4-Third–order phase transition.
5-· · ·.
These properties are not unique for YM2 action:

Z =
∫
Dξe

−
∫

tr(ξ2) =
∫
DξDBe

−
∫

(tr(Bξ)+tr(B2)), (26)

where B is an auxiliary pseudo–scalar field in the adjoint representation of the gauge
group, but rather are shared by a wide class of theories, called generalized Yang–Mills
theory, defined by the action

Z =
∫
DξDBe−

∫
(tr(Bξ)+tr(Λ(B))), (27)

where Λ(B) is an arbitrary class function, i.e.,

Λ(UBU−1) = Λ(B), ∀U ∈ G. (28)

By a method which is very similar to those discussed in section 2, one can finally find the
partition function of these theories as follows [7,13]

Z(Σg) =
∑
r

d2−2g
r e−A(Σg)Λ(r), (29)

in which

Λ(r) =
p∑

k=1

ap
Nk−1

Ck(r). (30)

In (30), ak’s are arbitrary constants, and Ck is the kth Casimir of group

Ck =
N∑
i=1

[(ni +N − i)k − (N − i)k]. (31)

5. Large–N limit of gYM2 on sphere

Our main strategy is the same as one discussed in section 3. In the large–N limit, if we
define

φ(x) = −n(x) − 1 + x, (32)

the partition function becomes

Z =
∫ ∏

0≤x≤1

dφ(x)eS[φ(x)]. (33)

where

S(φ) = N2{−A
∫ 1

0

dxG[φ(x)] +
∫ 1

0

dx

∫ 1

0

dy log|φ(x)− φ(y)| }, (34)
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apart from an unimportant constant,and

G(φ) =
p∑
k=1

(−1)kakφk. (35)

In this case, the saddle–point equation is

g[φ(x)] ==
A

2
G′(φ) = P

∫ 1

0

dy

φ(x)− φ(y)
, (36)

or in terms of the density ρ is

g(z) = P
∫ a

b

ρ(λ)dλ
z − λ . (37)

Again if we define the function H(z) in the complex z–plane

H(z) :=
∫ a

b

ρ(λ)dλ
z − λ , (38)

with following property

H(z ± iε) = g(z) ∓ iπρ(z) b ≤ z ≤ a, (39)

Then it can be shown that

H(z) =
1

2πi

√
(z − a)(z − b)

∮
c

g(λ)dλ
(z − λ)

√
(λ− a)(λ − b)

, (40)

where the contour c is a contour encircling the cut [b, a], and excluding z. Note that in
this case it is not necessary the limits of integral (38) are symmetric, unlike the YM2 in
which b = −a (see eq.(14)), and in principle the parameters a and b are independent.

5.1. A < Ac region

In the weak–coupling (A < Ac) region, one can deforms the contour c in (40) to a
contour around the point z and the contour c∞ (a contour at the infinity ), and using the
z −→∞ limit of (38), to find the explicit form of ρ and the relations which determine the
parameters a and b [14]. When G is an even function, in which b = −a, the final results
are

ρw(z) =
√
a2 − z2

π

∞∑
n,q=0

(2n− 1)!!
2nn!(2n+ q + 1)!

a2nzqg(2n+q+1)(0), (41)

and
∞∑
n=0

(2n− 1)!!
2nn!(2n− 1)!

a2ng(2n−1)(0) = 1. (42)
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In the above equations, g(n) is the nth derivative of g defined in (36). It can be shown
that, [15], for all G(φ) = φ2k models, with k ∈ Z, ρ(z) has a minimum at z = 0 and two
symmetric maxima at ±z0 , and the derivative of the free energy is

F ′(A) =
1

2kA
. (43)

As the simplest example of gYM2, consider G(φ) = φ4. Using the above relations, one
finds

ρ(z) =
2A
π

(
a2

2
+ z2)

√
a2 − z2,

a = (
4

3A
)1/4. (44)

The density ρ has a minimum at z = 0 and two maxima at z(±)
0 = ±a/

√
2. Now as

ρ(z(±)
0 ) =

√
2a3A/π, if A > Ac = 27π4/256 , then the condition ρ ≤ 1 is violated. So the

solution (44) is valid only in the region A ≤ Ac.

5.2. A > Ac region for G(φ) = φ4 model

In the strong region (A > Ac), we first restrict ourselves to G(φ) = φ4 model. In this
region, we use the following symmetric ansatz for ρ

ρs(z) =
{

1, z ∈ [−b,−c]
⋃

[c, b] =: L′

ρ̃s(z), z ∈ [−a,−b]
⋃

[−c, c]
⋃

[b, a] =: L. (45)

The saddle–point equation is the same as weak region, i.e.,

2Az3 = P
∫ a

−a
dw

ρs(w)
z − w , z ∈ L. (46)

If we define the function H̃(z) in the complex z–plane with three–cut singularity at z ∈ L

H̃(z) =
∫
L

dw
ρ̃s(w)
z −w , (47)

then

H(z) := P
∫ a

−a
dw

ρs(w)
z − w = 2Az3 − iπρ(z) = H̃(z) + log

z + b

z + c
+ log

z − c
z − b . (48)

Note also that the expansion of H(z) for large–z is

H(z) =
1
z

+
1
z3

∫ a

−a
ρs(λ)λ2dλ+

1
z5
F ′s(A) + · · ·. (49)
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Now it can be shown that the solution of H̃(z) is

H̃(z) =
1

2πi

√
(z2 − a2)(z2 − b2)(z2 − c2)

∮
cL

2Aλ3 − logλ+b
λ+c − logλ−cλ−b

(z − λ)
√

(λ2 − a2)(λ2 − b2)(λ2 − c2)
dλ,

(50)
where cL is a contour encircling the three distinct intervals of L. By deforming the
contour cL to a contour at infinity and three contours encircling the point z and the
two intervals [−b,−c] and [c, b], respectively, one can determine H̃(z) and then H(z) and
finally expands H(z) at large z. The coefficient of 1/z in this expansion must be taken 1
(see (49)), which results

A

[
3
4

(a4 + b4 + c4) +
1
2

(a2b2 + b2c2 + c2a2)
]
− 2

∫ b

c

λ3dλ

R(λ)
= 1, (51)

in which
R(λ) =

√
(a2 − λ2)(b2 − λ2)(λ2 − c2). (52)

And the coefficient of 1/z2 in this expansion must be taken 0, which results

A(a2 + b2 + c2) = 2
∫ b

c

λdλ

R(λ)
. (53)

In this way we have two equations (51) and (53), and three unknown parameters a, b, and
c!

The point is that: we must consider such variations of ρ which have two properties:
1- Have fixed values in the endpoints of different regions.
2- These fixed values must be equal.
In Douglas and Kazakov investigation, YM2, as we have only two regions and ρ is sym-
metric, the second requirement satisfies automatically when the first one imposes. But
here we have three distinct regions, and the second requirement must be imposed by
hand. To impose it, consider again the action (34) for φ4 and in terms of ρ

S(ρs) = N2

[
−A

∫ a

−a
dz ρs(z)z4 +

∫ a

−a
dz

∫ a

−a
dwρs(z)ρs(w)log|z −w|

]
, (54)

with condition
∫ a
−a ρs(z)dz = 1. To consider this condition, we introduce the Lagrange

multiplier µ and the functional S̃ as following

S̃ = S +N2µ

[ ∫ a

−a
dz ρs(z) − 1

]
. (55)

Then δS̃ = 0 leads to

N2

∫ a

−a
dz

[
−Az4+2

∫ a

−a
dwρs(w)log|z−w|+µ

]
δρs+N2

[∫ a

−a
dzρs(z)−1

]
δµ=0, (56)
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and the above equation gives

A

2
z4 −

∫ a

−a
dw ρs(w)log|z −w| = µ

2
, z ∈ L. (57)

Differentiating eq.(57) with respect to z, gives our previous saddle–point equation (46).
But here we have another requirement, that is the eq.(57) must be equal for z = b and
z = c. Subtracting eq.(57) at these two points results∫ b

c

dz

[
2Az3 − P

∫ a

−a
dw

ρs(w)
z −w

]
= 0. (58)

Using eqs.(48) and (50), eq.(58) can be rewritten as

A

∫ b

c

R(z)dz +
∫ b

c

dz P
∫ b

c

R(z)λdλ
(z2 − λ2)R(λ)

= 0, (59)

and this is our third equation.
By expanding a, b, and c near critical point Ac

c = s(1 − y),

b = s(1 + y), (60)

a = s
√

2 + e,

where at A = Ac, e = 0, y = 0, and s = ac√
2

= 1√
2

(
4

3Ac

)1/4

, and after lengthy calculations,
we can find F ′s(A) and then finally [14]

F ′s(A)− F ′w(A) =
1

27Ac
(
A− Ac
Ac

)2 + · · ·. (61)

In this way we see that the φ4 gYM2 theory has a third order phase transition, similar to
ordinary YM2 theory.

It can be shown that this kinds of phase transition also exists in φ6 and φ2 + αφ4

gYM2 theories [15].
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