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Abstract

A general expression for the cross section of the inelastic collision of relativistic
highly charged ion with heavy (relativistic) atoms is obtained using the generalized
eikonal approximation. In the ultrarelativistic limit, the obtained formula coincides
with a known exact one. As an application of the obtained result, probability and
cross section of the K-vacany production in the U92+−U91+ collision are calculated.

Inelastic processes in the collision of fast and relativistic highly charged ions with
atoms have become the subject of extensive investigation in recent years [1, 2, 3] as
expressed in the great number of papers devoted to the theoretical investigation of these
collisions. (See for example [1, 4] and references therein.)

Cross sections of such inelastic processes are large enough and therefore their asso-
ciated processes are interesting in the applied plan [1]. As is well known [4], perturba-
tion theory begins to break down for relativistic ion-atom collisions with large projectile
charges (for Z≥75). For example, a well known Born approximation leads to the result
in which (for small impact parameters) ionisation probability may exceed unity. For
this reason there appear the need to calculate the process in nonperturbative methods.
Presently, only a few nonperturbative results are available. Becker et. al. [5] have used
a finite difference method to solve the Dirac equation for U92+ − U91+ collisions at 1
GeV/u on a discretised grid. Recently Baltz [6] obtained an exact solution to the Dirac
equation for relativistic heavy ion collisions in the ultrarelativistic limit. Another suces-
sive nonperturbative method giving the cross section of these inelastic processes is the
Glauber approximation [8, 9]. In [9], we sucessfully applied this method to relativistic
heavy ion-light atom collisions. In this work, using the eikonal approximation, we obtain
a genaral expression for the cross section of an inelastic collision of a fast and relativistic
highly charged ion with a comlex atom. In the ultrarelativistic limit this expression coin-
cides with the known exact expression in [6]. As an application of this formula, we have
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calculated the probablitiy and cross section of K-vacancy production in the collision of
relativistic U92+ − U91+.

A general expression for inelastic amplitude of transition from state | Φi > to state
| Φf > for the collision of relativistic highly charged ion with a light (nonrelativistic)
atom in the Glauber approximation can be obtained as in [9] (by following [7]):

fif (q) =
iki
2π

∫
e−iqb < Φf |

[
1− exp {− i

v

∫
Udx}

]
| Φi > d2b, (1)

where q = kf - ki is the momentum transfer. The scattering potential U = U(x,b; {ra})
is a function of ion’s coordinate as well as coordinates of atomic electrons R = (x,b),
which we denote as { ra }, a = 1,2,. . .N , where N is the number of electrons.

To generlize this eikonal approximation for the case of relativistic ion heavy (relativis-
tic) atom collision, one should account for the following: a) behaviour of atomic electrons
as described by the Dirac equation; b) in the Glauber approximation, U(x,b; {r′a}) is
the static Coulomb potential induced by the atomic nucleus and the electrons which are
in fixed (and simultaneous from the projectile viewpoint) points ra = (x′a, y

′
a, z
′
a). Then

1
v

+∞∫
−∞

Udx =
N∑
a=1

χa(b, s′a), χa(b, s′a) =
2Z
v

ln
| b− s′a |

b
,

where axis for x is along ki and s′a = (y′a, z′a) specifies the perpendicular vector. To be
definiteness, let us consider electrons in the instantaneous positions r′a at the moment
t′ = 0 in the rest frame of the ion and corresponding wave function is ψ′(r′a, t′). Then
instead of Eqn[1] we have

fif(q) =
iki
2π

∫
ψ′+f (r′a, t′ = 0)

[
1− exp {− i

v

∫
U(x,b; {r′a})dx}

]
×

× ψ′i(r′a, t′ = 0) exp (−iqb)d2b
N∏
a=1

d3r′a.

In the rest frame of the atom we have for t′ = 0:

xa = γx′a, sa = s′a, t = −xa
v

c2
;

ψ(rat) = ψ(ra) exp (−iEt) = ψ(ra) exp (iExa
v

c2
) = S−1

a ψ′

d3ra = dxadyadza = γd3r′a = γdx′ady
′
adz
′
a,

where γ = 1/
√

1− v2/c2, and Sa is the Lorentz matrix which transofrms the wave
function the ion’s to the atoms rest frame. It acts only to bispinor indices related to
atomic electrons with number a (corresponding Dirac matrices are αa) written as
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S2
a = γ(1 − vαa/c).

Thus in the rest frame of the atom the transition amplitude of from state | ψi > to state
| ψf > can be written in the Glauber approximation as:

fif (q) =
iki
2π

∫
< ψf | [1− exp{−i

N∑
a=1

χa(b, sa)}]×

×S2 exp [i
∑
a

xa
c

(Ef − Ei)] | ψi > exp (−iqb)d2b, (2)

where S2 =
∏N
a=1 S

2
a . This is the final expression for transition amplitude which should

be used in the collision of a relativistic ion with a heavy (relativistic) atom. If we are
not interesting in scattering angles one can perform integrating over this angles. So, for
small angles one has

dΩ ≈ d2q/(kikf) ≈ d2q/k2. (3)

Integrating (2) over d2b′ and d2q by using (3) and the integral representation of δ-function,
we obtain the cross section of transition from state | ψi > to state | ψf > in the relativistic
ion-heavy atom collision:

σ =
∫
d2b |< ψf | [1− exp {−i

N∑
a=1

χa(b, sa)}]×

×S2exp [i
∑
a

xa
c

(Ef −Ei)] | ψi >|2 . (4)

In this expression integrand is interpreted as the probability of transition from state
| ψi > to state | ψf > during the collision with the impact parameter b. One should
note that in this form this probability coincides with the exact one obtained in [6] for
the ultrarelativistic case. For long-range potentials the integral in (4) diverges for large
impact parameters. However, as is known, such divergence is not considerable [3,10],
since for large impact parameters the Born approximation is less applicable, a way from
the region in which the applicabilty of the Born and eikonal approximation overlap one
another. This provides a correct matching of cross sections over the impact parameter.
Consider this match in the case of K-vacancy production in the collision of relativistic ions
with heavy atoms when transition of the atomic K-shell-electron from the state | i > to
the continuum state | k > with momentum k occures. Denote b0 as the upper integration
limit over the impact parameter b. For b� s and orthogonal | k > and | i > the inelastic
formfactor

< f | exp {−i2Z
v

ln
| b− s |

b
} | i >≈< f | exp {iqr} | i > (5)
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tends (for small q) to iq < f | r | i >, where q = 2Zb/(vb2). Therefore integral in (4)
over d2b depends logarithmically on b0 and for this reason the contribution of the region
b < b0 to the cross section can be written as

σ(b < b0) = 8π
Z2

v2
λi ln

2αi
q0
, q0 = 2Z/(vb0), (6)

where

λi =
∫
d3k |< k | r | i >|2 /3, (7)

αi = limq0→0
q0

2
exp

 1
λi

∞∫
q0

dq

q3

∫
d3k |< k | exp (−iqr) | i >|2

 . (8)

In the region b > b0 the field of the ion is a weak perturbation and one can use in this
region the so-called Bethe asymptotics:

σi(b > b0) = 8π
Z2

v2
λi

(
ln

2v

ηb0ωi
√

1− β2
− β2

2

)
, (9)

where η = eB = 1.781, B = 0.5772 is the Euler constant, and ωi is the average ionization
frequency:

lnωi =
∫
d3k |< k | r | i >|2 ln Ωki∫

d3k |< k | r | i >|2 . (10)

Here, Ωki = εk − εi is the transition frequency. Summing (6) and (9) we obtain the total
K-shell ionzation cross section:

σi = 8π
Z2

v2
λi

(
ln

2αiv2

ηZωi
√

1− β2
− β2

2

)
. (11)

Quantities λiαi and ωi are calculated numerically using formulas (7), (8) and (10). Note
that the dependence on the cut-off parameter b0 disappears after mathching.

Thus we have derived general formulas for cross section which are applicable in the case
of collisions of atoms with ions of arbitirary charge. Now we apply the above results for the
calculation of probability and cross section of K-vacancy production in the U92+−U91+

collision. In the case of large ion’s charges the inelastic cross sections are large enough in
comparison with the atomic sizes. Therefore one can use, for the calculation of transition
amplitude, large impact parameter approximation (5). For wave functions | k > and
| i > we use Darwin and Zommerfeld-Mau wave functions [4]. Ionization probability as
a function of impact parameter for U92+−U91+ collision is given in Figure 1. As is seen
from this figure our approach gives for small impact parameters ionization probability
which is less than unity. In Figure 2 the dependence of K-vacancy production cross
section on the relativistic factor γ is given for the U92+ − U91+ collision.
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Figure 1. K-vacancy production probability as a function of the impact parameter b for

U92+cU91+ collision. Solid line is our result and the dashed line is the result of [10].

Thus the above calculations of cross section and ionization probability, using the
eikonal approximation, provides the ability to avoid some difficulties which appear in the
case of the application of perturbation theory to the collision of relativistic highly charged
ion with heavy atom and leads to a result, in the ultrarelativistic limit, coinciding with
the exact one.
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Figure 2. K-vacancy production cross section as a function of relativistic factor γ for U92 +U91

collision. Solid line is the result of our calculations; the dashed one is the result from [9]. The

cross section is given in barns.
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