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Abstract

Starting from the theory of relativistic scalar charged particles interacting via
C-S field, it is verified that the gauge invariant sum of the imaginary parts of all
Feynman diagrams with C-S photon lines on the mass shell vanish.

1. Introduction

In this work, we consider the theory of relativistic scalar charged particles interacting via
Chern-Simons (C-S) gauge field. It is well-known that in this model there are no solutions
for the classical free Aµ field which implies that real free particles of the gauge field do
not exist. In fact, this is one of the reasons why the C-S field is called as topological
field. This would mean that the complete set of vector physical states in the total Hilbert
space of the system does not contain these topological particles, which in turn leads to
very important topological unitarity identities requiring that the gauge invariant sum of
imaginary parts of all Feynman diagrams with on-shell internal gauge field lines vanishes.
Verification of this argument, for the case of scattering of two oppositely charged particles,
is the main aim of this work.

This paper is organized as follows: We construct the S-matrix for the relativistic scalar
Chern-Simons theory and deduce the unitarity identities in section 2. Then, in section 3
we verify that for the scattering of two oppositely charged particles, the gauge invariant
sum of the imaginary parts of all Feynman diagrams with Chern-Simons internal photon
lines on the mass shell is equal to zero. We discuss our results in Section 4.
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2. S-Matrix for the relativistic scalar Chern-Simons Theory

The classical action of the systems interacting with Chern-Simons fields in α-gauge is:

S = SCS + Sg + Sm

SCS =
∫
d3x(

1
4
εµνλF

µνAλ)

Sg =
1

2α

∫
d3x(∂µAµ)2

Sm =
∫
d3x[(Dµϕ)∗(Dµϕ)−m2(ϕ∗ϕ) + λ(ϕ∗ϕ)2], (1)

where Dµ = ∂µ − ieAµ(x) and λ is the constant of self-interaction. We choose the metric
as ηµν = (1,−1,−1) .

The S-matrix operator of the theory of scalar charged particles coupled to a C-S
gauge field has been constructed in [1]; and shown to be the same as the S-matrix of the
relativistic scalar QED in which the Feynman diagrams with external photon lines are
not considered and the propagators of C-S particles are substituted in place of the ones
for photons.

Let us briefly summarize the results of [1] for completeness:

Ŝ = Texp[iŜint(ϕ̂, ϕ̂∗, A)]. (2)

Here; Ŝint(ϕ̂, ϕ̂, A) =
∫

: [igAµ(x)(ϕ̂∂µϕ̂∗ − ∂µϕ̂ϕ̂∗) + g2Aµ
2ϕ∗ϕ+ λ(ϕ∗ϕ)2] : d3x, where

Ŝ is the S matrix operator and ϕ̂, ϕ̂∗ are the operators for the free fields ϕ and ϕ∗ in
the interaction representation and the following decomposition is chosen:

ϕ̂ =
1

2π

∫
d2p√
2Ep

[a(p)eipx + b+e−ipx]

ϕ̂∗ =
1

2π

∫
d2p√
2Ep

[a+(p)e−ipx + b(p)eipx], (3)

where p0 = Ep =
√−→p 2 +m2 a, b and a+, b+ are the annihilation and the creation

operators with the usual commutation relations. As was mentioned above, the propagator
of the C-S photon exists, although the introduction of the operators Aµ(x) for the free
field C-S field is possible only in case of gauge α 6= 0∗. Therefore, one can bring into
use such operators Âµ(x) in interaction representation with the property that only the
vacuum expectation values from the T-product of even number of operators Aµ(x) are
∗See [3] for the more detailed analysis of quantization of Chern-Simons field for arbitrary gauge.
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non-vanishing and reduce to the product of the vacuum expectation values of the T-
product of two operators Aµ(x). In principle, the situation here is the same as in QED in
(2+1) dimensions, where the contributions of scalar and longitudinal photons compensate
each other in unitarity conditions.

It is well-known that the Ŝ-matrix operator is unitary in physical subspace and the
scattering amplitude operator T̂ is defined by the expression:

Ŝ = 1− T̂ (4)

(where the δ function has been suppressed). It is shown in [2] that for arbitrary non-
diagonal (|β〉 6= |α〉) matrix elements, using the unitarity property of the Ŝ-matrix one
can write that:

〈β|2ImT̂ |α〉 = 〈β|T̂ T̂+|α〉 (5)

〈β|2ImT̂ |α〉 =
∑
γ

〈β|T̂ |γ〉〈γ|T̂+ |α〉, (6)

where {|γ〉} is the complete set of states of the charged particles and does not contain
the states of topological photon. In this case, we can include in total Hilbert space
also the states of topological photons which, however, do not contribute to unitarity
conditions. The imaginary part of the photon propagator is non-zero due to the fact
that the vacuum expectation values of the T-product of even number of operators is
non-vanishing as mentioned above. For this reason, in the framework of the perturbation
theory (5) tells us that the diagrams with internal on shell photon lines appear. On
the other hand, since {|γ〉} are physical states, in a given order of perturbation theory
the Feynman diagrams contributing to the imaginary part of (6) can not have internal
on-shell topological photon lines. Then, consistency of these two equations (5) and (6)
requires that the gauge invariant sum of the imaginary parts of all Feynman diagrams,
with internal on shell free photon lines vanishes. We shall verify this general argument of
the theory for the case of scattering of two oppositely charged particles in one loop order.

3. Scattering of two oppositely charged particles in one loop order

In the scattering of two oppositely charged particles, there are 3 creation and 3 annihila-
tion diagrams as shown in (Fig1.)

For the annihilation diagrams, the expression for Aµν (p,q) can be obtain as:

Aµν(p, q) =
(2p− k)µ(q − p+ k)ν

(p − k)2 −m2
+

(q − p+ k′)µ(2p− k′)ν
(p− k′)2 −m2

+ 2ηµν (7)
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where p+ q = k + k′ and kµAµν = Aµνk
′ν = 0

For the creation diagrams, one can get the expression for Aλσ(p′q′) as

Aλσ(p′, q′) =
(−k + 2p′)λ(q′ − p′ + k)σ

(k − p′)2 −m2
+

(−k′ + 2p′)σ(q′ − p′ + k′)λ

(k − q′)2 −m2
+ 2ηλσ, (8)

where p′ + q′ = k + k′ and kλAσλ = 0
From the combination of these 3 creation and 3 annihilation diagrams, one can obtain

9 diagrams which are shown in (Fig 2.) First we will calculate the imaginary parts of the
diagrams (2f), (2g), (2h), (2j):

The analytic expression for the imaginary parts of the diagrams (f) and (g) is (sup-
pressing the overall constant):

ImAf + ImAg = 2
∫
d3kAµν(p, q)εµλρkρδ+(k2)Aλσ(p′q′)ενσδk′δδ+(k′2)

= 25

∫
d3k

ερµλk
ρpµp′λεδνσk

′δqνq′σδ+(k2)δ+(k′2)
[(p− k)2 −m2][(p′ − k)2 −m2]

. (9)

Here δ+(k2) = δ(k)θ(k0). Changing the variable p− k → k , we can rewrite (9) as:

ImAf + ImAg = −25

∫
d3k

ερµλk
ρpµp′λεδνσk

δqνq′σδ+(k + p)2δ+(q − k)2

[(k2 −m2)][(p′ − p− k)2 −m2]
. (10)

Following the usual manuplations, and performing the dk0 integration, we can write:

ImAf + ImAg =
25p2

0

2P0

∫
d2k

δ(p2
0 − (~p+ ~k)2)(~k × ~p− ~p′)2

[(k2 −m2)][(p+ k − p′)2 −m2]
, (11)

where P0 = p0 +q0 = 2p0. Carrying out the integral, and after some lengthy calculations,
we obtain:

ImAf + ImAg = 4π(1− cos θ)(−m +E), (12)

where θ is the scattering angle in the center of mass frame
The imaginary parts of the diagrams of (h) and (j) is:

ImAh + ImAj = 2
∫ d3kεµλρk

ρ(q−p+k′)µ(2p−k′)νενσδk′δ(−k+2p′)λ(q′−p′+k)σδ+(k2)δ+(k′2)
(p−k′)2−m2}{(k−p′)2−m2

= 25

∫
d3k

εµλρk
ρqµp′λενσδk

′δpνq′σδ+(k2)δ+(k′2)
{(p− k′)2 −m2}{(k − p′)2 −m2} . (13)
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Changing the variable p− k′ → k , we get:

ImAh + ImAj = −25

∫
d3k

εµλρk
ρqµp′λενσδk

δpνq′σδ+((k + q)2)δ+((p− k)2)
[k2 −m2][(p′ − q − k)2 −m2]

. (14)

Figure 1. Annihilation and Creation Dia-

grams

Figure 2. One-Loop diagrams

We note that (14) is the same as (10) with the substition p ↔ q. Following the similar
manuplations, we obtain the result for this:

ImAh + ImAj = 4π(1 + cos θ)(−m +E). (15)

Now, we treat the diagrams (2d) and (2e)

597



BOZ, FAINBERG

ImAd + ImAe = 2
∫
d3k

2ηλσεµλρkρ(2p− k)µενσδk′δ(2q − k′)νδ+(k2)δ+(k′2)
(p − k)2 −m2

= 24

∫
d3k
{(kk′)(pq) − (kq)(pk′)}δ+(k2)δ+(k′2)

(p − k)2 −m2
. (16)

The result of this integration is:

ImAd + ImAe = 2(2m− 3E)π. (17)

Next, for the diagram (2c) we obtain:

ImAc =
∫
d3k2ηµνεµλρkρ2ηλσενσδk′δδ+(k2)δ+(k′2)

= 23

∫
d3k(kk′)δ+(k2)δ+(k′2) = 4πE (18)

Finally, we calculate the imaginary parts of the diagrams (2a) and (2b)

ImAa + ImAb = 22

∫
d3k

ενλρk
ρενσδ(−k + 2p′)λ(2q′ − k′)σk′δδ+(k2)δ+(k′2)

(k − p′)2 −m2

= 24

∫
d3k
{(kk′)(p′q′)− (kq′)(p′k′)}δ+(k2)δ+(k′2)

(p′ − k)2 −m2
(19)

Here we note that this is the same expression with (16), only with the replacement p→ p′,
q → q′. We now have:

ImAa + ImAb = 2(2m− 3E)π (20)

Thus, using equations (12), (15), (17), (18) we obtain the sum of the imaginary parts
of the diagrams, which vanish:

ImAtotal = 8π(−m+E) + 4πE + 4π(2m− 3E) = 0. (21)

4. Conclusions

We proved that for relativistic scalar charged particles interacting via C-S gauge field, due
to topological properties of the pure C-S photons, the gauge invariant sum of imaginary
parts of all the Feynman diagrams with on-shell internal gauge field lines vanish. Each of
these diagrams is not gauge invariant by itself; only their sum is. Moreover, if we consider
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the same diagrams in three different channels; namely s, t, u (s = (p+ q)2, t = (p− p′)2

and u = (p − q′)2), we see that all of them are the different boundary values of a single
analytical function of the two invariant variables (for instance, s and t).

In the near future we hope to utilize dispersion approach and topological unitarity
identities for the calculation of one-loop scattering amplitudes in C-S theory.
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