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Abstract

The second order contribution for the relativistic scattering of massless spin- 1
2

particles from an infinitely long solenoid, in the context of covariant perturbation
theory, is calculated and shown to vanish. Thus, Born approximation is consistent
for this case as well.

1. Introduction

It is a well-known fact that a pure Chern-Simons (CS) gauge field creates an Aharonov-
Bohm (AB)-like interaction when particles of conventional statistics are coupled to it
[1]. In the context of Galilean field theory, the AB problem can be reconsidered as an
arbitrary scattering process by restricting the attention to the N-body sector allowing one
to derive a Schroedinger equation for N-body problems [2]. Thus the two particle sector
of field theory is formally equivalent to the conventional AB Schroedinger equation [3].

The failure of Born approximation for the AB scattering amplitude, when applied to
Schroedinger equation, has been known for some time [4-5]. The source of this failure can
be traced to the integral equation satisfied by the lowest partial wave amplitude which
contains a quadratic interaction term in the flux parameter. Hence, in the first Born
approximation this partial wave does not exist.

In literature there are several works which address this problem. For the spinless
case the problem is solved in [6-7]. AB scattering to spin-1

2
particles was considered in

the context of Dirac equation formalism in [8], and using covariant perturbation theory
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in [9]. In both of these works, it was shown that Born approximation gives the correct
result by demonstrating that this amplitude agrees with the corresponding term in the
series expansion of the exact amplitude. In [10] and [11] the consistency of the spin-1

2 AB
problem was considered in the framework of equivalent Galilean gauge field theory from
a different point of view.

When looking at the consistency of the spin-1
2 AB problem from a general perspective,

one should note that, in the series expansion of the exact amplitude, which is proportional
to sinπα ( where α = − eφ

2π and φ is the magnetic flux carried by the solenoid), O(α2)
term is missing, to lowest order. However, the demonstration of the full consistency of the
Born approximation requires that, aside from the agreement on O(α) term, the O(α2)
contribution should vanish as well. This was already done in [10] for the two particle
sector in the context of Galilean field theory.

In this work our aim is to carry out the second order perturbative analysis of the
relativistic scattering of massless spin- 1

2 particles from an infinitely long solenoid, along
the lines of [9]. As it was shown there, that the first order perturbative term agrees with
the corresponding one in the series expansion of the exact amplitude, we fully demonstrate
the the validity of the Born approximation by calculating the O(α2) term contribution
to the scattering amplitude in the framework of covariant perturbation theory and verify
that it indeed vanishes.

2. Second Order Covariant Perturbation Theory

Our starting point is the well-known S-matrix in the second order which is defined as

S
(2)
fi =

∫ ∫
d4xd4yψ̄f (x)(−ieγµAµ(x))iSF (x − y)(−ieγνAν(y))ψi(y), (1)

where SF (x−y) is the propagator for massless particles and by definition has the following
expression:

SF (x− y) =
∫

d4p

(2π)4
e−ip(x−y) γµpµ

p2 + iε
· (2)

In the Coulomb gauge ~∇ · ~A = 0, the vector potential Aµ of the solenoid is taken along
the 3rd axis and is given as:

A1(z) = − φ

2π
z2

z2
1 + z2

2

A2(z) = − φ

2π
z1

z2
1 + z2

2

A3(z) = A0(z) = 0, (3)
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where φ is the magnetic flux carried by the solenoid. In Eq. (1), ψf and ψi are the plane
wave solutions for massless spin- 1

2 particles and, in the Bjorken-Drell convention, can be
written as:

ψi(z) =

√
1

2Ei(2π)3
u(pi, si)e−ipiµz

µ

ψf (z) =

√
1

2Ef(2π)3
u(pf , sf)e−ipfµz

µ · (4)

The Dirac spinors for the polarized initial and final particles can be constructed as:

u(i) = cos
θ′

2
e
−iϕ′

2 u+(i) + sin
θ′

2
e
iϕ′
2 u−(i)

u(f) = (cos
θ

2
cos

θ′

2
e
−iϕ′

2 + sin
θ

2
sin

θ′

2
e
iϕ′
2 )u+(f)

+(cos
θ

2
sin

θ′

2
e
iϕ′
2 − sin

θ

2
cos

θ′

2
e
−iϕ′

2 )u−(f), (5)

where u±(i) and u±(f) are the helicity eigenstates for the massless initial and final
fermions:

u+(i) =
√
Ei


1
0
1
0

 , u−(i) =
√
Ei


0
1
0
−1



u+(f) =
√
Ef


cos θ2
sin θ

2

cos θ2
sin θ

2

 , u+(i) =
√
Ef


− sin θ

2

cos θ2
sin θ

2

− cos θ2

 · (6)

After these definitions, we first carry out the spatial integrals in Eq. (1), and obtain

S
(2)
fi =

i

2(2π3)
(e2φ2)√
EiEf

δ(Ef − Ei)δ(pf3 − pi3)∫
d2p⊥

N

( ~pf⊥
2 − ~p⊥

2)(−−−−→pf − p)2
⊥(−−−→pi − p)2

⊥
(7)

with

N = (pi − p)2(pf − p)1ūfγ
1(γ0Ef − γ3p1 − γ1p2)γ3ui +
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(pi − p)1(pf − p)2ūfγ
3(γ0Ef − γ3p1 − γ1p2)γ1ui −

(pi − p)1(pf − p)1ūfγ
1(γ0Ef − γ3p1 − γ1p2)γ1ui −

(pi − p)2(pf − p)2ūfγ
3(γ0Ef − γ3p1 − γ1p2)γ3ui· (8)

To carry out the integral in Eq. (7), we rewrite the numerator in terms of the polar angle
in the p⊥ plane which we define by ϕ, making use of the energy conservation provided
by δ(Ef −Ei),

N = α+ β cosϕ+ γ sinϕ

α = k3{Ei
k
{A sin θ − B cos θ} − u2{Ei

k
B + D sin θ +C(1 + cos θ)}}

β = k3{Cu3 + u{D sin θ +C cos θ +
Ei
k
{(1 + cos θ)B −A sin θ)}}}

γ = k3{Du3 + u{C sin θ −D cos θ − Ei
k
{A(1− cos θ) − B sin θ}}}· (9)

In Eq. (9), the parameter u is defined by u ≡ p
k and ~pi

2 = ~pf
2 ≡ k2. A, B, C, D are

defined in terms of the Dirac matrices and have the following expressions:

A = iūfγ
0Σ2ui, with Σ2 =

(
σ2 0
0 σ2

)
B = ūfγ

0ui,

C = ūfγ
3ui,

D = ūfγ
1ui· (10)

Now, returning back to the integration given in Eq. (7), which we shall denote as IS
from now on, we change the ϕ integration into a contour integration over the unit circle
|z| = 1, where z = eiϕ. Then, using the complex integration techniques, we obtain:

IS =
eiθ

2ik

∫ ∞
0

du

u(1− u2)

∮
|z|=1

dz
c0 + c1z + c2z

2

(z2 + 1− 2az)(z2 + e2iθ − 2azeiθ)
, (11)

where a = u2+1
2u

and the coefficients c0, c1, c2 are calculated in terms of the quantities
given in Eq. (10) as:

c0 = {C + iD}u3 + u{(C − iD)eiθ +
Ei
k

(B − iA + (B + iA)eiθ)

c1 =
2Ei
k
{A sin θ −B cos θ} − 2u2{Ei

k
B − m

k
B′ +D sin θ+ C(1 + cos θ)}

c2 = {C − iD}u3 + u{(C + iD)e−iθ +
Ei
k

(B + iA + (B − iA)e−iθ)· (12)
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Carrying out the z-integration using the Cauchy theorem and changing the variable u2 =
v, we get:

IS =
π

k2

∫ ∞
0

dvε(v − 1)

×{ EiB

(v − eiθ)(v − e−iθ) +
(EiA) sin θ + (EiB)(1− cos θ)

(v − 1)(v − eiθ)(v − e−iθ) }· (13)

In Eq. (13), we make a change of variable v = 1
w in the (1,∞) interval, and we see that

the first integral vanishes. Thus, the remaining integral can be rewritten as:

IS =
πT

k2

∫ ∞
0

dv
ε(v − 1)

(v − 1)(v − eiθ)(v − e−iθ) · (14)

Here the profactor T is given as:

T = EiA sin θ + EiB(1 − cos θ)
= ūfEiRui, (15)

where

R =
(
r 0
0 r

)
with r =

(
1− cos θ sin θ
− sin θ 1− cos θ

)
·

(16)

Using the definitions given in Eq. (10), one can show that T vanishes. This result com-
pletes our calculation showing that the Born approximation is consistent by the vanishing
of the O(α2) order term.

3. Conclusions and Discussion

The validity of the Born approximation for the relativistic spin-1
2

AB scattering problem
was shown in [9] by demonstrating that it agrees with the corresponding term in the series
expansion of the exact amplitude which is proportional to sin πα. However, demanding
a complete check of the full consistency of the Born approximation, not only should one
have agreement on O(α) terms, but should also demonstrate that the O(α2) terms vanish.
In this work, the consistency of the Born approximation for the relativistic massless spin-1

2
particles is checked in the framework of the covariant perturbation theory. It is shown that
the O(α2) contribution vanishes, thus proving the consistency of the Born approximation
for the massless spin- 1

2 problem.
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